
Mesh-based Overlay Enhancing Live Video Quality 

in Pull-based P2P Systems 

Houssein Wehbe 

Orange Labs 

4, rue du Clos Courtel  

Cesson Sévigné, France, 35512 

Houssein.Wehbe@orange-ftgroup.com  

 Gerard Babonneau       Bernard Cousin  

Orange Labs                             IRISA/Université de rennes 1 

           4, rue du Clos Courtel                              Campus de Beaulieu 

Cesson Sévigné, France, 35512                   Rennes, France, 35042 

Gerard.Babonneau@orange-ftgroup.com          Bernard.Cousin@irisa.fr 
                         

Abstract— Nowadays, Peer-to-Peer (P2P) live streaming 

applications have attracted great interest. Despite the fact that 

numerous systems have been proposed in the past, there are still   

problems concerning delay and quality requirements of live video 

distribution. In this paper, we consider a pull-based P2P live 

video streaming system where the video is disseminated over an 

overlay network. We propose a mesh-based overlay construction 

mechanism that enhances the received video quality while 

minimizing, as much as possible, the play-out delay. The 

principal feature provides each newcomer with a set of neighbors 

holding almost the same video segments and enough available 

transmission capacities to deal with its requests. A particular 

algorithm has been designed to estimate the peer’s available 

capacities.  The results of simulations show our mechanism 

efficiency in heterogeneous systems. 

Keywords-Peer to peer networks; live video streaming; overlay 

network; play-out delay.     

I.  INTRODUCTION  

Live video distribution to a large number of clients over 

the Internet is highly challenging. The main service 

performance metrics are the start-up delay, the play-out delay 

and good video quality. Start-up delay is the time lag between 

the moment when the client requests to watch the video and 
the moment when it starts the displaying. The start-up 

buffering enables the absorption of the jitter and the 

bandwidth variation. Play-out delay is the time lag between 

the moment when a video segment is generated by the video 

source and the moment it is displayed to the client. Low play-

out delay is desirable, and means that the displayed video is 

almost „live‟. 

Recently, live video distribution over peer-to-peer (P2P) 

networks has developed massively [1][2][3]. As compared to 

the client-server model, P2P systems allow the video 

distribution to a large number of clients without requesting 

additional resources in the network. The P2P principle is 

based on the equivalence between the roles of all the system 

entities, called peers. A peer may act as a client requesting the 

video, and as a server offering their own upload bandwidth to 

serve other peers. In most of these systems, the video is split 

into pieces of data called chunks. Each chunk has a sequence 
number and a video displaying deadline. The peers build an 

overlay used for chunk transmission. The overlay is a P2P 

network built on the basis of the Internet network. Peers in the 

overlay are connected via logical links, each of which is over 

paths in the underlying network. The overlay is constructed by 

providing for each system peer a set of peers watching the 

requested video, called neighbors. The peer can either pull the 

required chunks from its neighbors or push the chunks it has to 

them. In the pull approach [3] (respectively push [4]), the peer 

applies a chunk-scheduling mechanism to choose the chunks 

to be requested (resp. send) and its senders (resp. receivers) 

among the neighbors. The challenges to ensure the live video 

service performance metrics depend on some functioning 

constraints. Firstly, the peer start-up delay depends on the 

reception rate of the first chunks to be requested. It can be 

reduced by efficiency selecting these chunk senders. Secondly, 

the peer play-out delay depends on its neighbor‟s play-out 

delay. It may be reduced by requesting the chunks from the 
neighbor that has the lowest play-out delay. Thirdly, the video 

quality depends on the percentage of chunks successfully 

received before their displaying deadline. In P2P systems the 

video quality can be disrupted for two reasons. Firstly, chunks 

that are not received on time because either the jitter is 

unbounded or the recovery processing of packet losses takes 

too much time. Secondly, the unpredictable behavior of the 

system peers. A peer can leave the system at any moment 

which increases the chunk loss rate in the receiver peers. The 

P2P live streaming systems challenge is thus to design an 

efficient overlay construction and chunk-scheduling 

mechanisms that ensure the three performance metrics 

presented above. 

In this paper, we consider a pull-based P2P live streaming 

system, and propose a new overlay construction mechanism. 

