
A Clausal View for Access Control and

XPath Query Evaluation

Barbara Fila, Siva Anantharaman

LIFO - Université d’Orléans (France),
e-mail: {fila, siva}@univ-orleans.fr

Abstract. Any positive XPath query Q (in a suitable format) can be
evaluated on any given XML-like document t, under unambiguous runs
of a transition system SQ that we associate with Q. The transitions of SQ

on t are expressed as clauses. Query evaluation can be subject to access
control policies enforced on the documents; the policies themselves are
formulated as clauses, possibly also subject to constraints.
Keywords: XML, XPath, query, access control, constraints, clauses.

1 Introduction

Our objective in this paper is to show that XPath query evaluation on XML tree
documents can be modeled as an answer set calculus, with respect to (wrt, for
short) a set of first-order Horn clauses with constraints, in a manner that can
take into account access control policies enforced on the documents. Our calculus
is more general than several other access control specification formalisms, in the
sense that they can all be encoded as special cases of our clausal view. The
evaluation of any given XPath query Q on any given document t is formulated
as the set of nodes (and the data stored there) that get selected under the runs
a deterministic transition system SQ, associated naturally with Q; the runs of
SQ on t are formulated in terms of a set of clauses (possibly with constraints)
modeling the given query Q, as well as the access control policy given on t.

The paper is structured as follows: In Section 2 we briefly recall the needed
notions of XPath, and fix our notation. We shall assume the queries to be positive,
to simplify, in the sense that no negation is allowed on the navigational axes (but
is allowed on the data filter parts of the query). Any such XPath query Q will be
seen as a concatenation of its location steps of certain types; to each of which is
associated a transition system, and the transition system SQ for Q will be defined
as the join of all these individual systems (Section 3). The evaluation of Q on any
given document t is obtained under step-wise runs of SQ on t; these are defined in
such a way that one derives a linear complexity bound for query evaluation, wrt
the size of Q (the total number of location steps composing Q), and the number
of edges on t. In Section 4, we show how to integrate access control policies
specified on any given document t, into our clause-based evaluation mechanism;
the conditions of the policies are themselves expressed as first-order clauses over
the attribute names and/or attribute values. An example is given to illustrate

1

our approach; it underlines the necessity for keeping track of the data (on t)
retrieved, by any given user, by launching a sequence of queries. Section 5 gives
a few links to some of the related works; we also indicate, briefly, how our step-
wise evaluation mechanism driven by clauses with constraints can actually serve
as the basis for building a unified approach for handling other issues, such as
the containment problem on queries visualized as patterns.

2 Preliminaries and Notation

We recall briefly some details on the XPath language (cf. [13]). The following
XPath axes – referred to as basic in the sequel – will be used for navigation on any
XML tree: self, child, parent, ancestor, descendant, following-sibling,
preceding-sibling. (The other axes of XPath can be described in terms of
these basic axes, up to a notion of equivalence; cf. e.g., [5].)

An alphabet Σ is assumed given for naming the nodes (or tags) on the
documents; its elements will be referred to as nodenames or tagnames. Att will
stand for the set of all attribute names at the nodes of all possible documents;
and att, att1, . . . will stand for variables running over Att. All data (including
PCDATA) at the nodes on the documents will be assumed given in the form
att = ‘val′ where val stands for a value assignable to att.

A filter type is an expression generated by the non-terminal F in the following
grammar – where A stands for a basic XPath axis among the seven mentioned
above, and σ ∈ Σ ∪ {∗} (‘∗’ stands here for an ‘arbitrary’ element of Σ), and op
is an operator in the set Op = {=, �=, >, <, ≥,≤}:

L ::= @ att op ‘val′ | position() = i | true
S ::= A::σ | A::σ[L] | A::σ[L][S]
G ::= S | A::σ[L][G] | G or G | G and G
F ::= L | G
The expressions of the form [F] where F is a filter type, are said to be

filter expressions or just filters. A filter expression of the form [L], with no
navigational axes, will be said to be local. We shall identify A::σ[true] with
A::σ. Given a context node u on any XML document t, any given filter expression
[F] evaluates either to ‘true’ or to ‘false’ at u on t; cf. e.g., [13].

Positive XPath query expressions are defined as the expressions Q generated
by the grammar below – where A, σ are as above, and [F] is any filter expression:

Q0 ::= /A::σ | /A::σ[F] | Q0 Q0

Q′ ::= Q0 | Q0/attribute::att | Q0/attribute::∗
Q ::= Q′ | Q′ or Q′

(Note: attribute is a non-navigational axis of XPath, and /@ att is short for
the syntax /attribute::att; the ‘∗’ in the last production stands for ‘any’.) The
query expressions generated by this grammar are either of the form /C1/. . . /Cn,
– each Ci being of the type A::σ[F] –, or a disjunction of such queries; they
will be referred to as canonical. All our queries in the sequel will be assumed to
be canonical. The filter expressions in the Ci are referred to as their filter compo-
nents. A query of the form /axis::σ[F] will be said to be elementary. A loca-
tion expression (resp. location step) is an expression of the form [axis::σ[F]]

2

(resp. axis::σ[F]) where axis is one of the seven (basic) navigational axes
mentioned above, σ ∈ Σ, and [F] is a filter. If the filter is local, the location
expression (resp. location step) will be said to be atomic. Any location step will
be written in the form axis::σ[L][F], where [L] is local, and the navigational
axes are all in [F].

