
Public

Detection and Prevention of Attacks
on Open Source Software Supply

Chains

Piergiorgio Ladisa
SAP Security Research, Université de Rennes

Serena Elisa Ponta
SAP Security Research

Matias Martinez
Universitat Politècnica de Catalunya-BarcelonaTech (UPC)

Olivier Barais
Université de Rennes, INRIA/IRISA

2INTERNAL© 2021 SAP SE or an SAP aff iliate company. All rights reserved. ǀ

Public

“Free and Open Source Software (FOSS)

constitutes 70-90% of any given piece of

modern software solutions.” [1]

70-90%

[1] Frank Nagle, James Dana, Jennifer Hoffman, Steven Randazzo, and Yanuo Zhou. 2022. Census II of Free and Open Source Software—Application

Libraries. Linux Foundation, Harvard Laboratory for Innovation Science (LISH) and Open Source Security Foundation (OpenSSF) 80 (2022)

https://www.explainxkcd.com/wiki/index.php/2347:_Dependency

3INTERNAL© 2021 SAP SE or an SAP aff iliate company. All rights reserved. ǀ

Public

What if?

https://www.explainxkcd.com/wiki/index.php/2347:_Dependency

4INTERNAL© 2021 SAP SE or an SAP aff iliate company. All rights reserved. ǀ

Public

“[…] at the time of writing in
September 2023, we have logged
245,032 malicious packages —
meaning in the last year, we’ve seen
the number of malicious packages
tripled.” [1]

[1] Sonatype, 9th Annual State of the Software Supply Chain,

https://www.sonatype.com/hubfs/9th-Annual-SSSC-Report.pdf

5INTERNAL© 2021 SAP SE or an SAP aff iliate company. All rights reserved. ǀ

Public

Get executed

Downstream users
eventually execute the
malware

Get used

Downstream users
engage with malware

Spread out

Malware accessible to
downstream users

Requirements of an OSS Supply Chain attack

6INTERNAL© 2021 SAP SE or an SAP aff iliate company. All rights reserved. ǀ

Public

1.5+ million downloads/week, 1600 dependent packages

A malicious user (right9control) asked the original maintainer to give him

ownership and succeeded:

Added flatmap-stream as malicious dependency

Malicious code only in published NPM package

Malware and decryption only ran in the context of a release build of the
bitcoin wallet copay

Malware was discovered only by accident

Use of deprecated command resulting in a warning

Nov 2018
Attack on NPM package event-stream

event-stream

flatmap-stream

C

D

E

References:
▪ https:/ /www.theregister.co.uk/2018/11/26/npm_repo_bitcoin_stealer/

▪ https:/ /medium.com/intrinsic/compromised-npm-package-event-stream-d47d08605502

https://www.theregister.co.uk/2018/11/26/npm_repo_bitcoin_stealer/
https://medium.com/intrinsic/compromised-npm-package-event-stream-d47d08605502

7INTERNAL© 2021 SAP SE or an SAP aff iliate company. All rights reserved. ǀ

Public

Pytorch-nightly pulls its dependencies from its own

package index:

• torchtriton package was only present in the internal

package index and not in PyPI

• External indexes take precedence over internal

ones

• Attackers deployed a malicious version of

torchtriton in PyPI

December 2022

PyTorch-nightly compromise

References:
[1] https://pytorch.org/blog/compromised-nightly-dependency/

Public Repository

(PyPI)

Build System

PyTorch’s Private

Repository

PyTorch-nightly

torchtriton

torchtriton

1st Priority

2nd Priority

8INTERNAL© 2021 SAP SE or an SAP aff iliate company. All rights reserved. ǀ

Public

Version 10.1.1 and 10.1.2 of popular npm module
node-ipc contained the code deleting file system

content of IPs geo-located in Belarus or Russia

Malicious code added in Git [3], but history got re-

written

No external attackers, but politicized and disgruntled

open-source maintainers

March 2022

node-ipc and peacenotwar (CVE-2022-23812)