Indeed, in the push approach, the chunk senders do not take 

into account the receiver constraints. Received chunks can be 
duplicated or lost by congestion if their global transmission 

rate is larger than the receiver download bandwidth. However, 

in the pull approach, the receiver can adopt the rate of the 

requested chunks to its download capacity and thus, reduce the 

chunk loss rate. In most of the current pull-based P2P live 

streaming systems [3][5][6], the overlay construction 

mechanism provides, for each new peer, a set of neighbors 

randomly selected among peers watching the requested video. 

This mechanism has two major drawbacks. Firstly, if the 

available upload capacities of the selected neighbors are not 

enough to send the requested chunks, the received video 



quality can be disrupted. Secondly, the receiver suffers from a 

high play-out delay when the selected neighbor‟s play-out 

delay is high. We can also note that always requesting the 

chunks from the peers with the lowest play-out delay leads to 

heavy congestion of these peers, leaving the others rarely 

made use of. 

Our overlay construction mechanism aims to ensure the 

video quality while minimizing, as much as possible, the play-

out delay. The key idea is the ability to select, for each new 
peer, a set of neighbors that; 1) collectively  have  enough 

transmission capacities to send the requested chunks; 2) hold 

almost the same set of chunks and; 3) undergo the smallest 

possible play-out delay. The receiver may then distribute its 

requests amongst the neighbors in order to reduce the 

probability of a bottleneck for the senders, and thus the 

probability of chunk loss. An important property of our 

mechanism is its ability to estimate the available transmission 

capacities of the peers without using specific control 

messages. 

This paper is organized as follows. Section 2 presents the 

state of the art overlay construction mechanisms used in 

current P2P streaming systems. Section 3 presents our 

solution. Section 4 introduces its performance evaluation. 

Finally, Section 5 concludes our work. 

II. STATE OF THE ART  

Overlay construction mechanisms used today are classified 

into two major categories: tree-based and mesh-based overlay. 

The tree-based approach proposes to arrange all peers in a 

tree in which the video source is the root. The peers can be 

placed in the tree based on different metrics, for example the 

available bandwidth and the end-to-end delay [7][8]. A peer 

can directly push the received chunks to its child peers, which 
reduces both the start-up delay and the play-out delay. 

However, the main problem with this approach is that leaving 

an internal node in the tree leads to a video quality disruption 

in its child peers. The proposed recovery techniques are very 

expensive and suffer from high maintenance duration [9]. To 

deal with these problems, the multiple trees approach has been 

proposed [10]. It consists of arranging the system peers in 

different trees, where the video source is their common root. A 

peer may be a leaf node in a tree and an internal node in 

another tree. The video source splits the video into several 

independent MDC (Multiple Description Coding) stripes [9], 

allowing the receiver to always display the video even when 

some stripes are lost. Then, the video source distributes each 

stripe in a different tree. When a node fails, its child nodes 

detect the loss of only one MDC stripe and therefore, can 

continue to display the video. Multiple-tree building and 

maintenance are ensured by a DHT substrate. However, the 
continued study [11] has shown that DHT-based approaches 

suffer from high control overhead and cannot easily support 

heterogeneity and failure. 

To deal with the tree-based overlay problems, the mesh-

based approach has been proposed [3][9]. It consists of 

distributing the video chunks to all of the system peers without 

any explicit structure. The overlay construction mechanism 

provides each peer with a set of existing peers, called 

neighbors, to exchange the chunks with them. The video 

chunks can be either pushed to the neighbors or pulled from 

them. In this paper, we focus on the pull-based P2P systems. 

Most of the overlay construction mechanisms proposed in 

these systems  [3][5][6] consist in providing for each new peer 

a list of neighbors randomly selected among the peers 

watching the requested video. Specific chunk-scheduling 
mechanisms are used to pull the chunks from the neighbors. 

