CTL Model Checking
Lecture #4 of Principles of Model Checking

Joost-Pieter Katoen

Software Modeling and Verification Group
affiliated to University of Twente, Formal Methods and Tools

University of Twente, September 29, 2009
Content of this lecture

- Computation tree logic
 - syntax, semantics, equational laws

- CTL model checking
 - recursive descent, backward reachability, complexity

- Comparing LTL and CTL
 - what can be expressed in CTL? what in LTL?, efficiency

- Fairness
 - fair CTL semantics, model checking
Content of this lecture

⇒ Computation tree logic
 – syntax, semantics, equational laws

• CTL model checking
 – recursive descent, backward reachability, complexity

• Comparing LTL and CTL
 – what can be expressed in CTL? what in LTL?, efficiency

• Fairness
 – fair CTL semantics, model checking
Linear and branching temporal logic

- **Linear** temporal logic:

 “statements about (all) paths starting in a state”

 - \(s \models \Box(x \leq 20) \) iff for all possible paths starting in \(s \) always \(x \leq 20 \)

- **Branching** temporal logic:

 “statements about all or some paths starting in a state”

 - \(s \models \forall \Box(x \leq 20) \) iff for all paths starting in \(s \) always \(x \leq 20 \)
 - \(s \models \exists \Box(x \leq 20) \) iff for some path starting in \(s \) always \(x \leq 20 \)
 - nesting of path quantifiers is allowed

- Checking \(\exists \varphi \) in LTL can be done using \(\forall \neg \varphi \)

 - ... but this does not work for nested formulas such as \(\forall \Box \exists \Diamond a \)
Linear versus branching temporal logic

- **Semantics** is based on a branching notion of time
 - an infinite tree of states obtained by unfolding transition system
 - one “time instant” may have several possible successor “time instants”

- **Incomparable expressiveness**
 - there are properties that can be expressed in LTL, but not in CTL
 - there are properties that can be expressed in most branching, but not in LTL

- **Distinct model-checking algorithms**, and their time complexities

- **Distinct equivalences** (pre-orders) on transition systems
 - that correspond to logical equivalence in LTL and branching temporal logics
Transition systems and trees

\[(s_0, 0) \rightarrow (s_1, 1) \rightarrow (s_2, 2) \rightarrow (s_3, 3) \rightarrow (s_2, 4) \rightarrow \ldots \]

\[(s_0, 0) \rightarrow (s_1, 1) \rightarrow (s_2, 2) \rightarrow (s_3, 3) \rightarrow (s_3, 4) \rightarrow (s_2, 4) \rightarrow (s_3, 4) \rightarrow \ldots \]
<table>
<thead>
<tr>
<th>“behavior” in a state s</th>
<th>path-based: $\text{trace}(s)$</th>
<th>state-based: computation tree of s</th>
</tr>
</thead>
<tbody>
<tr>
<td>temporal logic</td>
<td>LTL: path formulas φ $s \models \varphi$ iff $\forall \pi \in \text{Paths}(s). \pi \models \varphi$</td>
<td>CTL: state formulas existential path quantification $\exists \varphi$ universal path quantification: $\forall \varphi$</td>
</tr>
<tr>
<td>complexity of the model checking problems</td>
<td>PSPACE–complete $O(</td>
<td>TS</td>
</tr>
<tr>
<td>implementation-relation</td>
<td>trace inclusion and the like (proof is PSPACE-complete)</td>
<td>simulation and bisimulation (proof in polynomial time)</td>
</tr>
</tbody>
</table>
Computation tree logic

modal logic over infinite trees [Clarke & Emerson 1981]

- **Statements over states**
 - $a \in AP$
 atomic proposition
 - $\neg \Phi$ and $\Phi \land \Psi$
 negation and conjunction
 - $\exists \varphi$
 there exists a path fulfilling φ
 - $\forall \varphi$
 all paths fulfill φ

- **Statements over paths**
 - $\Box \Phi$
 the next state fulfills Φ
 - $\Phi U \Psi$
 Φ holds until a Ψ-state is reached