References:
[1] https://snyk.io/blog/peacenotwar-malicious-npm-node-ipc-package-vulnerability/
[2] https://snyk.io/blog/open-source-npm-packages-colors-faker/
[3] https://github.com/RIAEvangelist/node-ipc/commits/847047cf7f81ab08352038b2204f0e7633449580/dao/ssl-geospec.js
[4] https://www.businessinsider.com/open-source-developers-burnout-low-pay-internet-2022-3
[5] https://github.com/RIAEvangelist/node-ipc/pull/572

https://snyk.io/blog/peacenotwar-malicious-npm-node-ipc-package-vulnerability/
https://snyk.io/blog/open-source-npm-packages-colors-faker/
https://github.com/RIAEvangelist/node-ipc/commits/847047cf7f81ab08352038b2204f0e7633449580/dao/ssl-geospec.js
https://github.com/RIAEvangelist/node-ipc/pull/572

10INTERNAL© 2021 SAP SE or an SAP aff iliate company. All rights reserved. ǀ

Public

Software Supply Chain attack aims at injecting malicious code into software

components to compromise downstream users

OSS Supply Chain attack abuse the widespread use of open source as a means

for spreading malware

Terminology

A

B

C

D

E

Library

Direct dependencies

Indirect dependencies F

Indirect dependencies

11INTERNAL© 2021 SAP SE or an SAP aff iliate company. All rights reserved. ǀ

Public

Lack of comprehensive, technology-
independent and general description of
attacks on OSS supply chains

12INTERNAL© 2021 SAP SE or an SAP aff iliate company. All rights reserved. ǀ

Public

First steps

Taxonomy a.k.a. “How to compromise an Open-Source
component”

Understanding open source supply chain vulnerabilities

(✓) Spread out

(✓) Get used

(✗) Get Executed

13INTERNAL© 2021 SAP SE or an SAP aff iliate company. All rights reserved. ǀ

Public

Project contributors

Build System Distribution

Channelclone

publish

download

dependencies
Version

Control

Project maintainersProject contributors

Consumers

14INTERNAL© 2021 SAP SE or an SAP aff iliate company. All rights reserved. ǀ

Public

Classification and description of all known attack vectors

Based on SLR, real-world attacks, vulnerability disclosures, proof-

of-concepts, etc.

Mapped to corresponding high-level safeguards

Goal:

• Central point of reference, terminology

• Raise awareness

SoK: Taxonomy of Open-Source

Software Supply Chain Attacks

Reference:

Ladisa, P., e t al.: SoK: Taxonomy of Attacks on Open-Source Software Supply Chains, IEEE Symposium on Security and Privacy (forthcoming 2023)

15INTERNAL© 2021 SAP SE or an SAP aff iliate company. All rights reserved. ǀ

Public

Attack Trees

Break into a house

Enter through the window

Enter through the door

Steal the keys Lockpicking

16INTERNAL© 2021 SAP SE or an SAP aff iliate company. All rights reserved. ǀ

Public

Safeguards Utility & Cost Assessment

17INTERNAL© 2021 SAP SE or an SAP aff iliate company. All rights reserved. ǀ

Public

Taxonomy of Attacks on Open-Source Software Supply Chains

+30 high-level safeguards to

prevent attack vectors

Attacker’s perspective

117 unique attack vectors +370 scientific and grey

literature references

Based on Systematic
Literature Review

Mapping of Safeguards Assessed by experts &
practitioners

Surveyed 17 experts and +130

developers

18INTERNAL© 2021 SAP SE or an SAP aff iliate company. All rights reserved. ǀ

Public

Risk Explorer for Software Supply Chains

19INTERNAL© 2021 SAP SE or an SAP aff iliate company. All rights reserved. ǀ

Public

Risk Explorer for Software Supply
Chains:
Demo

Available online and open-source: https://sap.github.io/risk-explorer-for-software-supply-chains/