For example, Coolstreaming [3] proposes to request only the 

rarest chunks and selects their senders based on an estimation 

of the neighbors upload capacities. However, this mechanism, 

and most of the existing ones, cannot deal with the drawbacks 

of the random overlay construction mechanism. Moreover, if 

the available upload capacities of the selected neighbors 

holding some rare chunks are not enough to send all the 

requested chunks, the receiver peer suffers from a quality 

disruption however efficient the chunk-scheduling mechanism 

is. Furthermore, the peer suffers from a high play-out delay if 

the selected neighbors do not have a low play-out delay. Note 

that in [12] the overlay construction problem has been 

formulated as an optimization problem. The proposed 

approach assumes a global knowledge of the overlay edge 

costs, which appears impracticable for P2P live streaming 

systems. A peer cannot obtain a global knowledge since the 
number of peers is very large and the channel bandwidths are 

heterogeneous and may change over time. Besides, [12] 

assumes that the chunk delivery delay is mainly due to the 

transport network latency. This is different from the scenario 

considered in this paper and many studies in the state of the 

art, as in [3][4][13], where the P2P system performance 

depends especially on the peers upload bandwidth. 

III. THE PROPOSED SOLUTION  

We consider a pull-based P2P live streaming system where 

the video source splits the video into chunks. Each chunk is 

marked with a sequence number and its original timestamp, 

i.e. the video moment matching to this chunk. When a new 

peer joins the system, it first contacts an entity, called tracker, 

to get information about the peers watching the requested 

video, also called neighbors. It then applies a chunk-

scheduling mechanism to pull the video chunks from its 

neighbors. 

We propose an optimized mesh-based overlay construction 

mechanism that aims to ensure the received video quality 

whilst minimizing, as much as possible, the play-out delay. 

The key idea consists of selecting for each new receiver peer 

an optimized set of neighbors that verify the following criteria: 

1) Collectively have  enough available transmission 

capacities to send the requested chunks, 

2) undergo the same play-out delay, 

3) undergo the smallest possible play-out delay. 

The first criterion increases the probability of receiving the 
requested chunks before their displaying deadline. The second 
selection criterion means that the neighbors display the same 



 

 

Figure1. Example of the initialization process of P 

 

chunk and thus hold almost the same buffered chunks. The 
receiver peer can distribute its chunk requests among its 
neighbors, which reduces the probability for the sender 
overloading and thus, the probability of chunk loss. The third 
selection criterion selects the peers that have the smallest play-
out delay among the peers that fulfill the first two criteria. This 
enables the new peer to receive good video quality while 
minimizing as much as possible its play-out delay. In the rest 
of this Section, we will explain the algorithms used by the peer 
and the tracker. 

A. Peer Algorithms 

A peer P maintains a parameter called TVt
P
 that represents, 

instantly t, the timestamp of the chunk that is being displayed 

on the screen. P increases it over time in order to ensure a 

smooth display of the chunks. Used in this parameter, P 

defines both the chunks reception condition and its play-out 

delay. Firstly, a chunk Ck, where k is its timestamp, must be 

fully received instantly t; TVt
P
 <k. Otherwise, P considers Ck 

as missing and cannot display it on the screen. Secondly, the P 

play-out delay is defined as follows: play-outt
P
 = t - TVt

P
, i.e. 

the time lag between the timestamp of the chunk that is being 
generated on the source and the timestamp of the chunk that is 

in being display on P. Once fixed, play-out
P
 remains constant 

over time since t and TVt
P 

increase continuously over time. 

The P play-out delay depends thus on the initial value of TV
P
. 

In our mechanism, P applies three algorithms. (1) Chunks-
discovery algorithm discovers the available chunks in the 
neighbors, (2) peer bootstrap algorithm initiates the TVP value 
and computes the play-outP, and (3) chunk-scheduling 
algorithm requests the required chunks from the neighbors. 

1) Chunks-discovery Algorithm  
Periodically, P sends a control message to its neighbors to 

discover their available chunks. They respond by another 
message that contains a description of the buffered chunks it 
owns. The format of the exchanged control messages is similar 
to any pull-based P2P system, for example [13]. 