\Rightarrow note that \Box and U *alternate* with \forall and \exists
Derived operators

potentially Φ: $\exists \diamondsuit \Phi = \exists (\text{true } \cup \Phi)$

inevitably Φ: $\forall \diamondsuit \Phi = \forall (\text{true } \cup \Phi)$

potentially always Φ: $\exists \Box \Phi := \neg \forall \diamondsuit \neg \Phi$

invariantly Φ: $\forall \Box \Phi = \neg \exists \diamondsuit \neg \Phi$

weak until: $\exists (\Phi \mathcal{W} \Psi) = \neg \forall ((\Phi \land \neg \Psi) \cup (\neg \Phi \land \neg \Psi))$

$\forall (\Phi \mathcal{W} \Psi) = \neg \exists ((\Phi \land \neg \Psi) \cup (\neg \Phi \land \neg \Psi))$

the boolean connectives are derived as usual
Visualization of semantics

∀ ♦ red

∃ ♦ red

∃ (yellow ∪ red)

∀ ♦ red

∀ ♦ red

∀ (yellow ∪ red)
Semantics of CTL state-formulas

Defined by a relation $|=\phi$ such that

- $s |= \phi$ if and only if formula ϕ holds in state s

- $s |= a$ iff $a \in L(s)$
- $s |= \neg \phi$ iff $\neg (s |= \phi)$
- $s |= \phi \land \psi$ iff $(s |= \phi) \land (s |= \psi)$
- $s |= \exists \phi$ iff $\pi |= \phi$ for some path π that starts in s
- $s |= \forall \phi$ iff $\pi |= \phi$ for all paths π that start in s
Semantics of CTL path-formulas

Define a relation \models such that

$\pi \models \varphi$ if and only if path π satisfies φ

$\pi \models \Box \Phi$ iff $\pi[1] \models \Phi$

$\pi \models \Phi \cup \Psi$ iff $(\exists j \geq 0. \pi[j] \models \Psi) \land (\forall 0 \leq k < j. \pi[k] \models \Phi))$

where $\pi[i]$ denotes the state s_i in the path π
Transition system semantics

• For CTL-state-formula Φ, the *satisfaction set* $\text{Sat}(\Phi)$ is defined by:

$$\text{Sat}(\Phi) = \{ s \in S \mid s \models \Phi \}$$

• TS satisfies CTL-formula Φ iff Φ holds in all its initial states:

$$TS \models \Phi \quad \text{if and only if} \quad \forall s_0 \in I. s_0 \models \Phi$$

• **Point of attention:** $TS \not\models \Phi$ and $TS \not\models \neg \Phi$ is possible!
 – because of several initial states, e.g. $s_0 \models \exists \Box \Phi$ and $s'_0 \not\models \exists \Box \Phi$
CTL equivalence

CTL-formulas Φ and Ψ (over AP) are \textit{equivalent}, denoted $\Phi \equiv \Psi$ if and only if $\text{Sat}(\Phi) = \text{Sat}(\Psi)$ for all transition systems TS over AP

$$\Phi \equiv \Psi \iff (TS \models \Phi \text{ if and only if } TS \models \Psi)$$
Expansion laws

Recall in LTL: $\varphi U \psi \equiv \psi \lor (\varphi \land \Box (\varphi U \psi))$

In CTL:

$$\forall(\Phi U \Psi) \equiv \Psi \lor (\Phi \land \forall \Box \forall(\Phi U \Psi))$$

$$\forall \Diamond \Phi \equiv \Phi \lor \forall \Box \forall \Diamond \Phi$$

$$\forall \Box \Phi \equiv \Phi \land \forall \Box \forall \Box \Phi$$

$$\exists(\Phi U \Psi) \equiv \Psi \lor (\Phi \land \exists \Box \exists(\Phi U \Psi))$$

$$\exists \Diamond \Phi \equiv \Phi \lor \exists \Box \exists \Diamond \Phi$$

$$\exists \Box \Phi \equiv \Phi \land \exists \Box \exists \Box \Phi$$
Distributive laws

Recall in LTL: $\Box(\varphi \land \psi) \equiv \Box \varphi \land \Box \psi$ and $\Diamond(\varphi \lor \psi) \equiv \Diamond \varphi \lor \Diamond \psi$

In CTL:

$\forall \Box (\Phi \land \Psi) \equiv \forall \Box \Phi \land \forall \Box \Psi$