Reference:

Ladisa, P., e t al., Risk Explorer for Software Supply Chains: Understanding the Attack Surface of Open-Source based Software Development, ACM Workshop on Software Supply Chain

Offensive Research and Ecosystem Defenses (SCORED '22)

https://sap.github.io/risk-explorer-for-software-supply-chains/

20INTERNAL© 2021 SAP SE or an SAP aff iliate company. All rights reserved. ǀ

Public

What attackers wants to achieve with
OSS Supply Chain attacks

21INTERNAL© 2021 SAP SE or an SAP aff iliate company. All rights reserved. ǀ

Public

Execution of Malicious Code

References:
▪ Ohm, M., et al.: Backstabber’s Knife Collection (2020)

https://arxiv.org/abs/2005.09535

22INTERNAL© 2021 SAP SE or an SAP aff iliate company. All rights reserved. ǀ

Public

Primary Objective

Data Exfiltration

23INTERNAL© 2021 SAP SE or an SAP aff iliate company. All rights reserved. ǀ

Public

Last step

How to ensure that your malicious code gets executed

(✓) Spread out

(✓) Get used

(✓) Get Executed

24INTERNAL© 2021 SAP SE or an SAP aff iliate company. All rights reserved. ǀ

Public

Anatomy of a 3rd-party dependency

A

B

C

D

E

Library

foo-1.0.0

Direct dependencies Indirect dependencies

F

25INTERNAL© 2021 SAP SE or an SAP aff iliate company. All rights reserved. ǀ

Public

Installing and using 3rd-party dependencies

CLIENT PACKAGE

REPOSITORY

PACKAGE

MANAGER

26INTERNAL© 2021 SAP SE or an SAP aff iliate company. All rights reserved. ǀ

Public

Installing and using 3rd-party dependencies (contd.)

Fetch Package Extract Archive Build Run
source dist

pre-built dist

INSTALL PHASE

27INTERNAL© 2021 SAP SE or an SAP aff iliate company. All rights reserved. ǀ

Public

Techniques 3rd-party dependencies employ to attain ACE:

• When they are installed (install-time)

• When they are run in the context of downstream projects (runtime)

Ecosystems covered:

• JavaScript (npm)

• Python (pip)

• PHP (composer)

• Ruby (gem)

• Rust (cargo)

• Go (go)

• Java (mvn)

Achieve Arbitrary Code Execution in downstream

28INTERNAL© 2021 SAP SE or an SAP aff iliate company. All rights reserved. ǀ

Public

(I1) Run commands/scripts leveraging install-hooks

Ecosystem affected:

• JavaScript (npm)

• PHP (composer)

Get Code Executed – Install Time

{

" name ": " example ",

" version ": "1.0.0" ,

... continues ...

" scripts ": {

"pre-install": "** COMMANDS **"

}

}

Example implementation for JavaScript using installation hooks in
package.json

29INTERNAL© 2021 SAP SE or an SAP aff iliate company. All rights reserved. ǀ

Public

(I2) Run code in build script

Ecosystem affected:

• Python (pip)

• Rust (cargo)

Get Code Executed – Install Time (contd.)

from setuptools import setup

Any Python code will be executed , for example :

import os; os.system("..COMMANDS..")

setup (name =' foo ', version = '1.0 ' , ...)

Example implementation for Python sdist packages through code in
setup.py

30INTERNAL© 2021 SAP SE or an SAP aff iliate company. All rights reserved. ǀ

Public

(I3) Run code in build extension(s)

Ecosystem affected:

• Ruby (gem)

Get Code Executed – Install Time (contd.)

require " mkmf "

Any arbitrary Ruby code will be executed , e.g .:

exec("**COMMANDS**")

Needed to finish the extension without errors

create_makefile ("")

(b) Content of extconf.rb file

Gem :: Specification . new do |s|

s. name = " example "

s. version = "1.0.0"

... continues ...