2) Peer Bootstrap Algorithm  
Given the available chunks in the neighbors, P considers 

the chunk having the largest sequence number, noted Ck, as the 
first chunk to be requested. This enables P to receive the more 
recent chunks from the neighbors and then, reduce its play-out 
delay. Assume that, instantly t0, P has requested Ck from the 
neighbor N; TVt0

N
 =k (see Figure 1). To absorb the jitter and 

guarantee the reception of Ck, P delays, called start-up, before 

starting the display of Ck. As shown in Figure 1, at instant 
t=t0+start-up, P displays the chunk Ck; TVt

P
=k, and N displays 

a new chunk; TVt
N
=k+start-up. P thus displays the video with 

a delay equal to start-up relative to N. Consequently, the initial 
value of TV

P
 is equal to k, and play-out

P
 = play-out

N
 + start-

up. In our mechanism, start-up is a fixed configuration 
parameter. In Section IV, we will evaluate its affects on the 
system performance. The P play-out delay depends therefore 
on its neighbors play-out delay. 

3) Chunk- scheduling Algorithm 
This consists of selecting the chunks to be requested and 

their senders. As written previously, P requests the more recent 
chunks from the neighbors in order to reduce its play-out delay. 
It applies a Round Robin algorithm over the neighbors to select 
the chunk sender. Note that the neighbors hold almost the same 
buffered chunks since they have the same play-out delay. 
Additionally, we will show in Section III.B.1.b that they have 
almost the same available transmission capacity. This sender 
selection algorithm reduces the probability of a bottleneck for 
the neighbors, and increases the probability of receiving the 
requested chunks before their displaying deadline, which 
improves the video quality.  

B. Tracker Algorithms 

The tracker maintains the following global parameters. 

Firstly, video_rate represents the rate of the video generated 

by the source. When the video is encoded with a variable bit 

rate (VBR), video_rate represents the maximum rate used by 

the video encoder. Secondly, control_rate that is a constant 

parameter represents an estimation of the upload portion that a 
peer will use to exchange the control messages.  

For each peer pj, the tracker maintains an entry containing 

its identifier (for instance its IP address) and a coefficient, 

called capt
j
. It represents, at instant t, an estimation of the 

available transmission capacity of pj, i.e. the number of chunks 

that pj is able to send simultaneously. After receiving a video 

request from pj, the tracker initializes the cap
j
 value to:  

cap
j
 = (upload_pj – control_rate)/video_rate. 

Upload_pj is the upload bandwidth reserved by pj when it 

has initially participated to the P2P session.  (upload_pj – 

control_rate) represents an estimation of the portion of the 

upload bandwidth that pj will use to send the chunks. Note 

that, the estimated capacity may be larger than the real one 

when pj exchanges the control messages with a rate larger than 

control_rate. We will show in Section IV the affects of the 

control_rate value on the system performance. Moreover, the 

tracker reduces the cap
j 

value when pj is considered as a 

neighbor for receiver peers, i.e. as a potential chunk sender. 
When one of these receivers fails, the tracker increases the 

capt
j
 value. We will detail in Sections III.B.1.b and 3.B.2 how 

the tracker evaluates this coefficient over time. 
The tracker runs two principal algorithms: (1) the overlay 

creation algorithm which selects the new peer neighbors; (2) 
the overlay maintenance algorithm which sends a new list of 
peers to the peer that detected a failure in its overlay. 

 



 

 

Figure 2. The group organization 

 

 

Figure 3. The group buffer contents 

1) O verlay Creation Algorithm  
To simplify the identification of the system peers which 

have the three selection criteria presented above, the tracker 

organizes the peers watching the same video into groups. It 

identifies a particular group, called current_group, whose 

members meet our selection criteria. Each group Gi is 

designed by a coefficient called capGi which represents, at 

instant t, the sum of the available transmission capacities of 

the Gi members. 
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After receiving a video request from pj, the tracker applies 
two algorithms: (1) peer organization algorithm inserts pj in its 
own group and identifies the current_group; (2) neighbor 
selection algorithm selects a set of neighbors from the 
current_group members. 

a) Peer Organization Algorithm  

The algorithm is as follows. Initially, the tracker considers 

the video source as the current_group.  If capG value of the 

current_group is larger than or equal to one, the tracker inserts 

pj in a new group following the current_group, called 

“under_construction”. When all the transmission capacities of 

the current_group are in use, the tracker considers the 

“under_construction” group as the new current_group and 

creates a new “under_construction” group in which to insert 

the new  peers. Figure 2 presents an example of the group‟s 

organization. The current_group is the group number 3 (G3) 

since its capacity is larger than one. The tracker selects the 

neighbors of the new peer from G3, and inserts it in the 

“under_construction” group (G4). We will explain in Section 

III.B.2.b how the tracker updates the capG value of the 

current_group. 

