
Attack–Defense Trees and Two-Player Binary

Zero-Sum Extensive Form Games Are Equivalent
⋆

Barbara Kordy⋆⋆, Sjouke Mauw, Matthijs Melissen⋆ ⋆ ⋆, Patrick Schweitzer†

University of Luxembourg

Abstract. Attack–defense trees are used to describe security weaknesses
of a system and possible countermeasures. In this paper, the connection
between attack–defense trees and game theory is made explicit. We show
that attack–defense trees and binary zero-sum two-player extensive form
games have equivalent expressive power when considering satisfiability,
in the sense that they can be converted into each other while preserving
their outcome and their internal structure.

1 Introduction

Attack trees [1], as popularized by Bruce Schneier at the end of the 1990s, form
an informal but powerful method to describe possible security weaknesses of a
system. An attack tree basically consists of a description of an attacker’s goal and
its refinement into sub-goals. In case of a conjunctive refinement, all sub-goals
have to be satisfied to satisfy the overall goal, while for a disjunctive refinement
satisfying any of the sub-goals is sufficient to satisfy the overall goal. The non-
refined nodes (i.e., the leaves of the tree) are basic attack actions from which
complex attacks are composed.

Due to their intuitive nature, attack trees prove to be very useful in under-
standing a system’s weaknesses in an informal and interdisciplinary context.
The development of an attack tree for a specific system may start by building
a small tree that is obviously incomplete and describes the attacks at a high
level of abstraction, while allowing to refine these attacks and to add new at-
tacks later as to make a more complete description. Over the last few years,
attack trees have developed into an even more versatile tool. This is due to two
developments. The first development consists of the formalization of the attack
trees method [2] which provides an attack tree with a precise meaning. As a
consequence, formal analysis techniques were designed [3,4] and computer tools
were made commercially available [5,6].

⋆ The original publication is available at www.springerlink.com.
⋆⋆ B. Kordy was supported by the grant No. C08/IS/26 from FNR Luxembourg.

⋆ ⋆ ⋆ M. Melissen was supported by the grant No. PHD–09–082 from FNR Luxembourg.
† P. Schweitzer was supported by the grant No. PHD–09–167 from FNR Luxembourg.

http://dx.doi.org/10.1007/978-3-642-17197-0_17

The second development comes from the insight that a more complete descrip-
tion can be achieved by modeling the activities of a system’s defender in addition
to those of the attacker. Consequently, one can analyze which set of defenses is
optimal from the perspective of, for instance, cost effectiveness. Several notions
of protection trees or defense nodes have already been proposed in the litera-
ture [7,8]. They mostly consist of adding one layer of defenses to the attack tree,
thus ignoring the fact that in a dynamic system new attacks are mounted against
these defenses and that, consequently, yet more defenses are brought into place.
Such an alternating nature of attacks and defenses is captured in the notion of
attack–defense trees [9]. In this recently developed extension of attack trees, the
iterative structure of attacks and defenses can be visualized and evolutionary
aspects can be modeled.

These two developments, the formalization of attack trees and the introduction
of defenses, imply that an attack–defense tree can be formally considered as
a description of a game. The purpose of this paper is to make the connection
between attack–defense trees and game theory explicit. We expect that the link
between the relatively new field of attack modeling and the well-developed field
of game theory can be exploited by making game theoretic analysis methods
available to the attack modeling community. As a first step, we study the relation
between attack–defense trees and games in terms of expressiveness. Rather than
studying the graphical attack–defense tree language, we consider an algebraic
representation of such trees, called attack–defense terms (ADTerms) [9], which
allows for easier formal manipulation.

The main contribution of this paper is to show that ADTerms with a satisfi-
ability attribute are equivalent to two-player binary zero-sum extensive form
games. Whenever we talk about games, we refer to a game in this class. We
show equivalence by defining two mappings: one from games to ADTerms and
one from ADTerms to games. Then, we interpret a strategy in the game as a
basic assignment for the corresponding ADTerm and vice versa. Such a basic
assignment expresses which attacks and defenses are in place. Equivalence then
roughly means that for every winning strategy, there exists a basic assignment
that yields a satisfiable term, and vice versa. Although the two formalisms have
much in common, their equivalence is not immediate. Two notions in the domain
of ADTerms have no direct correspondence in the world of games: conjunctive
nodes and refinements. The mapping from ADTerms into games will have to
solve this in a semantically correct way.