s.extensions = ["extconf.rb"]

end

(a) Content of the .gemspec file for the project

31INTERNAL© 2021 SAP SE or an SAP aff iliate company. All rights reserved. ǀ

Public

(R1) Insert code in methods/scripts executed when importing a module

Ecosystem affected:

• JavaScript (npm) - e.g., “main” attribute in the package.json

• Python (pip) - e.g., __init__.py script of module

• Ruby (gem) - e.g., .rb file imported via require, require_relative, or load

• Go (go) - e.g., define an init() method in your module

Get Code Executed – Runtime

32INTERNAL© 2021 SAP SE or an SAP aff iliate company. All rights reserved. ǀ

Public

(R2) Insert code in commonly-used method

• Commonly used methods within a 3rd party dependency to increase chances of executing malicious
code

• Example: com.github.codingandcoding:servlet-api-3.2.0 contains malicious code in the doGet()
method of HttpServlet class [1]

Ecosystem affected:

• All

Get Code Executed – Runtime

[1] Sonatype Security Research Team. Sonatype Stops Software Supply Chain Attack Aimed at the Java
Developer Community — blog.sonatype.com.
https://blog.sonatype.com/malware-removed-from-maven-central.

33INTERNAL© 2021 SAP SE or an SAP aff iliate company. All rights reserved. ǀ

Public

(R3) Insert code in constructor methods (of popular classes)

• Constructor methods are automatically executed upon object instantiation

• In Java you can also exploit instance and static initializers

• Example: Put malicious code in Dataframe() of typosquatted package targeting pandas

Ecosystem affected:

• All

Get Code Executed – Runtime (contd.)

34INTERNAL© 2021 SAP SE or an SAP aff iliate company. All rights reserved. ǀ

Public

(R4) Run code of 3rd-party dependency as build plugin

• Run 3rd-party dependency as a plugin within the build of a downstream project.

• Example: com.github.codingandcoding:maven-compiler-plugin-3.9.0 [1]

Ecosystem affected:

• Java (mvn)

Get Code Executed – Runtime (contd.)

[1] Sonatype Security Research Team. Sonatype Stops Software Supply Chain Attack Aimed
at the Java Developer Community — blog.sonatype.com.
https://blog.sonatype.com/malware-removed-from-maven-central.

35INTERNAL© 2021 SAP SE or an SAP aff iliate company. All rights reserved. ǀ

Public

Evasion Techniques

[1] https://github.com/cybertier/Backstabbers-Knife-Collection
https://memes.com/m/me-hiding-from-my-own-prob lems-5rWMQbjkn4V

• Observed in real world (e.g.,

Backstabber’s Knife

Collection [1], grey literature)

• Or theoretically viable

(according to scientific

literature)

Based on techniques

Comprehensive list
But possibly not exhaustive

36INTERNAL© 2021 SAP SE or an SAP aff iliate company. All rights reserved. ǀ

Public

Malicious code often incorporates hard-coded strings (e.g., URLs, shell commands)

Data obfuscation alters the way static data is stored within source code

• Encoding, Compression, Encryption – e.g., base64 to evade pattern matching

• Binary Arrays – store strings in binary form into binary arrays

• Reordering of Data – split data into multiple chunks and re-aggregate it at runtime

Evasion Techniques – Data Obfuscation

37INTERNAL© 2021 SAP SE or an SAP aff iliate company. All rights reserved. ǀ

Public

Modify source code such that it does not necessitate runtime modifications for execution

• Renaming Identifiers – rename identifiers (e.g., variable names, function names) to arbitrary or
nonsensical values

• Dead/Useless Code Insertion – insert gibberish code to decrease the readability of code

• Split Code into Multiple Files

• Hide Code into Dependency Tree – insert the malicious code in transitive dependencies of your
deployed module

Evasion Techniques – Static Code Transformation

38INTERNAL© 2021 SAP SE or an SAP aff iliate company. All rights reserved. ǀ

Public

• Split Code into Multiple Dependencies – hard to detect

• Visual Deception – hide the malicious content from the view in IDEs by, e.g., using excessive spaces,
tabs

• Polyglot Malwares and In-Line Assembly – include malicious code written in other languages than the
one used in the target application

Evasion Techniques – Static Code Transformation (contd.)