$\exists \Diamond (\Phi \lor \Psi) \equiv \exists \Diamond \Phi \lor \exists \Diamond \Psi$

note that $\exists \Box (\Phi \land \Psi) \not\equiv \exists \Box \Phi \land \exists \Box \Psi$ and $\forall \Diamond (\Phi \lor \Psi) \not\equiv \forall \Diamond \Phi \lor \forall \Diamond \Psi$
Content of this lecture

- Computation tree logic
 - syntax, semantics, equational laws

⇒ CTL model checking
 - recursive descent, backward reachability, complexity

- Comparing LTL and CTL
 - what can be expressed in CTL? what in LTL?, efficiency

- Fairness
 - fair CTL semantics, model checking
Existential normal form (ENF)

The set of CTL formulas in *existential normal form* (ENF) is given by:

$$\Phi ::= \text{true} \mid a \mid \Phi_1 \land \Phi_2 \mid \neg \Phi \mid \exists \Box \Phi \mid \exists (\Phi_1 \cup \Phi_2) \mid \exists \Box \Phi$$

For each CTL formula, there exists an equivalent CTL formula in ENF.
Model checking CTL

- Convert the formula Φ' into an equivalent Φ in ENF

- How to check whether TS satisfies Φ?
 - compute \textit{recursively} the set $Sat(\Phi)$ of states that satisfy Φ
 - check whether all initial states belong to $Sat(\Phi)$

- Recursive \textbf{bottom-up} computation:
 - consider the \textit{parse-tree} of Φ
 - start to compute $Sat(a)$, for all leafs in the tree
 - then go one level up in the tree and check the formula of these nodes
 - then go one level up and check the formula of these nodes
 - and so on........ until the root of the tree (i.e., Φ) is checked
Example

\[\Phi = \exists \bigcirc a \land \exists (b \cup \exists \square \neg c) . \]

\(Sat(\Psi) \) \(\exists \bigcirc \) \(Sat(\Phi) \) \(\land \)
\(Sat(\Psi') \) \(\exists \bigcup \) \(Sat(\Psi'') \)
\(a \) \(b \) \(\neg \)
\(c \)
Characterization of Sat (1)

For all CTL formulas Φ, Ψ over AP it holds:

\[
Sat(true) = S \\
Sat(a) = \{ s \in S \mid a \in L(s) \}, \text{ for any } a \in AP \\
Sat(\Phi \land \Psi) = Sat(\Phi) \cap Sat(\Psi) \\
Sat(\neg \Phi) = S \setminus Sat(\Phi) \\
Sat(\exists \Box \Phi) = \{ s \in S \mid Post(s) \cap Sat(\Phi) \neq \emptyset \}
\]

where $TS = (S, Act, \rightarrow, I, AP, L)$ is a transition system without terminal states
Characterization of Sat (2)

For all CTL formulas Φ, Ψ over AP it holds:

- $Sat(\exists (\Phi U \Psi))$ is the smallest subset T of S, such that:
 1. $Sat(\Psi) \subseteq T$ and
 2. $s \in Sat(\Phi)$ and $Post(s) \cap T \neq \emptyset$ implies $s \in T$

- $Sat(\exists \Box \Phi)$ is the largest subset T of S, such that:
 3. $T \subseteq Sat(\Phi)$ and
 4. $s \in T$ implies $Post(s) \cap T \neq \emptyset$

where $TS = (S, Act, \rightarrow, I, AP, L)$ is a transition system without terminal states
Computation of Sat

switch(Φ):

\begin{align*}
a & : \quad \text{return } \{ s \in S \mid a \in L(s) \}; \\
\ldots & : \quad \ldots \\
\exists \bigcirc \Psi & : \quad \text{return } \{ s \in S \mid \text{Post}(s) \cap \text{Sat}(\Psi) \neq \emptyset \}; \\
\exists (\Phi_1 \cup \Phi_2) & : \quad T := \text{Sat}(\Phi_2); \quad (* \text{compute the smallest fixed point} *) \\
& \quad \text{while } \text{Sat}(\Phi_1) \setminus T \cap \text{Pre}(T) \neq \emptyset \text{ do} \\
& \quad \quad \text{let } s \in \text{Sat}(\Phi_1) \setminus T \cap \text{Pre}(T); \\
& \quad \quad T := T \cup \{ s \}; \\
& \quad \text{od; } \\
& \quad \text{return } T; \\
\exists \square \Psi & : \quad T := \text{Sat}(\Psi); \quad (* \text{compute the greatest fixed point} *) \\
& \quad \text{while } \exists s \in T. \text{Post}(s) \cap T = \emptyset \text{ do} \\
& \quad \quad \text{let } s \in \{ s \in T \mid \text{Post}(s) \cap T = \emptyset \}; \\
& \quad \quad T := T \setminus \{ s \}; \\
& \quad \text{od; } \\
& \quad \text{return } T; \\
\end{align*}