This paper is structured as follows. We introduce attack–defense terms and two-
player binary zero-sum extensive form games in Section 2. In Section 3 we define
a mapping from games to attack–defense terms and prove that a player can win
the game if and only if he is successful in the corresponding ADTerm. A reverse
mapping is defined in Section 4.

Proofs of theorems are not included due to space restrictions, and can be found
in a technical report [10].

2

2 Preliminaries

2.1 Attack–Defense Trees

A limitation of attack trees is that they cannot capture the interaction between
attacks carried out on a system and defenses put in place to fend off the attacks.
To mitigate this problem and in order to be able to analyze an attack–defense
scenario, attack–defense trees are introduced in [9]. Attack–defense trees may
have two types of nodes: attack nodes and defense nodes, representing actions
of two opposing players. The attacker and defender are modeled in a purely
symmetric way. To avoid differentiating between attack–defense scenarios with
an attack node as a root and a defense node as a root, the notions of propo-
nent (denoted by p) and opponent (denoted by o) are introduced. The root of
an attack–defense tree represents the main goal of the proponent. To be more
precise, when the root is an attack node, the proponent is an attacker and the
opponent is a defender, and vice versa.

To formalize attack–defense trees we use attack–defense terms. Given a set S,
we write S∗ for the set of all strings over S and ε for the empty string.

Definition 1. Attack–defense terms (ADTerms) are typed ground terms over a
signature Σ = (S, F), where

– S = {p, o} is a set of types (we denote −p = o and −o = p),

– F = {(∨p
k)k∈N, (∧

p
k)k∈N, (∨

o
k)k∈N, (∧

o
k)k∈N, c

p, co} ∪ B
p ∪ B

o is a set of func-
tions equipped with a mapping type : F → S∗ × S, which expresses the type
of each function as follows. For k ∈ N,

type(∨p
k) = (pk, p) type(∨o

k) = (ok, o)

type(∧p
k) = (pk, p) type(∧o

k) = (ok, o)

type(cp) = (po, p) type(co) = (op, o)

type(b) = (ε, p), for b ∈ B
p type(b) = (ε, o), for b ∈ B

o.

The elements of Bp and B
o are typed constants, which represent basic actions

of the proponent and the opponent, respectively. The functions ∨p
k,∧

p
k,∨

o
k,∧

o
k

represent disjunctive (∨) and conjunctive (∧) refinement operators of arity k,
for a proponent (p) and an opponent (o), respectively. Whenever it is clear from
the context, we omit the subscript k. The binary function cs (‘counter’), where
s ∈ S, connects a term of the type s with a countermeasure. By TΣ we denote the
set of all ADTerms. We partition TΣ into T p

Σ (the set of terms of the proponent’s
type) and T o

Σ (the set of terms of the opponent’s type). To denote the type of a
term, we define a function τ : TΣ → S by τ(t) = s if t ∈ T s

Σ.

Example 1. The ADTerm t = cp(∧p(E,F),∨o(G)) ∈ T
p
Σ is graphically displayed

in Fig. 1 (left). For this ADTerm, we have τ(t) = p. Subterms E and F are basic

3

Fig. 1. An example of an ADTerm (left) and a two-player binary zero-sum extensive
form game (right).

actions of the proponent’s type, and G is a basic action of the opponent’s type.
Assuming the proponent is the attacker, this means that the system can be
attacked by combining the basic attack actions E and F . However the defender
has the option to defend if he implements the basic defense action G.