39INTERNAL© 2021 SAP SE or an SAP aff iliate company. All rights reserved. ǀ

Public

Transform source code at runtime to evade static analysis.

• Encoding, Compression, Encryption – encode, compress or encrypt the malicious source code and
decode, decompress, or decrypt it at runtime

• Steganography – conceal malicious code within innocuous-looking files (e.g., images)

• Dynamic Code Modification – manipulate the behaviour of commonly used methods (e.g., built-in
functions) through, e.g., monkey patching or function/API hooking

Evasion Techniques – Dynamic Code Transformation

40INTERNAL© 2021 SAP SE or an SAP aff iliate company. All rights reserved. ǀ

Public

• Can be helpful also to security analyst or to design novel detection mechanisms

• More recommendations in our paper [1]

Presented offensive
techniques

• Equivalent to: curl http://foo.com | bash

• Carefully choose dependencies

• Check their security practices and their content before usage

Blindly installing 3rd

party dependency
can be dangerous

Conclusion and Takeaways

[1] Piergiorgio Ladisa, Merve Sahin, Serena Elisa Ponta, Marco Rosa, Matias Martinez, and Olivier Barais. (forthcoming 2023). The Hitchhiker’s Guide to Malicious Third-Party Dependencies. In
Proceedings of the 2023 ACM Workshop on Software Supply Chain Offensive Research and Ecosystem Defenses (SCORED’23).

42INTERNAL© 2021 SAP SE or an SAP aff iliate company. All rights reserved. ǀ

Public

Malicious Code: How it looks like in Python?

maratlib-0.2 - setup.py

malicious code makes use of strings with certain “features”

Obfuscation

(both in code

and in strings)

Exploiting the execution at installation time

43INTERNAL© 2021 SAP SE or an SAP aff iliate company. All rights reserved. ǀ

Public

Malicious Code: …and for JavaScript?

browserift-16.2.2 – package.json build.sh index.js

Exploiting the execution at installation time

malicious code makes use of strings with certain “features”

44INTERNAL© 2021 SAP SE or an SAP aff iliate company. All rights reserved. ǀ

Public

Detection of
OSS Supply Chain attacks

45INTERNAL© 2021 SAP SE or an SAP aff iliate company. All rights reserved. ǀ

Public

What do you think
Anti-Virus would
detect?

46INTERNAL© 2021 SAP SE or an SAP aff iliate company. All rights reserved. ǀ

Public

Submitted all the packages contained in Backstabber’s

Knife Collection

• 813 in Ruby

• 261 in Python

• 1807 in JavaScript

• 4 in Java.

VirusTotal Scan

References:
[1] https:/ /github.com/cybertier/Backstabbers-Knife-Collect ion

https://github.com/cybertier/Backstabbers-Knife-Collection

47INTERNAL© 2021 SAP SE or an SAP aff iliate company. All rights reserved. ǀ

Public

Cross-Language Detection of Malicious Packages : Goals

Once noted these similarities, our goals are:

One Model

Identify a set of language-independent

features discriminating malicious vs. benign

• Simple features: lexical, package

size/characteristics

• Easy to transfer from one language to

the other

Features

Train a unique classifier to detect malicious

packages for NPM and PyPI

• Training on more data coming from

different programming languages

48INTERNAL© 2021 SAP SE or an SAP aff iliate company. All rights reserved. ǀ

Public

Our Approach

Dataset

• Malicious samples: we use Backstabber’s Knife

Collection [1] (at time of writing: 2071 in JS, 273

in Python)

• We remove duplicates (102 in JS, 92 in Python)