The notion of selection of any given node v, on a document t, wrt the Root
node of t, by any given query expression Q, is defined inductively; cf. e.g., [13].
(Root is the fictive root node assigned in XML to any document t, just above the
actual root node of the tree t; we shall denote this latter as root.) For any node
u on a document t, we denote by Datat(u) the data stored at u on t, and set t(u)
to be the pair (σ, Datat(u)), where σ is the tagname of t at u. If Q =/C1/. . ./Cn

is any query in canonical form, the answer for Q on t is the set Evalt(Q) of all
t(u)|Q, where u is any node selected by Q on t, and t(u)|Q is the projection of
t(u) on the set of attributes selected by Cn.

Remark. a) We shall also need two further navigational axes that are only
implicitly defined in XPath, namely the right-sibling and left-sibling axes; we
shall refer to these as right,left, respectively; by definition, we have (cf. [13]):
right::σ is equivalent to following-sibling::∗[position() = 1][self::σ],
left::σ is equivalent to preceding-sibling::∗[position() = 1][self::σ].

b) To each axis among the seven basic axes above, we associate a step-wise
axis denoted as dir-axis, the role of which is to move from node to node (on
any tree t), along the direction given by axis. self is its own step-wise axis;
here is the correspondence table for the other axes:

axis dir-axis

parent parent

child child

descendant child

axis dir-axis

ancestor parent

following-sibling right

preceding-sibling left

c) To any given basic XPath axis axis, we associate a (Boolean valued) unary
predicate Fin-axis(), which evaluates to ‘true’ at any node u on any given XML
document t, iff there exists no node v such that u dir-axisv holds on t. (We
define Fin-self() to be always ‘true’.) For an axis �= self it evaluates to ‘true’
at the root, or at the leafs, or at the right-most or left-most nodes on t.

3 The Transition System for Evaluating a Query

Let Q =/C1/C2/. . ./Cn be a canonical query; each /Ci is thus of the form
/Ci =/axisi::σi[Li][Fi], 1 ≤ i ≤ n, with a local filter [Li], and a filter [Fi]
containing all the navigational part. For redactional simplicity, we assume that
the filter components of Q are free from conjunction and disjunction.

Case of an atomic elementary query: We first consider the case where /Ci

is atomic, i.e., of the form /Ci =/axisi::σi[Li], with a local filter [Li].
The elementary transition system (ETS) for the atomic elementary query

Ci =/axisi::σi[Li], is defined as the system Si whose set of states is Statesi =
{initi, oki, faili}, and whose transitions are defined by the following clauses

3

t1, . . . , t6 – where αi = σi[Li], and αi = σi[Li] stands for the complement of
the data represented by σi[Li]:
If axisi ∈ {self, child, parent}:
t1. 〈oki, v〉 ← 〈initi, u〉, if (t(v) |= αi), (u dir-axisi v);
t2. 〈faili, v〉 ← 〈initi, u〉, if (t(v) |= αi), (u dir-axisi v);

If axisi �∈ {self, child, parent}:
t3. 〈oki, v〉 ← 〈initi, u〉, if (t(v) |= αi), (u dir-axisi v);
t4. 〈faili, v〉 ← 〈initi, u〉, if (t(v) |= αi), (u dir-axisi v);
t5. 〈faili, v〉 ← 〈faili, u〉, if (t(v) |= αi), (u dir-axisi v);
t6. 〈oki, v〉 ← 〈faili, u〉, if (t(v) |= αi), (u dir-axisi v);

The role of the system Si is to help select the nodes on any given document t
answering the part /C1/. . ./Ci of the given query Q; this is done with the help
of a run of Si on t. The run of Si on t is defined as a mapping Mi : Nodes(t) →
P(Statesi), satisfying the above transition rules t1− t6, plus the two additional
rules below (where u, v are nodes on t, and 〈q, u〉 stands for q ∈ Mi(u)):

1a. 〈initi, u〉 ← u = Root, if i = 1;
〈initi, u〉 ← 〈oki−1, u〉, if i > 1;

2a. 〈initi, u〉 ← 〈oki, u〉, if axisi �∈ {self, child, parent}.
Semantics : The set of states Mi(u) assigned to the node u is constructed incre-
mentally under a step-wise traversal of t, and inductively wrt i. The construction
starts by adding the state initi to the sets Mi(u); here u stands for any node
selected by the previous elementary query /Ci−1 for i > 1, and u = Root for
i = 1 (transition 1a). The construction of Mi(u) then continues – moving in the
sense defined by axisi – by using the clauses t1, . . . , t6, which allow to select
the nodes where the data is consistent with the test data αi; for any such se-
lected node u, the state oki is added to Mi(u); and if axisi �∈ {self, child,
parent}, the transition 2a is used for continuing the search for other nodes satis-
fying αi from an already selected node. The runs of the transition system Si are
deterministic: when moving from a node u to a node v satisfying u dir-axisi v,
there exists only one applicable transition; as a consequence, the construction
of the sets Mi(u) is also deterministic in the following sense: when moving from
a node u – where we have added to Mi(u) some state q – to a node v satisfying
u dir-axisi v, the state to be added to Mi(v) is determined unambiguously: it
is oki if t(v) |= αi, and faili otherwise.

Case of a non-atomic elementary query: We consider now an elementary
query /Ci =/axis0

i::σ
0
i [L

0
i][Fi]; it can be written under the form /Ci =

step0
i [step

1
i[step

2
i[. . .[step

k(i)
i]. . .], for some positive integer k(i), where each

stepp
i = axisp

i ::σ
p
i [L

p
i] is atomic, for 0 ≤ p ≤ k(i). The transition system Si for

such an elementary subquery /Ci is defined as the ‘concatenation’ of one-step
transition systems (STS, for short) Sp

i corresponding to each of the stepp
i . For

every given p ∈ {0, . . . , k(i)}, let αip stand for σp
i [L

p
i], and αip for σp

i [L
p
i].