In order to check whether an attack–defense scenario is feasible, we introduce
the notion of satisfiability of an ADTerm by defining a satisfiability attribute
sat. First, for player s ∈ {p, o} we define a basic assignment for s as a function
βs : Bs → {true, false}. We gather the basic assignments for both players in a ba-
sic assignment profile β = (βp, βo). Second, the function sat : TΣ → {true, false}
is used in order to calculate the satisfiability value of an ADTerm. It is defined
recursively as follows

sat(t) =

βs(ts), if t = ts ∈ B
s,

∨(sat(t1), . . . , sat(tk)), if t = ∨s(t1, . . . , tk),

∧(sat(t1), . . . , sat(tk)), if t = ∧s(t1, . . . , tk),

sat(t1) ∧ ¬ sat(t2), if t = cs(t1, t2).

For instance, consider the term t from Example 1 and the basic assignment
profile β = (βp, βo), where βp(E) = true, βp(F) = true, βo(G) = false. We get
sat(t) = true. Assuming the proponent is the attacker, this means that the basic
defense action G is absent and the system is attacked by combining the basic
attack actions E and F .

The next definition formalizes the notion of a satisfiable ADTerm for a player.

Definition 2. For every player s, strategy βs and strategy profile β, we define
the sets of ADTerms Satsβ , Sat

s
βs , Sats ⊆ TΣ in the following way. Let t ∈ TΣ.

– t ∈ Satsβ if either τ(t) = s and sat(t) = true, or τ(t) = −s and sat(t) = false.
In this case we say that s is successful in t under β.

– t ∈ Satsβs if t ∈ Sats(βp,βo) for every basic assignment β−s. In this case we
say that s is successful in t under βs.

– t ∈ Sats if there exists a basic assignment βs for player s such that t ∈ Satsβs.
In this case we say that t is satisfiable for s.

4

Theorem 1. For every ADTerm t, we have that every basic assignment profile
β partitions TΣ into Satpβ and Satoβ.

Proof. This follows immediately from the first item in Definition 2.

2.2 Two-player Binary Zero-sum Extensive Form Games

We consider two-player binary zero-sum extensive form games, in which a pro-
ponent p and an opponent o play against each other. In those games, we allow
only for the outcomes (1, 0) and (0, 1), where (1, 0) means that the proponent
succeeds in his goal (breaking the system if he is the attacker, keeping the system
secure if he is the defender), and (0, 1) means that the opponent succeeds. Note
that the proponent is not necessarily the player who plays first in the game.
Finally, we restrict ourselves to extensive form games, i.e., games in tree format.
Our presentation of games differs from the usual one, because we present games
as terms. This eases the transformation of games into ADTerms. We formalize
games in the next definition, where L stands for a leaf and NL for a non-leaf of
the term.

Definition 3. Let S = {p, o} denote the set of players and Out = {(1, 0), (0, 1)}
the set of possible outcomes. A two-player binary zero-sum extensive form game
is a term t ::= ψp | ψo, where

ψp ::= NLp(ψo, . . . , ψo) | Lp(1, 0) | Lp(0, 1)

ψo ::= NLo(ψp, . . . , ψp) | Lo(1, 0) | Lo(0, 1).

We denote the set of all two-player binary zero-sum extensive form games by
G. We define the first player of a game ψs as the function τ : G → S such that
τ(ψs) = s.

Example 2. An example of a two-player binary zero-sum extensive form game is
the expression NLp(NLo(Lp(0, 1),Lp(1, 0)),Lo(0, 1)). This game is displayed in
Fig. 1 (right). When displaying extensive form games, we use dashed edges for
choices made by the proponent, and solid edges for those made by the opponent.
In this game, first the proponent can pick from two options; if he chooses the
first option, the opponent can choose between outcomes (0, 1) and (1, 0). If the
proponent chooses the second option, the game will end with outcome (0, 1).

Definition 4. A function σs is a strategy for a game g ∈ G for player s ∈ S if
it assigns to every non-leaf of player s in g NLs(ψ−s

1 , . . . , ψ−s
n) a term ψ−s

k for
some k ∈ {1, . . . , n}.