• Benign samples: popular ones according to

libraries.io

• 90-10 ratio due to address imbalance problem

[1] https://github.com/cybertier/Backstabbers-Knife-Collection

https://github.com/cybertier/Backstabbers-Knife-Collection

49INTERNAL© 2021 SAP SE or an SAP aff iliate company. All rights reserved. ǀ

Public

Language-Independent Features

51INTERNAL© 2021 SAP SE or an SAP aff iliate company. All rights reserved. ǀ

Public

Real-World Experiment

Scan of PyPI and NPM for 10 days:

Results:

52INTERNAL© 2021 SAP SE or an SAP aff iliate company. All rights reserved. ǀ

Public

Insights

Majority of malwares aim at data exfiltration

• One sophisticated case of dropper using DNS req. to

bypass firewall

Rickrolling attacks…but both NPM and PyPI don’t

classify them as malwares

We found malware campaigns

• Also one case of cross-language campaign

Most of findings do not obfuscate the code

• 4 out of 38 in NPM (2 using AES, 2 custom)

• 6 out of 24 in PyPI (3 using simple obf., 3 custom)

53INTERNAL© 2021 SAP SE or an SAP aff iliate company. All rights reserved. ǀ

Public

…and the ”False Positives”?

Majority are small and dummy packages (e.g.,

containing only setup.py/package.json)

We found one campaign to increase the popularity

of a project

• Tons of packages importing give-me-a-joke

In 4 packages we detect obfuscation…but not clear

sign of maliciousness

We found 1 package containing nothing but the CV

of its creator ☺

fp-0.0.8

54INTERNAL© 2021 SAP SE or an SAP aff iliate company. All rights reserved. ǀ

Public

Towards the Detection of
Malicious Java Packages

Reference:

Ladisa, P., e t al., Towards the Detection of Malicious Java Packages, ACM Workshop on Software Supply Chain Offensive Research and Ecosystem Defenses (SCORED '22)

55INTERNAL© 2021 SAP SE or an SAP aff iliate company. All rights reserved. ǀ

Public

77 .java files in the JAR to potentially look at

The attacker inserted just one-liner payload … good luck finding it

Motivating Example: com.github.codingandcoding:servlet-api

56INTERNAL© 2021 SAP SE or an SAP aff iliate company. All rights reserved. ǀ

Public

Read and analyzed malicious samples from Backstabber’s Knife Dataset [1]

Re-created 21 Java Malwares PoC inspired from other programming languages/ecosystems

(JS,Python)

Look at the bytecode level

Goal: Develop a methodology to detect supply chain attacks in Java

▪ Reverse Shell

▪ Dropper

▪ Data-Exfiltration

Towards the Detection of Malicious Java Packages

References:
[1] https:/ /github.com/cybertier/Backstabbers-Knife-Collect ion

https://github.com/cybertier/Backstabbers-Knife-Collection

57INTERNAL© 2021 SAP SE or an SAP aff iliate company. All rights reserved. ǀ

Public

Indicators of Malicious Behavior

List of PURLs

Download

Package Repository

JAR Bytecode Instructions

Constant Pool

Sensitive APIs

Empty Catch Clauses

Data-Flow Analysis

Entropy Analysis

Language-Based Filtering

Sensitive Strings

Class files

String Extraction

58INTERNAL© 2021 SAP SE or an SAP aff iliate company. All rights reserved. ǀ

Public

Evaluation

Infection of Top-10 Java projects with payloads from BKC

Analysis of the capabilities of each indicator/combination when detecting the injections

59INTERNAL© 2021 SAP SE or an SAP aff iliate company. All rights reserved. ǀ

Public

Results

Constant Pool

• Shannon entropy compared at the class level performs better than at the JAR

• Language detection performs better than relative entropy measurement (with English characters)