end switch
Computing $\text{Sat}(\exists(\Phi \cup \Psi))$
Computing $Sat(\exists(\Phi \cup \Psi))$

Input: finite transition system TS with state-set S and CTL-formula $\exists(\Phi \cup \Psi)$

Output: $Sat(\exists(\Phi \cup \Psi))$

\[
E := Sat(\Psi); \quad \text{(* E administers the states s with $s \models \exists(\Phi \cup \Psi)$ *)}
\]
\[
T := E; \quad \text{(* T contains the already visited states s with $s \models \exists(\Phi \cup \Psi)$ *)}
\]

while $E \neq \emptyset$ do
 let $s' \in E$
 $E := E \setminus \{s'\}$
 for all $s \in Pre(s')$ do
 if $s \in Sat(\Phi) \setminus T$ then $E := E \cup \{s\}; T := T \cup \{s\}$; fi
 od
od
return T
Example

let's check the CTL-formula $\exists \diamond ((p = r) \land (p \neq q))$
The computation in snapshots

\[
\begin{align*}
\{ p, q, r \} & \quad \{ r \} \\
\{ q, r \} & \quad \{ p \} \\
\{ q \} & \quad \{ p, q \} \\
\{ p, q \} & \quad \{ p, r \} \\
\{ p \} & \quad \{ p \} \\
\{ q \} & \quad \{ q \} \\
\{ r \} & \quad \{ r \} \\
\emptyset & \quad \emptyset
\end{align*}
\]
Computing \(\text{Sat}(\exists \Box \Phi) \)

\[
E := S \setminus \text{Sat}(\Phi); \\
T := \text{Sat}(\Phi); \\
\text{for all } s \in \text{Sat}(\Phi) \text{ do } c[s] := |\text{Post}(s)|; \text{ od} \\
\text{while } E \neq \emptyset \text{ do } \\
\quad \text{let } s' \in E; \\
\quad E := E \setminus \{s'\}; \\
\quad \text{for all } s \in \text{Pre}(s') \text{ do } \\
\quad \quad \text{if } s \in T \text{ then } \\
\quad \quad \quad c[s] := c[s] - 1; \\
\quad \quad \quad \text{if } c[s] = 0 \text{ then } \\
\quad \quad \quad \quad T := T \setminus \{s\}; E := E \cup \{s\}; \\
\quad \quad \text{fi} \\
\quad \quad \text{fi} \\
\quad \text{od} \\
\text{od} \\
\text{return } T
\]
Alternative algorithm

1. Consider only state s if $s \models \Phi$, otherwise **eliminate** s

 - change TS into $TS[\Phi] = (S', Act, \rightarrow', I', AP, L')$ with $S' = Sat(\Phi)$,
 - $\rightarrow' = \rightarrow \cap (S' \times Act \times S')$, $I' = I \cap S'$, and $L'(s) = L(s)$ for $s \in S'$
 ⇒ all removed states will not satisfy $\exists \Box \Phi$, and thus can be safely removed

2. Determine all **non-trivial strongly connected components** in $TS[\Phi]$

 - non-trivial SCC = maximal, connected subgraph with at least one transition
 ⇒ any state in such SCC satisfies $\exists \Box \Phi$

3. $s \models \exists \Box \Phi$ is equivalent to “some **SCC is reachable** from s”

 - this search can be done in a backward manner
Example

(a)

(b) $\mathcal{K}[q]$

(c) SCC

(d)
For transition system TS with N states and K transitions, and CTL formula Φ, the CTL model-checking problem $TS \models \Phi$ can be determined in time $O(|\Phi| \cdot (N + M))$.
Content of this lecture