A strategy profile for a game g ∈ G is a pair σ = (σp, σo), where σp is a strategy
of g for p, and σo a strategy of g for o.

5

If g = NLs(ψ−s
1 , . . . , ψ−s

n) and σ = (σp, σo), sometimes we abuse notation and
write σ(g) = ψ−s

k where ψ−s
k = σs(g).

Now we define the outcome of a game in three steps.

Definition 5. We say that (0, 1) ≤p (1, 0) and (1, 0) ≤o (0, 1), so that (Out,≤p)
and (Out,≤o) are totally ordered sets. Let (rp, ro) be an element of Out, and
ψ−s
1 , . . . , ψ−s

n be games with player −s as the first player.

1. The outcome out(σp,σo) : G → Out of a game g under strategy profile σ =
(σp, σo) is defined by:

out(σp,σo)(L
s(rp, ro)) = (rp, ro)

out(σp,σo)(NL
s(ψ−s

1 , . . . , ψ−s
n)) = out(σp,σo)(σ

s(NLs(ψ−s
1 , . . . , ψ−s

n)))

2. The outcome outσs : G → Out of a game g under strategy σs is defined by:

outσs(Ls(rp, ro)) = (rp, ro)

outσs(NLs(ψ−s
1 , . . . , ψ−s

n)) = outσs(σs(NLs(ψ−s
1 , . . . , ψ−s

n)))

outσs(NL−s(ψ−s
1 , . . . , ψ−s

n)) = max
1≤i≤n

≤−s{outσs(ψ−s
i)}

3. The outcome out: G → Out of a game g is defined by:

out(Ls(rp, ro)) = (rp, ro)

out(NLs(ψ−s
1 , . . . , ψ−s

n)) = max
1≤i≤n

≤s{outσs(ψ−s
i)}

out(NL−s(ψ−s
1 , . . . , ψ−s

n)) = max
1≤i≤n

≤−s{outσs(ψ−s
i)}

Here out(σp,σo) denotes the outcome of the game when p and o play according
to strategy σp and σo, respectively. Furthermore outσs denotes the outcome
if player s plays strategy σs, and player −s tries to achieve the best possible
outcome for himself. Finally, out denotes the outcome of the game if both players
try to maximize their own outcome.

3 From Games to ADTerms

In this section, we show how to transform binary zero-sum two-player extensive
form games into ADTerms. We define a function that transforms games into
ADTerms, and a function that transforms a strategy for a game into a basic
assignment for the corresponding ADTerm. First we show that the player who
wins the game is also the player for whom the corresponding ADTerm is satis-
fiable, if both players play the basic assignment corresponding to their strategy
in the game. Then we show that if a player has a strategy in a game which

6

Fig. 2. Transformation of a game in extensive form into an ADTerm by function [·]AD.

guarantees him to win, he is successful in the corresponding ADTerm under the
corresponding basic assignment. For this purpose, we first define a function [·]AD

that maps games into ADTerms.

Definition 6. Let vs, us, and us1, . . . , u
s
n, for s ∈ S, represent fresh basic actions

from B
s. The function [·]AD : G → TΣ is defined in the following way.

Lp(1, 0) 7→ vp (1a)

Lo(1, 0) 7→ co(uo, vp) (1b)

Lp(0, 1) 7→ cp(up, vo) (1c)

Lo(0, 1) 7→ vo (1d)

NLp(ψ1, . . . , ψn) 7→ ∨p(cp(up1 , [ψ1]AD), . . . , c
p(upn, [ψn]AD)) (1e)

NLo(ψ1, . . . , ψn) 7→ ∨o(co(uo1, [ψ1]AD), . . . , c
o(uon, [ψn]AD)). (1f)

The rules for player p are visualized in Fig. 2 (the rules for player o are symmet-
ric). The rules specify that a winning leaf for a player in the game is transformed
into a satisfiable ADTerm for this player, i.e., an ADTerm consisting of only a
leaf belonging to this player (Rule (1a)–(1d)), and that non-leaves in the game
are transformed into disjunctive ADTerms of the same player (Rule (1e)–(1f)).
These disjunctions have children of the form cs(upk, [ψk]AD) for some k. The in-
tended meaning here is that player s selects upk exactly when his strategy selects
ψk in the game. An example of a transformation of a game into an ADTerm is
depicted in Fig. 3.