4

Depending on the role played by the location step stepp
i = axisp

i ::σ
p
i [L

p
i], we

have three different types of STS; in each case, the transitions are similar to those
of the atomic case; only the state sets will be different (cf. [5] for full details):

– The STS S0
i corresponds to /step0

i[(the navigational part followed by a non-
local filter). In this case, the states are init0i , fail0i , ok

0
i [−]; the transitions are

obtained from clauses t1− t6 above, by replacing initi, faili, oki respectively
by init0i , fail0i , ok

0
i [−].

– If p ∈ {1, . . . , k(i) − 1}, the STS Sp
i , corresponds to [stepp

i [(a non-local
filter followed by another non-local filter). Its set of states is composed of
initpi [−], failpi [−], failpi [⊥], okp

i [−], and the transitions are obtained from the
clauses t1−t2, by replacing initi, faili, oki respectively by initpi [−], failpi [⊥],
okp

i [−], and from clauses t3 − t6 by replacing initi, faili, oki by initpi [−],
failpi [−], okp

i [−].
– The STS S

k(i)
i corresponds to the last non-local filter [step

k(i)
i] of /Ci.

Its states are init
k(i)
i [−], fail

k(i)
i [−], fail

k(i)
i [⊥], okk(i)

i [], and the transitions
are obtained from clauses t1 − t2, by replacing initi, faili, oki respectively
by init

k(i)
i [−], fail

k(i)
i [⊥], okk(i)

i [], and from clauses t3 − t6, by replacing
initi, faili, oki respectively by init

k(i)
i [−], fail

k(i)
i [−], okk(i)

i [].

The role of S0
i is to find the nodes v potentially selected by /C1/. . ./Ci (i.e.,

nodes v such that t(v) |= σ0
i [L

0
i], and such that u dir-axis0

i v holds for some
node u that got selected by /C1/. . . /Ci−1); the systems Sp

i , for 1 ≤ p ≤ k(i),
serve to validate such potential selections: among the nodes potentially selected
by S0

i , retain only those where [Fi] evaluates to ‘true’.
Having constructed the STSs Sp

i for 0 ≤ p ≤ k(i), we can now define the
transition system Si for the elementary query with a non-local filter component
/Ci =/step0

i[step
1
i [step

2
i[. . .[step

k(i)
i]. . .]. Its set of states is defined as:

Statesi = {init0i , fail0i }
⋃k(i)−1

p=0 {okp
i [γ] | γ ∈ {−,⊥,}}

⋃k(i)
p=1{initpi [γ], failpi [γ] | γ ∈ {−,⊥,}} ∪ {okk(i)

i []},
and the set of transitions is the union of the transitions from Sp

i , for 0 ≤ p ≤ k(i).
For any given document t, the run of Si on t, is a mapping Mi : Nodes(t) →

P(Statesi), consistent with the transitions of Si, and the transitions 1 − 11
formulated below in terms of clauses. We first introduce some notation used in
these transitions: we consider a 3-valued logic over the truth table {1, 0, ω} with
0 < ω < 1; the ω here stands for ‘undefined’, and we set: 1̄ = 0, 0̄ = 1, ω = ω.
For every p ∈ {0, . . . , k(i)}, we define a (3-valued) unary predicate Ωp

i , which
will be evaluated recursively, at any node u of any given document t, as follows:

i) Case where Fin-axisp
i (u) is true:

Ωp
i (u) = 1 iff a state of the form qp

i [] is in Mi(u);
Ωp

i (u) = 0 iff Mi(u) has a state of the form qp
i [⊥];

Ωp
i (u) = ω otherwise.

ii) Case where Fin-axisp
i (u) is false:

Ωp
i (u) = Supv{Ωp

i (v) | u dir-axisp
i v}

5

Transition rules for Mi (u, v are nodes on t, p ∈ {0, . . . , k(i)}, 〈s, u〉 stands for
s ∈ Mi(u), q, q′ ∈ {init, fail, ok}):

1. 〈init0i , u〉 ← u = Root, if i = 1;
〈init0i , u〉 ← 〈oki−1, u〉, if i > 1 (rule to go from Si−1 to Si)

2. 〈initp+1
i [−], u〉 ← 〈okp

i [−], u〉, if p ≤ k(i) − 1 (rule to go from Sp
i to Sp+1

i)
3. 〈qp

i [], u〉 ← 〈qp
i [−], u〉, Ωp

i (u), for p ≥ 1
(back-propagate [] along path traversed)

4. 〈okp−1
i [], u〉 ← 〈okp−1

i [−], u〉, 〈initpi [], u〉 (signal filter ‘true’ to stepp−1
i)

5. 〈oki, u〉 ← 〈ok0
i [], u〉 (validate potential selection at u)

6. 〈init0i , u〉 ← 〈oki, u〉, (continue with Mi from a validated node u)
if axisi �∈ {self, child, parent}

7. 〈failpi [⊥], u〉 ← 〈failpi [−], u〉, Fin-axisp
i (u), if p ≥ 1
(we are at an ‘end’, stepp

i is false)
8. 〈qp

i [⊥], u〉 ← 〈qp
i [−], u〉, Ωp

i (u), if p ≥ 1
(back-propagate [⊥] along path traversed)

9. 〈okp−1
i [⊥], u〉 ← 〈okp−1

i [−], u〉, 〈initpi [⊥], u〉, (signal filter ‘false’ to stepp−1
i)

if axisp−1
i ∈ {self, child, parent}

10. 〈initp−1
i [−], u〉 ← 〈okp−1

i [−], u〉, 〈initpi [⊥], u〉,
if axisp−1

i �∈ {self, child, parent}
(filter false at u for stepp

i , continue with stepp−1
i)