• Detection of suspicious keywords effective

Bytecode Instruction

• Looking only at sensitive APIs is not effective

• Looking for sensitive APIs and suspicious strings in try blocks associated with empty catch clauses is

effective

• Searching for suspicious strings among input values to sensitive APIs via Data-Flow Analysis (DFA) is

effective

60INTERNAL© 2021 SAP SE or an SAP aff iliate company. All rights reserved. ǀ

Public

Enhancements & Planning

Detection of Malicious Code patterns using Code Property
Graphs (CPG)

• Control Flow Graph: APIs that dominates/dominated by
other APIs

• Inter-procedural DFA

• Suspicious strings flowing into Execution APIs

Scan massively Java packages

• Dependencies of Top10 Java projects

• Scan of newly-uploaded packages on Maven Central

Goal:

• Ecosystem characterization

• Malicious code detection

62INTERNAL© 2021 SAP SE or an SAP aff iliate company. All rights reserved. ǀ

Public

	Diapositive 1 Detection and Prevention of Attacks on Open Source Software Supply Chains
	Diapositive 2
	Diapositive 3
	Diapositive 4
	Diapositive 5 Requirements of an OSS Supply Chain attack
	Diapositive 6 Nov 2018 Attack on NPM package event-stream
	Diapositive 7 December 2022 PyTorch-nightly compromise
	Diapositive 8 March 2022 node-ipc and peacenotwar (CVE-2022-23812)
	Diapositive 9
	Diapositive 10 Terminology
	Diapositive 11
	Diapositive 12
	Diapositive 13
	Diapositive 14 SoK: Taxonomy of Open-Source Software Supply Chain Attacks
	Diapositive 15 Attack Trees
	Diapositive 16 Safeguards Utility & Cost Assessment
	Diapositive 17 Taxonomy of Attacks on Open-Source Software Supply Chains
	Diapositive 18 Risk Explorer for Software Supply Chains
	Diapositive 19
	Diapositive 20
	Diapositive 21 Execution of Malicious Code
	Diapositive 22 Primary Objective Data Exfiltration
	Diapositive 23
	Diapositive 24 Anatomy of a 3rd-party dependency
	Diapositive 25 Installing and using 3rd-party dependencies
	Diapositive 26 Installing and using 3rd-party dependencies (contd.)
	Diapositive 27 Achieve Arbitrary Code Execution in downstream
	Diapositive 28 Get Code Executed – Install Time
	Diapositive 29 Get Code Executed – Install Time (contd.)
	Diapositive 30 Get Code Executed – Install Time (contd.)
	Diapositive 31 Get Code Executed – Runtime
	Diapositive 32 Get Code Executed – Runtime
	Diapositive 33 Get Code Executed – Runtime (contd.)
	Diapositive 34 Get Code Executed – Runtime (contd.)
	Diapositive 35 Evasion Techniques
	Diapositive 36 Evasion Techniques – Data Obfuscation
	Diapositive 37 Evasion Techniques – Static Code Transformation
	Diapositive 38 Evasion Techniques – Static Code Transformation (contd.)
	Diapositive 39 Evasion Techniques – Dynamic Code Transformation
	Diapositive 40 Conclusion and Takeaways
	Diapositive 42 Malicious Code: How it looks like in Python?
	Diapositive 43 Malicious Code: …and for JavaScript?
	Diapositive 44
	Diapositive 45
	Diapositive 46 VirusTotal Scan
	Diapositive 47 Cross-Language Detection of Malicious Packages : Goals
	Diapositive 48 Our Approach
	Diapositive 49 Language-Independent Features
	Diapositive 51 Real-World Experiment
	Diapositive 52 Insights
	Diapositive 53 …and the ”False Positives”?
	Diapositive 54
	Diapositive 55 Motivating Example: com.github.codingandcoding:servlet-api
	Diapositive 56 Towards the Detection of Malicious Java Packages
	Diapositive 57 Indicators of Malicious Behavior
	Diapositive 58 Evaluation
	Diapositive 59 Results
	Diapositive 60 Enhancements & Planning
	Diapositive 62