The resulting ADTerm is thus conjunction-free. Note that because terms in
games alternate between p and o, this procedure results in valid ADTerms (i.e.,
in terms of the form cs(us1 , vs2), s1 = s and s2 = −s, and disjunctive terms for
player s have children for player s as well).

Now we define how to transform a strategy profile for a game into a basic as-
signment profile for an ADTerm. First we define a transformation J·KAD from

7

Fig. 3. The result of the transformation of the ADTerm from Fig. 1 into a game (left),
and the game from Fig. 1 into an ADTerm (right).

a strategy σs (s ∈ {p, o}) for game g into a basic assignment βs = JσsKAD

for ADTerm [g]AD. Intuitively, if a player’s strategy for the game selects a cer-
tain branch, the basic assignment for the ADTerm assigns true to the node uk
in the corresponding branch, and false to the nodes uk in the other branches.
Furthermore, ADTerms resulting from leaves in the game are always selected.

Definition 7. Let s be a player, g be a game and σs be a strategy of player
s for g. The function βs = JσsKAD is defined as follows. For all ADTerms
cs(us, v−s) and vs resulting from the first four cases in Definition 6, we set
βs(us) = βs(vs) = true. For ADTerms obtained from game g by one of the last
two cases in Definition 6, if σs(g) = ψk, we set βs(usk) = true and βs(usi) = false

for 1 ≤ i ≤ n, i 6= k.

The strategy profile (βp, βo) can be transformed into a basic assignment profile
by J(βp, βo)KAD = (JβpKAD, Jβ

oKAD).

The next theorem states that a player is the winner in a game under a certain
strategy profile if and only if he is successful in the corresponding ADTerm under
the basic assignment profile corresponding to the strategy profile.

Theorem 2. Let g be a game and σ a strategy profile for g. Then outσ(g) =
(1, 0) if and only if [g]AD ∈ SatpJσKAD

.

The following theorem states that a strategy in a game guarantees player s to
win if and only if s is successful in the corresponding ADTerm under the corre-
sponding basic assignment. Surprisingly, this is not a consequence of Theorem 2:

8

there might be a basic assignment βs for the ADTerm, for which there exists
no strategy σs such that βs = JσsKAD (i.e, the function J·KAD is not surjective).
Therefore it is not immediately clear that if a player has a strategy σs that wins
from the other player independent of his strategy, a player with a basic assign-
ment JσsKAD wins from the other player independent of his basic assignment.

Theorem 3. Let g be a game and σp be a strategy for p on g. Then outσp(g) =
(1, 0) if and only if [g]AD ∈ SatpJσpKAD

.

From this theorem, we immediately get the following corollary.

Corollary 1. Whenever g is a game, out(g) = (1, 0) if and only if [g]AD ∈ Satp.

4 From ADTerms to Games

We proceed with the transformation in the other direction. We define two trans-
formations, namely from ADTerms into games, and from basic assignment pro-
files into strategy profiles. Then we show that if a player has a basic assignment
for an ADTerm with which he is successful, the corresponding strategy in the
corresponding game guarantees him to win.

Definition 8. We define a function [·]G from ADTerms to games as follows:

vp 7→ NLo(NLp(Lo(0, 1),Lo(1, 0))) (2a)

vo 7→ NLp(NLo(Lp(1, 0),Lp(0, 1))) (2b)

∨p(ψ1, . . . , ψn) 7→ NLo(NLp([ψ1]G, . . . , [ψn]G)) (2c)

∨o(ψ1, . . . , ψn) 7→ NLp(NLo([ψ1]G, . . . , [ψn]G)) (2d)

∧p(ψ1, . . . , ψn) 7→ NLo(NLp([ψ1]G), . . . ,NL
p([ψn]G)) (2e)