11. 〈init0i , u〉 ← 〈ok0
i [⊥], u〉, (continue with Mi from an invalidated node u)

if axisi �∈ {self, child, parent}

Semantics : Note first that, here again, the transition system is deterministic.
The role of the run Mi of Si, on t, is to select every node u of t where σ0

i [L
0
i]

is valid under the data t(u), and the filter component [Fi] evaluates to ‘true’.
The run Mi starts by assigning the state init0i , to the nodes vi−1 answering
the subquery /C1/. . ./Ci−1 (clause 1). Next, using the transitions t1 − t6 of
S0

i , it progresses along the path defined by axis0
i and assigns the state fail0i

to the nodes where the data does not validate σ0
i [L

0
i], and the state ok0

i [−] to
the first node v0

i , such that σ0
i [L

0
i] is valid under t(v0

i). Every such node v0
i is

potentially selected; it will get ultimately selected by Mi iff the filter component
[Fi] evaluates to ‘true’ at v0

i . To check the satisfaction of the filter at v0
i , the

transitions of Sp
i , for 1 ≤ p ≤ k(i) are used. For any 0 ≤ p ≤ k(i) − 1, let vp

i

denote the node to which Mi has assigned the state okp
i [−]. In this case, state

initp+1
i will be assigned to vp

i using clause 2. The run Mi will continue along the
path defined by the axisp+1

i , under the transitions of Sp+1
i , assigning:

– failp+1
i [−] to every node where the data does not validate σp+1

i [Lp+1
i],

– if p + 1 < k(i), the state okp+1
i [−] to the first node where the data validates

σp+1
i [Lp+1

i],
– if p + 1 = k(i), the state ok

k(i)
i [] to the first node where the data validates

σ
k(i)
i [L

k(i)
i].

6

The filter [stepp+1
i] is not satisfied at vp

i iff at every w such that vp
i axis

p+1
i w,

the data does not validate σp+1
i [Lp+1

i]. In such a case, and if axisp
i �∈ {self,

child,parent}, the clauses 7, 8 and 10 (with p := p + 1) will be used and
initpi [−] will get assigned to vp

i , in order that the run Mi can continue its search
for other possible nodes where the data validates σp

i [L
p
i].

Validate potential selection at v0
i : If the state ok

k(i)
i [] is reached under

Mi, the rules 3, 4 are used to propagate the validation symbol [] at any node
u traversed by Mi. In particular, ok0

i [] is added to Mi(v0
i); and by rule 5 the

selecting state oki is also added to Mi(v0
i).

Invalidate potential selection at v0
i : The potential selection at v0

i is
invalidated if the filter [Fi] evaluates to ‘false’ at v0

i . In this case, we propagate
the invalidation symbol [⊥] by using the rules 7–9. In particular, the state ok0

i [⊥]
is added to Mi(v0

i); such a node will not get selected.
Rules 6 and 11 serve to continue the run Mi from a validated or invalidated

potentially selected node v0
i .

The transition system for the full query: The transition system SQ, for
the full query Q =/C1/C2/. . ./Cn, is defined as the system whose set of states is
StatesQ =

⋃n
i=1 Statesi, and the set of transitions is composed of the transitions

of the systems Si, for 1 ≤ i ≤ n. A run MQ of SQ, on any given document t, is
defined as a mapping MQ : Nodes(t) → P(StatesQ), with MQ =

⋃n
i=1 Mi, with

the following two additional transitions (whose semantics must now be evident):

12. 〈init1, u〉 ← 〈okn, u〉, if axis1 �∈ {self,child,parent}
13. 〈init01, u〉 ← 〈okn, u〉, if axis0

1 �∈ {self,child,parent}
Just like for ETSs or STSs, a run MQ of the system SQ (for the query Q on the

document t) constructs the set MQ(u) ⊂ StatesQ at any node u incrementally,
in a step-wise fashion; MQ starts at the Root and traverses t along the various
axes of the successive location steps in Q. The answer for Q on t is the set of all
nodes u of t, such that okn ∈ MQ(u), at the end of the run.

A Linear Optimizing Strategy: By a transition, or “move”, of SQ from any
given node u, we shall mean a resolution step from a positive clause 〈q, u〉 ←,
into one of the clauses t1-t6, 1a-2a or 1-13 given above, defining MQ. Note that
such a ‘move’ of SQ may not always be from u to a different node v on t: it may
just add a further state to the set MQ(u), at the current node u.

The run MQ can actually be controlled with a strategy – referred to as the
linear strategy– to avoid redundant transitions, and reduce the complexity of
the evaluating run of SQ. It is based on the simple idea that at any node u, the
satisfaction of stepp

i (resp. stepi in atomic case) need not be checked more than
once; this strategy is formalized in the proof of the following proposition:

Proposition 1. The complexity of the step-wise evaluation of any XPath query
Q on any XML document t by the run of SQ is linear on the number of atomic
location steps in Q and the number of edges on t.

7

Proof. We stick to the notation above. For every i, p, 1 ≤ i ≤ n, 0 ≤ p ≤ k(i), and
for any given edge (u, v) on the document t, we associate a set Sp

i (u, v); initially
– at the start of the evaluating run MQ of SQ on t – this set is composed of all
the transitions of the system Sp

i ; whenever the run MQ moves from a node u to
a node v, using one of the transition rules, say ρ, of the system Sp

i , we remove all
the transition rules of Sp

i having the same head literal as ρ from the set Sp
i (u′, v),

for every node u′. Such an evolution of the sets Sp
i (u, v), under the moves of MQ,

is justified due to the fact that SQ is deterministic. Any subsequent move under
the run MQ is then allowed to use only the transitions still present in Sp

i (u, v).
(Note: transitions could be from a node to itself, so we shall agree that t has
“fictive” edges from any node u to itself, for the purposes of this strategy.)