- Computation tree logic
 - syntax, semantics, equational laws

- CTL model checking
 - recursive descent, backward reachability, complexity

⇒ Comparing LTL and CTL
 - what can be expressed in CTL?, what in LTL?, efficiency

- Fairness
 - fair CTL semantics, model checking
Equivalence of LTL and CTL formulas

• CTL-formula Φ and LTL-formula φ (both over AP) are *equivalent*, denoted $\Phi \equiv \varphi$, if for any transition system TS over AP:

$$TS \models \Phi \quad \text{if and only if} \quad TS \models \varphi$$

• Let Φ be a CTL-formula, and φ the LTL-formula that is obtained by eliminating all path quantifiers in Φ. Then:

$\Phi \equiv \varphi$ or there does not exist any LTL-formula that is equivalent to Φ
LTL and CTL are incomparable

• Some LTL-formulas cannot be expressed in CTL, e.g.,

 - ♦□a
 - ♦(a ∧ ◯ a)

• Some CTL-formulas cannot be expressed in LTL, e.g.,

 - ∀♦∀□a
 - ∀♦(a ∧ ∀◊a)
 - ∀□∃♦a

⇒ Cannot be expressed = there does not exist an equivalent formula
Comparing LTL and CTL (1)

\[\Diamond (a \land \Box a) \text{ is not equivalent to } \forall \Diamond (a \land \forall \Box a) \]

![Diagram showing the comparison between LTL and CTL expressions.](image)
Comparing LTL and CTL (1)

\(\Diamond (a \land \Diamond a) \) is not equivalent to \(\forall \Diamond (a \land \forall \Diamond a) \)

Since path \(s_0 s_1 (s_2)^{\omega} \) violates \(\Diamond (a \land \forall \Diamond a) \)
Comparing LTL and CTL (2)

\(\forall \Diamond \forall \Box a \) is not equivalent to \(\Diamond \Box a \)

\[s_0 \rightarrow s_1 \rightarrow s_2 \]
Comparing LTL and CTL (2)

$\forall \forall \Box a$ is not equivalent to $\Diamond \Box a$

$s_0 \models \Diamond \Box a$ but $s_0 \not\models \forall \forall \Box a$

since path s_0^ω violates $\Diamond \forall \Box a$
Comparing LTL and CTL (3)

- No LTL-formula φ is equivalent to $\forall \square \exists \Diamond a$

- This is shown by contradiction: assume $\varphi \equiv \forall \square \exists \Diamond a$; let:

$$TS\vdash \forall \square \exists \Diamond a,$$

and thus—by assumption—$TS\vdash \varphi$

- $Paths(TS') \subseteq Paths(TS)$, thus $TS' \models \varphi$

- But $TS' \not\models \forall \square \exists \Diamond a$ as path $s^\omega \not\models \square \exists \Diamond a$

© JPK
Model-checking LTL versus CTL

• Let TS be a transition system with N states and M transitions

• Model-checking LTL-formula Φ has time-complexity $O((N+M) \cdot 2^{|\Phi|})$
 – linear in the state space of the system model
 – exponential in the length of the formula

• Model-checking CTL-formula Φ has time-complexity $O((N+M) \cdot |\Phi|)$
 – linear in the state space of the system model and the formula

• Is model-checking CTL more efficient? No!
Model-checking LTL versus CTL

⇒ LTL-formulae can be \textit{exponentially shorter} than their equivalent in CTL

- Existence of Hamiltonian path in LTL: \(\neg ((\Diamond p_0 \land \ldots \land \Diamond p_3) \land \lozenge^4 q) \)

- In CTL, all possible (\(= 4!\)) routes need to be encoded
Content of this lecture

- Computation tree logic
 - syntax, semantics, equational laws

- CTL model checking
 - recursive descent, backward reachability, complexity

- Comparing LTL and CTL
 - what can be expressed in CTL?, what in LTL?, efficiency

⇒ Fairness
 - fair CTL semantics, model checking
Fairness constraints in CTL

- For LTL it holds: $TS \models^{\text{fair}} \varphi$ if and only if $TS \models (\text{fair} \rightarrow \varphi)$

- An analogous approach for CTL is not possible!