∧o(ψ1, . . . , ψn) 7→ NLp(NLo([ψ1]G), . . . ,NL
o([ψn]G)) (2f)

cp(ψ1, ψ2) 7→ NLo(NLp([ψ1]G), [ψ2]G) (2g)

co(ψ1, ψ2) 7→ NLp(NLo([ψ1]G), [ψ2]G) (2h)

A graphical representation of the rules for player p is displayed in Fig. 4 (the
rules for player o are symmetric). It can easily be checked that this construction
guarantees valid games (in which p-moves and o-moves alternate). According
to these rules, we transform leaves for player s into two options for player s, a
losing and a winning one (Rules (2a) and (2b)). These choices correspond to not
choosing and choosing the leaf in the ADTerm, respectively. Disjunctive terms
for player s are transformed into choices for player s in the game (Rules (2c)
and (2d)). There is no direct way of representing conjunctions in games. We can
still handle conjunctive terms though, by transforming them into choices for the
other player (Rules (2e) and (2f)). This reflects the fact that a player can succeed

9

Fig. 4. Transformation of an ADTerm into a game by means of function [·]G.

in all his options exactly when there is no way for the other player to pick an
option which allows him to succeed. Finally, countermeasures against player s
are transformed into a choice for player −s (Rules (2g) and (2h)). Here, the first
option corresponds to player −s not choosing the countermeasure, so that it is
up to player s whether he succeeds or not, while the second option corresponds
to player −s choosing the countermeasure. The transformation of a game into
an ADTerm is illustrated in Fig. 3.

We proceed by defining a transformation J·KG from a basic assignment for an
ADTerm into a strategy for the corresponding game. We only give the definition
for s = p; the definition for s = o is symmetric.

Definition 9. Function J·KG is a transformation from a basic assignment βp

for ADTerm t into a strategy σp = JβpKG for the game [t]G. If a (sub)term from
[t]G is obtained by rule (2n) in Definition 8, then σp of that (sub)term is defined
by rule (3n) in this definition.

σp(NLp(Lo(0, 1),Lo(1, 0))) = Lo(1, 0) if βs(v) = true. (3a)
= Lo(0, 1) otherwise.

σp(NLp([ψ1]G, . . . , [ψn]G)) = [ψk]G (3c)
where k is the smallest number such that ψk ∈ Satpβp .

= [ψ1]G
if there exists no such number.

σp(NLp(NLo([ψ1]G), . . . ,NL
o([ψn]G))) = NLo([ψk]G) (3f)

where k is the smallest number such that ψk ∈ Satpβp .

= NLo([ψ1]G)
if there exists no such number.

σp(NLp(NLo([ψ1]G), [ψ2]G)) = NLo([ψ1]G) if ψ2 6∈ Satpβp . (3h)

= [ψ2]G otherwise.

10

For Rules (3b), (3d), (3e) and (3g), σp is trivially defined as there is only one
refinement.

Note that some of the rules, namely Rules (3c), (3f) and (3h), are non-local in
the sense that we need to evaluate all subterms of the ADTerm before we can
decide what to play in the game.

Theorem 4. Let t be an ADTerm and βp a basic assignment for t. Then t ∈
Satpβp if and only if outJβpKG([t]G) = (1, 0).

Now we obtain immediately the following corollary by definition of out and Satp.

Corollary 2. Whenever t is an ADTerm, t ∈ Satp if and only if out([t]G) =
(1, 0).

5 Conclusion

We showed that attack–defense terms and binary zero-sum two-player extensive
form games have equivalent expressive power when considering satisfiability, in
the sense that they can be converted into each other while preserving their out-
come. Moreover, the transformations preserved internal structure, in the sense
that there exists injections between subterms in the game and subterms in the
ADTerm such that if a player wins in the subterm of the game, the corresponding
subterm in the ADTerm is satisfiable for this player, and vice versa. Therefore
attack–defense trees with a satisfiability attribute and binary zero-sum two-
player extensive form games can be seen as two different representations of the
same concept. Both representations have their advantages. On the one hand,
attack–defense trees are more intuitive, because conjunctions and refinements
can be explicitly modeled. On the other hand, the game theory representation
profits from the well-studied theoretical properties of games.