In particular, under the evaluating run MQ, no edge on t is traversed by
using more than once any of the transitions of the system SQ. ��

An example illustrating the evaluation of a query under a run with the linear
strategy is given in Appendix-I.

4 Access Control

Various methods have been proposed for controlling the access to data (cf. e.g.,
[7]). The approach of [10] allots access keys to nodes, or more generally to sub-
sets of attributes at the nodes; the keys could depend on a notion of category
to which the consultant belongs. In [3] is suggested a somewhat different ap-
proach: to every category of consultants, associate a set of first-order clauses
with constraints. [12] proposes to attach some special labels to the nodes of the
document, such as −r,−R, to signify ‘local’ (resp. ‘recursive’) access denial. Our
proposal in this paper is to model access control policies as first-order clauses.
(It is shown in Appendix-II that such a view can cover all the approaches men-
tioned above.) The clauses modeling access control will be subject, in general, to
some constraints referred to as scope constraints, as illustrated in in the following
example:

Example 1. Suppose given an (XML-format) database “Faculty”, with as
children nodes “Teacher”, “Student”, and “COURSE”.

Faculty

.name

.lcourse
.name
.age
.quality

Student
.name
.age
.quality

Student
.title
.label
.resp
.lstud

COURSE

.title

.label

.resp

.lstud

COURSETeacher
.name
.lcourse

Course
.dom

.curric

.resp

.grade

Course
.dom

.curric

.resp

.grade

Teacher

Here is an access control policy on this document, formulated in plain text,
for two categories of users consulting such a document: Adm (resp. Acad) for
administrative (resp. academic) staff.

8

Adm: a user of this category may not have access both to the name of a
student and to the grade obtained in any of the course the student follows; but
access to either one of these two data is allowed.

Acad: a user of this category is allowed access to the name of a student, and
to the grade obtained by the student in any course, iff the user is the person
giving the course.

We consider any category as a unary predicate, evaluating to ‘true’ only on
the identifiers assigned to each user of the category. The policy for Adm can then
be modeled as the following pure negative clause:

(1): ← Adm(∗), Student.name, Course.grade,
[Student.name child Course.grade]

where ‘∗’ stands for any identifier for a user of the category Adm. The intended
meaning is that, for a user of category Adm, the policy is violated if the knowledge
(s)he gains by consulting the database (possibly repeatedly), contains the name
of a student, as well as the grade obtained by the student in a course; the scope
constraint (in square brackets) says that the attributes ‘name’ and ‘grade’ are
at two child-related nodes with tagnames ‘Student’ and ‘Course’, respectively.

The current state of data, stored at a node v, disclosed directly or indirectly
to the user with identifier id, having launched a query Q (and possibly also
some other queries prior to Q), will be represented by a set of pure positive
clauses, containing at least the positive clause Cat(id) ←, where Cat stands for
the category of the user. Suppose we are at a context node u on t, under the
run of the transition system SQ, and a node v is to be reached under the next
transition of SQ; this transition will correspond to a well-determined location
step Q′ of Q; a set Deduceid(v, Q′) of positive clauses will then be constructed
to model the knowledge that the user can acquire – directly or indirectly – on
the data stored at v on t, by firing this transition. By definition, then, the run
of SQ on t will select the node v, if and only if:

Deduceid(v, Q′) ∪ {(1)} �|= ⊥
where (1) is the negative clause above, modeling the access control policy for the
category Adm. The positive clauses of Deduceid(v, Q′) will all be added to the
history record of the user, for controlling the data (s)he accesses under future
queries. The construction of the sets of clauses Deduceid() needed for such a
clause-based, step-wise evaluation of queries, is done below.

Definitions: We formalize here the clause-based view for access control.
Definition (1): By User, we mean a (finite) set of individual users; and by

Category we shall mean a finite set of users, with a given specific name or label
(as in the Example above). Both are seen as unary predicates: User(), Cat().
Consider a given document t, on which a given access control policy has been
enforced; it will be assumed that every access condition of the policy is expressed
as a pure negative clause, possibly subject to a scope constraint (as in the Ex-
ample above); the set of all such negative (constrained) clauses will be denoted
as P . Every literal appearing in any of these clauses is therefore either a unary
predicate (of the form User() or Cat()), or a propositional symbol of the form

9

u.a where u is a nodename, and a is an attribute name. The scope constraint
of a clause in P is, by definition, a constraint of the form [constr] where constr
is a (finite) conjunction of expressions of the form ui.ai axisi vi.bi (where axisi

is a basic axis or a corresponding dir-axis), and/or of expressions of the form
uj .aj op val, where val is a data value, and op ∈ Op.

For instance, a policy clause of the form:
← User(10), u.a, v.b, w.c, [u.a child v.b, u.a right w.c]

stipulates that a user with identity 10 is not allowed access to the data stored
by attribute a at node u, by attribute b at node v, and by attribute c at node w,
all three together; by the “all three together”, it is meant that such a combined
access is disallowed to User(10), under one or more queries on the document.

Definition (2): At any node u of t, if a set Du(t) of defining functional rela-
tions is specified on the data stored at u on t, then we also assume that Du(t)
is formulated as a set of Horn clauses of the form u.air ← u.ai1 , u.ai2 , . . . , u.aik

,
where the aj are attribute names at u.

The document t being given, we shall drop references to t as indices (or
otherwise), in the definitions below.

Definition (3): For any query Q =/C1/C2/. . ./Cn that is being evaluated by
a run of its associated transition system SQ on the given document t, suppose
a transition of the run, from a context node u to a node v on t, is a transition
of a one-step transition system Sp

k for some p, k; then, by the current query-step
of Q at u, we mean the corresponding location step stepp

k in Q (notation of the
previous section).