This algorithm ensures that the current_group members 

have the capacity to serve a new peer as long as the capG of 

this group value is larger than one. Therefore, they verify thus 

the first selection criterion. Additionally, this algorithm 

ensures that the members of a given group Gi undergo the 

same play-out delay. Note that the play-out delay of a given 

peer is equal to the start-up delay plus its neighbor‟s play-out 

delay (see section III.A.2). G0 contains only the video source 

and it does not have a play-out delay. The G1 members 

undergo a play-out delay equal to start-up delay since they 

have only the video source as neighbor. The G2 (respectively 

Gi) group members undergo the same play-out delay since the 

start-up delay is constant and the G1 (resp. Gi-1) group 

members have the same play-out delay. As shown in Figure 2, 

the G2 group member‟s play-out delay is equal 2×start-up 

where start-up is the play-out of the G1 group members. 

Consequently, the current_group members undergo the same 

play-out delay and thus verify the second selection criterion. 

Moreover, Figure 2 shows that the available peers of the 

system exist both in the current_group and the 

under_construction group since the capG of these groups is 

larger than zero. The current_group members have thus the 

smallest play-out delay among the available peers of the 

system. Consequently, they verify the third selection criterion. 

Additionally, this peer organization algorithm ensures that 
the Gi group members have the chunks requested by the Gi+1 
group members. Consequently, the Gi+1 group members 
display the video with a delay equal to start-up relative to the 
Gi group members. Figure 3 presents an illustration of the 
buffer components of these groups at instant t. Without loss of 
generality, assume that the Gi group members display the 
chunk Cn and the Gi+1 group members display the chunk Ck 
;n>k. In order to ensure a smooth display of the chunks, the 
Gi+1 members need to request the chunk Cl; l>k. Figure 3 
shows that this chunk is available the Gi group members. 
Consequently, the current_group members have the chunks 
requested by the under_construction group members. 

b) Neighbors Selection Algorithm  

This algorithm results in a selection from the 

current_group members, a list of peers to be sent to pj. The 

sum of the cap value of the selected peers must be larger than 

one, i.e. they have enough transmission capacities to send the 

video to at least one peer. Furthermore, their number must be 

limited in order to minimize quantity of control traffic 

exchanged periodically between the peers, thus minimizing 

the probability of network congestion.  

The tracker defines L_max as the maximum number of 

peers to be selected, and L as the expected number of selected 

peers. For each new peer, the tracker applies the following 

algorithm composed in three steps. Step 1, it considers that 

L=L_max. Step 2, if the number of the current_group 

members having cap larger than or equal to 1/L is larger than 

or equal to L, then the tracker selects L peers randomly among 

them and runs Step3. Otherwise, it reduces the list size to L=L-

1, and repeat Step2. Step 3, the tracker reduces 1/L the cap 

value of the selected peers. As previously written, these peers 



 

 

Figure 4. Neighbor selection and capi evaluation 

have the same play-out delay, and almost the same buffered 

chunks. The probability that a peer among them will be chosen 

by the receiver to send a chunk C is 1/L since C is available in 

the L neighbors and the receiver selects the sender based on a 

Round Robin algorithm.  

Figure 4 gives an example of the neighbor selection 
algorithm where L_max=4. When peer P10 joins the system, the 
tracker selects  the peers P1, P2, P3, P4 for it and reduces their 
cap values by 1/4When peer P11 joins the system, the tracker 
considers L=3, since 4 peers each having  a capj>=1/4 do not 
exist. The tracker selects P1, P3, P4, and reduces their cap value 
by 1/3. When a new peer joins the system, the tracker must 
change the current_group since its capG is smaller than one. 
However, it uses the peers that have a cap larger than zero, P1, 
P2, P3, P4, P5, to deals with the failure problems (see the next 
section). 