We saw that two notions in the domain of ADTerms had no direct correspon-
dence to notions in the world of games: conjunctive nodes and refinements. The
first problem has been solved by transforming conjunctive nodes for one player
to disjunctive nodes for the other player. This also shows that, when considering
the satisfiability attribute, the class of conjunction-free ADTerms has equal ex-
pressive power to the full class of ADTerms (note that the transformation from
ADTerms into games and vice versa are not each other’s inverse, i.e., [[t]AD]G 6= t

and [[t]G]AD 6= t). The second problem has been solved by adding extra dummy
moves with only one option for the other player in between refining and refined
nodes.

In the future, we plan to consider attack–defense trees accompanied with more
sophisticated attributes, such that a larger class of games can be converted. An
example of these are non-zero-sum games, where (1, 1) can be interpreted as an

11

outcome where both the attacker and the defender profit (for example, if the
attacker buys his goal from the defender), and (0, 0) as an outcome where both
parties are damaged (when the attacker fails in his goal, but his efforts damage
the defender in some way). Also the binary requirement can be lifted, so that
the outcome of a player represents for instance the cost or gain of his actions.
Furthermore, it would be interesting to look for a correspondence of incomplete
and imperfect information in attack–defense trees.

Acknowledgments The authors would like to thank Leon van der Torre and
Wojciech Jamroga for valuable discussions on the topic of this paper.

References

1. Schneier, B.: Secrets and lies. Wiley, Indianapolis, Ind. (2004)
2. Mauw, S., Oostdijk, M.: Foundations of Attack Trees. In Won, D., Kim, S., eds.:

ICISC. Volume 3935 of LNCS., Springer (2005) 186–198
3. Willemson, J., Jürgenson, A.: Serial Model for Attack Tree Computations. In Lee,

D., Hong, S., eds.: ICISC. Volume 5984 of LNCS., Springer (2010) 118–128
4. Rehák, M., Staab, E., Fusenig, V., Pěchouček, M., Grill, M., Stiborek, J., Bartoš,

K., Engel, T.: Runtime Monitoring and Dynamic Reconfiguration for Intrusion
Detection Systems. In Kirda, E., Jha, S., Balzarotti, D., eds.: RAID. Volume 5758
of LNCS., Springer-Verlag (2009) 61–80

5. Amenaza: SecurITree http://www.amenaza.com/.
6. Isograph: AttackTree+ http://www.isograph-software.com/atpover.htm.
7. Edge, K.S., Dalton II, G.C., Raines, R.A., Mills, R.F.: Using Attack and Protection

Trees to Analyze Threats and Defenses to Homeland Security. In: MILCOM, IEEE
(2006) 1–7

8. Bistarelli, S., Dall’Aglio, M., Peretti, P.: Strategic Games on Defense Trees. In
Dimitrakos, T., Martinelli, F., Ryan, P.Y.A., Schneider, S.A., eds.: FAST. Volume
4691 of LNCS., Springer (2006) 1–15

9. Kordy, B., Mauw, S., Radomirović, S., Schweitzer, P.: Foundations of
Attack–Defense Trees. In: FAST. LNCS, Springer-Verlag (2010) Available at
http://satoss.uni.lu/members/barbara/papers/adt.pdf.

10. Kordy, B., Mauw, S., Melissen, M., Schweitzer, P.: Attack–defense trees and two-
player binary zero-sum extensive form games are equivalent – technical report with
proofs. Available at http://arxiv.org/abs/1006.2732.

12

http://www.amenaza.com/
http://www.isograph-software.com/atpover.htm
http://satoss.uni.lu/members/barbara/papers/adt.pdf
http://arxiv.org/abs/1006.2732

	Attack–Defense Trees and Two-Player Binary Zero-Sum Extensive Form Games Are Equivalent