Definition (4): For any given query Q launched by a given user with identity
id, and a run of the associated system SQ, we define three sets of positive clauses
– denoted as Histid(v, Q), Scopeid(v, Q) and Accessid(v, Q) – at every node v
traversed by the run; these three sets are constructed inductively, in the follow-
ing manner, wrt the the various queries successively launched by the user. Let
Q(0), Q(1), . . . , Q(i), . . . denote the sequence of the successive queries launched by
the given user; the identity id of the user once fixed, we omit it, for readability,
in the constructions below (where ‘root’ is the actual root node of the tree t):
Step 0. Set i = 0.
Step 1. Case v is the root node of t: Define Scope(root, Q(i)) = ∅;
if i = 0, then Hist(root, Q(i)) is a singleton: {User(id) ←} or {Cat(id) ←};
if i > 0, Hist(root, Q(i)) is defined as Hist(root, Q(i−1));
if i = 0, then Access(root, Q(i)) is set to be the emptyset;
if i > 0, Access(root, Q(i)) is defined as Hist(root, Q(i−1)).
Step 2. Case v is a non-root node:
Let u be the context node for the current transition of SQ(i) to the node v. For
all nodes u′ traversed prior to u (including u), by the run of SQ(i) evaluating Q(i)

(i.e., the i-th query launched by the given user), assume having constructed the
sets Access(u′, Q(i)), Scope(u′, Q(i)), and Hist(u′, Q(i)). The sets Scope(v, Q(i)),
Access(v, Q(i)), and Hist(v, Q(i)) are then constructed as follows:

1. Let axis be the axis of the current query-step at u, and suppose there is
a node u′ on t already traversed by the run such that u′ axis v holds on t;

10

if a (resp. att) is an attribute name at u′ (resp. at v), such that u′.a axis
v.att appears in the scope constraint of some policy clause, then create
a positive ‘scope clause’ [u′.a axis v.att] ←; and define Scope(v, Q(i)) as
Scope(v, Q(i−1)) ∪ {[u′.a axis v.att] ←}

2. For every v.att appearing in the body of a policy clause in P , such that
v.att is consistent with σ[L] (where the current query-step is of the form
axis::σ[L]), create a positive ‘data-access clause’ v.att ←, and set

Access(v, Q(i)) = Access(v, Q(i−1)) ∪ {v.att ←}.
3. Set Hist(v, Q(i)) = Hist(v, Q(i−1)) ∪ Scope(v, Q(i)) ∪ Access(v, Q(i)).

Step 3. Set i = i + 1, and GOTO Step 1.
Definition (5): In the presence of an access control policy P on t, a transition

of the system SQ, from a context node u to some node v on t, assigns a selecting
state to the node v if and only if: Hist(v, Q(i)) ∪ Dv(t) ∪ P �|= ⊥.

Effectively Using the Method: i) Clausal resolution is essential for the step-
wise query evaluation technique proposed above. In addition to the usual first-
order rules for resolving between positive and negative literals, we shall also need
some additional rules, such as those in the following non-exhaustive list:

1. a literal u.att can resolve with a literal (of the opposite sign) of the form
u.∗; the same also for literals (of opposite sign) of the form User(id) and
User(∗), etc.

2. a scope literal [u.a child v.b] can resolve with a scope literal of the form
[v.b parent u.a], etc.

3. a negative scope literal [u.a axis v.b] can resolve with a positive scope literal
of the form [u.a axis v.b, u.a �= ‘val′]

ii) It is necessary to keep the history records at the nodes, if the access control
policy is not to be violated. For instance, consider the policy specified for the
category Adm, in the Example of Section 4. Let us suppose, for instance, that the
grade data stored at every Course node, is not a constant value (i.e., students
from different grades follow the course). Suppose then that no history records
are kept (for the data accessed), and that a given user of category Adm launches
the following three queries, successively:
Q1 =//Student/@∗
Q2 =//Course/@grade
Q3 =//Course[@grade �= ‘g1′]/parent::Student/@name
where //∗ is short for /descendant::∗. From the first query, one gets all the
data stored at every Student node, in particular all the names of the students;
from the second query, one retrieves all the grade data stored at every Course
node; from the third, the user can get the names of all students, not registered
for grade g1; (s)he can then deduce the name(s) of all students registered for
grade g1, by complementation, and this will violate the given access policy, for
the category Adm. The second query has only served to deduce that there is a
grade attribute with value g1.

11

Let us now analyze the same three queries Q1, Q2, Q3, when history records
are kept. At the end of the evaluation of Q1 and Q2, these records will contain
the following positive clauses:

Adm(id) ←,
student.∗ ←,
course.grade ←.
During the evaluation of the query Q3, the following positive scope clause

will get added to the history:
[course.grade parent student.name, course.grade �= ‘g1′] ←.

The semantics of such an addition implies, in particular, that the scope con-
straint [course.grade �= ‘g1′] evaluates to true. The set of all positive scope and
data-access clauses thus generated, history inclusive, is inconsistent with the ac-
cess policy specified for the category Adm; this is easily checked by resolution.
As a result, the third query will not produce an answer, i.e., will not select any
student.name.

(Note: A query of the form: //Course[@grade = ‘g1′]/parent::Student/
@name, or of the form: //Student[@name = ‘n1′]/Course/@grade, would
have led to a violation of access control without any need for history, so would
have produced no answer.)

iii) The step-wise evaluation method described above, is deductively complete
in the sense of the following proposition (its proof follows from definitions):

Proposition 2. Let P be a set of negative clauses, implementing an access con-
trol policy for a given category of users, on a document t. Then a piece of data,
stored on t by an attribute att at some node with tagname u on t, is accessible
to a user of this category (under some XPath query) iff u.att ← is element of a
set S of positive data-access and scope clauses, which is consistent with P.