2) O verlay Maintenance  Algorithm   
This algorithm aims to ensure the overlay resilience in the 

event of failure. In general, the failure of P has two 

consequences. Firstly, the peer neighbors that feed P become 

more available, and their available transmission capacity will 

be increased by 1/L, and the available sending rate in their 

group becomes larger than or equal to one. Secondly, peer Q 

that had P as sender, detects a lack in the available 

transmission capacity of its overlay that is equal to 1/L. The 

overlay maintenance algorithm has to provide Q 

supplementary sender peers who :(1) the sum of their available 

transmission capacity is equal to the loss that Q suffers, i.e. 

1/L, and (2) have the chunks requested by Q. 

Q can detect the failure of P based on the control messages 
exchanged periodically between them. After receiving failure 
detection message from Q, the tracker increases by 1/L the capi 
of each sender Ni of P. Then, it selects from the groups that are 
ancestor of Q, a set of peers whose sum of their cap value is 
larger than 1/L. They may be the senders of P or other peers 
having cap larger than zero. They hold the chunks requested by 
Q since their play-out delay is smaller than the one of Q.  

IV. PERFORMANCE EVALUATION 

In order to show our mechanism efficiency, we evaluated 
its performance through extensive simulations. We 
implemented in OPNET Modeler a packet-level simulator that 
takes into account network latencies and the load of parallel 
connections. 

A. The Similator  

Without lack of generality, the simulations were performed 

with a single video since the videos are independent. To 

simplify the model, we used a constant bit rate video divided 

into chunks. A chunk is transmitted on the network in several 

IP packets. The same assumptions are considered in 

[3][4][13]. Note that there is no affect of the variable bit rate 

video since the tracker computes the peer‟s capacities in 

function of the maximum rate used by the video encoder.  

The simulated network is a star topology with a router. Its 

advantages are simplicity and flexibility. It is possible to 

attribute different bandwidth and latency according to the 

scenario to simulate. As in most papers that evaluate the P2P 

live streaming systems performance [4][13][14], we assume 

that the bandwidth bottleneck happens only at the end host. 
The used heterogeneous scenario is presented in Table 1. The 

ratio of the total upload bandwidth to the minimum bandwidth 

required for the complete video distribution is 1.4. This 

scenario allows us to approximate the heterogeneous 

bandwidth distribution observed by real studies on the 

resources availability in P2P networks [15]. End-to-end 

latency, on average equal to 79 ms, randomly distributed 

among the nodes allows us to approximate the real-world 

node-to-node latency measured on Internet [16]. We set the 

control_rate value to 63 Kbps and start-up to 3s. We will later 

show the affects of these two parameters on the system 

performance. 

TABLE I.  SIMULATION PARAMETERS 

B. The Simulation Results  

Three basic results give us information about the system 

performance, the video quality and the play-out delay. 

System overhead rate (%): This is the percentage of 

bytes of the control messages (see section III.A.1) in relation 
to the total number of data bytes sent by the all system peers 

(chunks + control messages). Figure 5 shows the system 

overhead as function of the control_period, i.e. the period of 

exchange of the control messages. Results are presented for 

different network size (from 100 to 500 peers in the network). 

We noted that the system overhead decreases when 

control_period increases, since the control traffic quantity sent 

by the system peers during the simulation is decreasing. 

Moreover, this figure shows that the system overhead is 

almost independent of the network size. This is because the 

control messages are only exchanged between the peers and 

their neighbors. Based on these results we can assume that for 

a large network size our mechanism overhead remains low. 

Missing chunk rate (%): As written in Section III.A, a 

peer P considers a chunk Ck as missing if it does not receive 

all its packets before than TVt
P
 becomes equal to k. To 

Video rate 300 Kbps [13] 

L_max 15 peers [13] 

Video Source Bandwidth 2Mbps  

Peer Upload Bandwidth 300 Kbps 4500 Kbps 600 Kbps 

Peer Download Bandwidth 1 Mbps 1.5 Mbps 2 Mbps 

Peer Distribution 40% 40% 20% 



 

 

Figure 5. System overhead as function of control_period 

 

 

Figure 6. Chunk missing rate as function of control_period 

 

 

Figure 7. Comparison between the estimated control_rate and the real one 

measure this metric, during the simulation, each peer 

computes the number of the required chunks and the number 

of chunks considered as missing. At the end of the simulation, 

we compute the percentage of missing chunks for all video 

chunks during the simulation. If it is at 0%, it means that all 

peers have received a perfect video.  

