Internship: AI-Driven Digital Twins for Robots.
Context
Robots are playing key roles in many social and industrial applications such as in hospitals, automation in automotive domains, etc. Digital twins [5], i.e, live and digital representations of a physical twin such as robots, promise to significantly improve their reliability, helping them in making optimized decisions in real-time and predict future activities such as predictive maintenance. While the concept of digital twins is currently attracting a lot of attention, there is little research done on the principles to design and implement them.
Description of the work
This research topic focuses on building digital twins [1, 2, 3] of rovers from various objectives either through machine learning techniques [4], model-based systems engineering, or a combination of both. In the context of digital twins for rovers, we aim to explore the following scenarios:
- Digital-twin enabled techniques to determine whether the behavior of a rover deviates significantly from the expected one.
- Building approaches that can be used for automated refactoring of digital twin models, e.g., for supporting predictive refactoring, using genetic algorithms or any predictive models such as ML.
- Considering how to learn and to transfer such a learning, possibly with uncertainty, to evolve models within the digital twins [4].
- Utilizing path planners inside the digital twins to determine the right action plan in real-time.
- Building generic digital twins for various types of rovers that can be easily configured for various [3].
The candidate will address the following activities:
- Establish the state of the art on digital twins, specifically for rovers
- Define the relevant properties related to the implementation of such digital twins, e.g., reusability, modularity, evolution, uncertainty and transfer learning…
- Define a reference software architecture for designing and implementing such digital twins, maximizing the identified properties, and offering the aforementioned scenarios.
- Explore a generative approach to automate the implementation of digital twins according to the proposed reference architecture
Environment
The research will be conducted in the context of INRIA-Simula Associated Team RESIST. More details about the team can be found at https://gemoc.org/resist/
The research will be jointly supervised by Benoit Combemale ( https://people.irisa.fr/Benoit.Combemale/) and Djamel Khelladi ( http://people.irisa.fr/Djamel-Eddine.Khelladi/) from Inria, and Shaukat Ali ( https://www.simula.no/people/shaukat). As part of the research, the following physical rovers can be used: 1) Leo Rovers ( https://www.leorover.tech/) at Simula; 2) the Aion Robotics R6 ( https://www.aionrobotics.com/r6) at Inria.
Required or appreciated skills
The candidate will have strong skills in programming (especially object-oriented programming), programming languages (especially JVM-based languages) and program analysis and transformation, a good knowledge of model-driven engineering with possibly practical experiences in one of the existing technologies (e.g., the Eclipse Modeling Framework), an established background in machine learning and possibly in planners for robots. Appentency in robotics will be appreciated. The position also requires autonomy, as well as excellent English speaking and writing skills.
References
- Qi, Q., Tao, F., Hu, T., Anwer, N., Liu, A., Wei, Y., and others & Nee, A. Y. C. (2021). Enabling technologies and tools for digital twin. Journal of Manufacturing Systems, 58, 3-21
- Kritzinger, W., Karner, M., Traar, G., Henjes, J., & Sihn, W. (2018). Digital Twin in manufacturing: A categorical literature review and classification. IFAC-PapersOnLine, 51(11), 1016-1022
- Romina Eramo, Francis Bordeleau, Benoît Combemale, Mark van den Brand, Manuel Wimmer, Andreas Wortmann: Conceptualizing Digital Twins. IEEE Softw. 39(2): 39-46 (2022)
- Xu Qinghua, Shaukat Ali, Tao Yue, Maite Arratibel, Uncertainty-Aware Transfer Learning to Evolve Digital Twins for Industrial Elevators.
- https://edt.community/