5 Related Work, Perspectives and Conclusion

Access control to XML documents has already been studied by several authors;
we only mention here a few where the approach is related to ours. The approach
of [10, 2] is based on the attribution of keys to the nodes and/or the data on the
document. In [12], labels are attributed to the nodes, to signify local or recursive
accessibility or denial. In Appendix-II we show how to encode such approaches
in terms of clauses. [3] focuses on a notion of non-interference of a given policy
wrt a given query, based on type inferences; and access control via clauses is
only suggested at the end. [7] is a survey presenting the generalities on logical
frameworks suited for access control, but the concern is not on query evaluation
techniques. In [9], the authors propose a semantic web rule language (SWRL), as
an extension of the web ontology language (OWL) using Horn Clauses and the
XACML language; role based access control policies (RBAC) can be specified in
SWRL, in a natural manner. It is not hard to extend the clausal view that we
have presented in this paper, to cover role based access control. We also hope
to consider more general access control clauses of the form presented in [1], and
still preserve our step-wise evaluation technique for queries.

12

The idea of constructing, for any given query Q, a node selecting transition
system SQ has some similarity with the automaton associated with Q in [8]; but
our system SQ is not constructed in one single piece, and it serves a very different
purpose. It is not difficult to extend the result of Proposition 1 in the presence
of an access control policy, to get a complexity bound for query evaluation that
is linear on the number of atomic location steps in Q, the number of edges of t,
and the size of the data stored on t (note that the size of the history record can
always be bounded by the size of the data on t).

The view we have presented in this paper for query evaluation, based on the
runs of suitably defined transition systems, can also be adapted for handling
other issues, such as e.g., the problem of patterns and pattern containment
studied in [11]. Thus, the pattern to the left of Figure 1 below represents the
XPath query /descendant::Student/Course:

∗

Student

Course

∗

���
��

��
��

�
≥0

�������
���

��
������

��

w

≥0

���������

��������� w′

���������

Student

Course

Fig. 1. Pattern, and corresponding Generalized Pattern

To the right of the figure is what we shall call the corresponding generalized pat-

tern (g-pattern, for short); the edges
≥0

stand for the descendant-or-self
axis of XPath. A g-pattern can be seen naturally as a transition system, and a
notion of covering run of this system can be defined on any given document or g-
pattern. This generalizes the notion of pattern homomorphism of [11], and with
such a generalized notion, the pattern containment problem can be satisfactorily
handled; the details will appear elsewhere.

Access control policies can be formulated in terms of g-patterns as well: for
instance, the following access control policy:

← Adm(∗), Student.name, Course.grade [Student.name child Course.grade]
can be encoded as a (negative) constraint on the child edge at the lower level,
on the g-pattern to the right of Figure 1.

It is thus possible to build a uniform approach on the basis of the clausal view
we have developed in this paper, that can in particular be adapted to check if a
given document t is in conformity with a given DTD; it will also be applicable if
the document is given in a compressed form as a DAG, not necessarily as a tree
(cf. [4]). Finally, as concerns negation on the navigational part of the queries,
our hope is to handle it with suitable ‘built-in’ unary predicates, as in [6]; this

13

– as well as completing the implementation of the approach, which is currently
under way – is part of our future work.

References

1. M. Abadi, Logic in Access Control In Proc. LICS’03, IEEE, pp. 228–233,
2. M. Abadi, B. Warinschi, Security Analysis of Cryptographically Controlled Access

to XML Documents In Proc. of PODS’05, pp. 108–117, ACM, June 2005,
3. V. Benzaken, M. Burelle, G. Castagna, Information Flow Security for XML Trans-

formations, In Proc. of ASIAN’03, pp. 33–53, LNCS 4246, Springer-Verlag, 2003,
4. B. Fila, S. Anantharaman, Automata for Positive Core XPath Queries on

Compressed Documents, In Proc. of the 13th Int. Conf LPAR’06, pp. 467–481,
LNAI 4246, Springer-Verlag, 2006,

5. B. Fila, S. Anantharaman, A Clausal View for Access Control and XPath Query
Evaluation, Research Report available at: www.univ-orleans.fr/lifo/prodsci/
rapports/RR/RR2007/RR-2007-12.ps.gz

6. M. Frick, M. Grohe, C. Koch, Query Evaluation on Compressed Trees, In Proc.
of LICS’03, IEEE, pp. 188–197.

7. I. Fundulaki, M. Marx, Specifying Access Control Policies for XML Documents
with XPath In Proc. of SACMAT’04, pp. 61–69, ACM, 2004.

8. T. Green, G. Miklau, M. Onizuka, D. Suciu, Processing XML Streams with Deter-
ministic Automata, In ACM Trans. on Database Systems, 29(4):752–788, 2004.

9. H. Li, X. Zhang, H. Wu, Y. Qu Design and Application of Rule Based Ac-
cess Control Policies, Semantic Web and Policy Workshop, Nov. 2005. at
www.csee.umbc.edu/swpw/papers/

10. G. Miklau, D. Suciu, Controlling access to published data using cryptography, In
Proc. of VLDB’03, pp. 898–909, 2003.

11. G. Miklau, D. Suciu, Containment and Equivalence for a Fragment of XPath, In
Journal of the ACM, 51(1):2-45, 2004.

12. M. Murata, A. Tozawa, M. Kudo, XML Access Control Using Static Analysis,
In Proc. of the 10th ACM Conf. on Computer and Communications Security
(CCS’03), pp.73–84, ACM, 2003.

13. World Wide Web Consortium, XML Path Language (XPath Recommendation),
Available at: www.w3c.org/TR/xpath/

Appendix-I: An Evaluating run illustrated

We evaluate here the query Q = /descendant::a[ancestor::b]/parent::c,
on the tree t represented in Figure 2.