Figure 6 depicts the missing chunk rate as function of 

control_period. When the control_period is smaller than 1.5 s, 

we note that the missing chunk rate is larger than zero and 

decreases with the increasing of control_period. In this case, 

as shown Figure 5, the peers exchange between themselves a 

large quantity of control messages. The absence of chunks is 

mainly due to the parameter control_rate. Indeed, as written in 

Section III.B, the estimated chunk transmission capacity of a 

peer P may be larger than the real one when P exchanges the 

control messages with a rate larger than control_rate. In this 

case, P may be considered as a sender for different receivers 

and may receive a number of chunk requests that are larger 

than its available transmission capacity. The transmitted 

chunks can be delayed or lost, which increases the probability 

of missing chunks in the system. In our simulations, some 

peers have suffered from this problem when the 

control_period was smaller than 1.5s. Figure 7 give us 

verification when control_period is equal to 0.5 s. The 

presented measure is carried on the peers that belong to the 

group G1 whose the number is equal to 6. These peers send 

chunks and control messages to the G2 group members, and 

only control messages to the video source (the group G0). The 

blue curve represents the control_rate value used to estimate 

the transmission capacities of these peers. It is constant and 

equal to 6×control_rate=78000 bps. The red line represents 

the sum of the real upload rate used by these peers to 

exchange the control messages. Figure 7 shows that with 

control_period equal to 0.5, the control_rate used to estimate 

the capacities of the G1 group members was smaller than the 

real rate used by these peers to exchange the control messages. 

This explains the missing chunks in Figure 6 when the 

exchange period is smaller than 1.5s. 

Moreover, Figure 6 shows that the chunk missing rate 

increases according to the increase of control_period when 

this period is larger than 3 s. The reason is that for a long 

control_period, receiver must wait some time before locating 

the new chunks within its neighbors. This can delay the chunk 

requests and reduces thus the chunk_reception_time, i.e. the 

time lag between the chunk requesting moment and its 

displaying deadline.  The probability of receiving chunks with 

a delay will be high. This explains the existence of missing 

chunks with a large control_period. Additionally, Figure 6 

shows when the control_period is smaller than 3 s, the missing 

chunk rate is independent from the network size. It is always 

equal to zero. This is due to our algorithms that ensure the 

availability of the neighbors whatever the network size is. 



 

 

Figure 8. Peer‟s play-out delay 

Play-out delay (s): This metric is local and different for 

each peer. As we explained previously (see Section III.A), the 

peer play-out delay is equal to the play-out delay of its 

neighbors plus start-up delay. Figure 8 depicts the play-out 

delay as function of different start-up values and the number 

of peers. We used the same parameters presented previously 

with control_period equal to 3s. Note that the play-out delay 

of a peer P is independent from the control_period since P 
computes it initially and keeps it constant during the video 

session (see Section III.A). We remark that the play-out delay 

increases with the increasing of start-up since the peer 

undergoes an additional play-out delay relative to its 

neighbors. The first peers have a very low play-out delay since 

they belong to the first groups which are close to the source. 

Note that the maximum play-out delay observed with start-up 

equal to 3 s is 55 s for 500 peers which matches to the mean 

value observed in a real measurement of the current P2P 

systems [17]. However, as compared to these systems, our 

overlay construction mechanism ensures a chunk missing rate 

equal to 0. Furthermore, we used start-up equal to 3s. It is 

smaller than 5s which is the start-up made one by the P2P 

clients requesting the most popular channels, as observed in a 

real study [6]. 

V. CONCLUSION  

In this paper, we have presented and evaluated a new 

mesh-based overlay construction mechanism for a pull-based 

P2P live streaming system. It consists of providing an overlay 

for each new peer, in which members are selected according to 

both their available transmission capacities and their play-out 

delay. We showed through simulations that our mechanism 

allows all the system peers to ensure a good video quality with 
a small play-out delay. The missing chunk rate and the system 

overhead remain almost constant in different network sizes. 

This explains the ability of our mechanism to provide good 

video quality for a large population. We currently perform 

extensive simulations to show the efficiency in high dynamic 

scenarios. In future work, we will implement a prototype of 

our mechanism in a real network, and compare it with the 

existing pull-based systems. 
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