The nodes of t are represented by their positions. Figure 3 presents the part
of the run of the transition system SQ, evaluating the first elementary query
/C1 = /descendant::a[ancestor::b]. We first consider the navigational part
step0

1 = descendant::a. Starting from the fictive Root of t, the run traverses
the document top-down (descendant axis), using the following clauses:

〈init01, Root〉 ←
〈fail01, ε〉 ← 〈init01, Root〉
〈fail01, 1〉 ← 〈fail01, ε〉

〈ok0
1 [−], 2〉 ← 〈fail01, ε〉

〈ok0
1 [−], 11〉 ← 〈fail01, 1〉

〈ok0
1 [−], 12〉 ← 〈fail01, 1〉

14

εb

a

a

c

a

Root

21

1211

Fig. 2. XML document t

fail

[]
1
0

init
1
0

1
fail 0

[]
1
0[]

1
0

1
fail 0 a

aa

c

b

Root

ok

ok

ok
ok1

ok1

[]1
1

init

[]ok 1
1

1
1fail

[]

[]1
1

init

[]

init1
1init1

1 [][]

init1
1 []
1init

[]

1
ok1

Root

b

a

aa

c1
1

Fig. 3. Evaluation of /descendant::a[ancestor::b] on t

The states assigned to the nodes of t are shown in Figure 3, to the left. The
run of step0

1 uses the clause 〈init11[−], u〉 ← 〈ok0
1 [−], u〉, and starts its bottom-up

move for evaluating the filter part step1
1 = ancestor::b, at the nodes u = 2, 11,

12, (Figure 3, to the right). The following clauses are then used for the run of
the STS S1

1 :
〈fail11[−], 1〉 ← 〈init11[−], 11〉
〈ok1

1 [], ε〉 ← 〈fail11[−], 1〉
〈fail11[−], 1〉 ← 〈init11[−], 12〉
〈ok1

1 [], ε〉 ← 〈init11[−], 2〉
By the linear strategy, we avoid using the clauses 〈fail11[−], 1〉 ← 〈init11[−], 12〉
and 〈ok1

1 [], ε〉 ← 〈init11[−], 2〉 twice, for reaching the nodes 1 and ε.
Next, using the rule 3 from the definition of the run, the symbol [] gets

back-propagated from the node ε to the nodes 1, 2, and then from 1 to 11 and
12. Finally, with the help of the rules:

〈ok1, u〉 ← 〈ok0
1 [], u〉, 〈init2, u〉 ← 〈ok1, u〉

the state ok1 is assigned to the nodes u = 11, 12, 2, which become the context
nodes for the second elementary query /C2 = /parent::c.

The evaluation of /C2 is presented in Figure 4. Starting from the context
nodes 11, 12 and 2, the run moves bottom-up; and using the clauses:

〈ok2, 1〉 ← 〈init2, 11〉, 〈ok2, 1〉 ← 〈init2, 12〉, 〈fail2, ε〉 ← 〈init2, 2〉,
it selects the node 1, and refuses the selection of the node ε. By the linear
strategy, we avoid using the clause 〈ok2, 1〉 ← 〈init2, 12〉 for moving to node 1,
for a second time.

Under this run, we have selected the node 1. (In the general case, we should
then use the clause 〈init0i , 1〉 ← 〈ok2, 1〉, to look for the other nodes possibly
answering Q.)

15

Root

b

a

aa

c

2fail

init 2ok 2

init 2 init 2

Fig. 4. Evaluation of . . . /parent::c

Appendix-II: Expressive Power of the Clausal View

We show here how to encode, in terms of clauses, the approaches for access
control that we evoked in Section 5. We shall adopt the following terminology
and notation: The terms User and Category will carry the same meanings as
in Example 1 above. A Key K, on a document tree t, is defined as a (partial)
function on the set Nodest ∪ Att composed of nodes on t and attribute names,
such that K(x) is a non-empty subset of Users, when defined; thus K(x) is
seen as a category, with some additional properties, such as propagating access
restrictions to children nodes (see below); we also assume given a set with two
symbols: Acc = {−r,−R}, which will play the same access denial role as in [12].
The clauses below are the translations of the access policies in the aforementioned
approaches; in these clauses X stands for ‘any’ user in User, and A, B stand for
specified users; u, v are nodes on any given document t; ‘∗’ stands for ‘any’
attribute at the nodes concerned; and when a key K(x) is mentioned, it is
assumed to be non-empty:
i) Clauses for local or recursive denial at a node:

• ← X, u.∗ [Acc(u) = −r] /* local denial */
• ← X, u.∗ [Acc(u) = −R] /* recursive denial */
• ← X, v.∗ [Acc(u) = −R, u. ∗ child v.∗] /

ii) Clauses for key attribution to a node:
• ← B, u.∗ [B �∈ K(u)]
• ← B, v.∗ [B �∈ K(u), u. ∗ child v.∗]

iii) Clause for key attribution to an attribute at a node:
• ← B, u.@att [B �∈ K(att)]
For the case where access control is based on the attribution of keys to the

nodes and/or the data, we first observe that a query /C1/ . . . /Cn in canonical
form has a non-empty answer on any t, only if the axis of its first elementary
subquery /C1 is either child, or descendant. This allows the history record for
any user with some identity B, to account for a key K assigned to a node u on
the document, by proceeding as follows, whatever be the query Q:

• if the access policy P contains a clause ← B, u.∗ [B �∈ K(u)], then add the
positive clauses B ←, u.∗ ← to the set HistoryB(Q), and do likewise at every
v below u on t, whenever there is a transition of SQ from u to v.

A policy that assigns the symbol −r or −R, for local or recursive access
denial at the nodes, is handled similarly.

16