- Formulas form $\forall(\text{fair} \rightarrow \varphi)$ and $\exists(\text{fair} \land \varphi)$ needed

- **But:** boolean combinations of path formulae are not allowed in CTL

- **and:** e.g., strong fairness constraints $\Box \Diamond b \rightarrow \Box \Diamond c \equiv \Diamond \Box \neg b \lor \Diamond \Box c$
 - cannot be expressed in CTL since persistence properties cannot

- **Solution:** change the semantics of CTL by ignoring unfair paths
CTL fairness constraints

- A **strong CTL fairness constraint** is a formula of the form:

\[
sfair = \bigwedge_{0 < i \leq k} (\Box \Diamond \Phi_i \rightarrow \Box \Diamond \Psi_i)
\]

- where \(\Phi_i\) and \(\Psi_i\) (for \(0 < i \leq k\)) are CTL-formulas over \(AP\)
- weak and unconditional CTL fairness constraints are defined analogously, e.g.

\[
ufair = \bigwedge_{0 < i \leq k} \Box \Diamond \Psi_i \quad \text{and} \quad wfair = \bigwedge_{0 < i \leq k} (\Diamond \Box \Phi_i \rightarrow \Box \Diamond \Psi_i)
\]

- a **CTL fairness assumption** \(fair\) is a combination of \(ufair\), \(sfair\) and \(wfair\)

\Rightarrow a CTLa fairness constraint is an **LTL** formula over **CTL** state formulas!

- note that \(s \models \Phi_i\) and \(s \models \Psi_i\) refer to standard (unfair!) CTL semantics
Semantics of fair CTL

For CTL fairness assumption \(fair \), relation \(\models_{fair} \) is defined by:

\[
\begin{align*}
 s &\models_{fair} a & \text{iff} & & a \in Label(s) \\
 s &\models_{fair} \neg \Phi & \text{iff} & & \neg (s \models_{fair} \Phi) \\
 s &\models_{fair} \Phi \lor \Psi & \text{iff} & & (s \models_{fair} \Phi) \lor (s \models_{fair} \Psi) \\
 s &\models_{fair} \exists \varphi & \text{iff} & & \pi \models_{fair} \varphi \text{ for some fair path } \pi \text{ that starts in } s \\
 s &\models_{fair} \forall \varphi & \text{iff} & & \pi \models_{fair} \varphi \text{ for all fair paths } \pi \text{ that start in } s \\
\end{align*}
\]

\[
\begin{align*}
 \pi &\models_{fair} \bigcirc \Phi & \text{iff} & & \pi[1] \models_{fair} \Phi \\
 \pi &\models_{fair} \Phi \lor \Psi & \text{iff} & & (\exists j \geq 0. \pi[j] \models_{fair} \Psi \land (\forall 0 \leq k < j. \pi[k] \models_{fair} \Phi)) \\
\end{align*}
\]

\(\pi \) is a fair path iff \(\pi \models_{LTL} fair \) for CTL fairness assumption \(fair \)
Transition system semantics

• For CTL-state-formula Φ, and fairness assumption $fair$:

$$Sat_{\text{fair}}(\Phi) = \{ s \in S \mid s \models_{\text{fair}} \Phi \}$$

• TS satisfies CTL-formula Φ iff Φ holds in all its initial states:

$$TS \models_{\text{fair}} \Phi \text{ if and only if } \forall s_0 \in I. s_0 \models_{\text{fair}} \Phi$$

 – this is equivalent to $I \subseteq Sat_{\text{fair}}(\Phi)$
Randomized arbiter

\[TS_1 \parallel Arbiter \parallel TS_2 \not\models (\forall \square \forall \Diamond crit_1) \land (\forall \square \forall \Diamond crit_2) \]

But: \[TS_1 \parallel Arbiter \parallel TS_2 \models fair \ \forall \square \forall \Diamond crit_1 \land \forall \square \forall \Diamond crit_2 \text{ with} \]

\[fair = \Box \Diamond head \land \Box \Diamond tail \]
Fair CTL model-checking problem

For:

- finite transition system TS without terminal states
- CTL formula Φ in ENF, and
- CTL fairness assumption $fair$

establish whether or not:

$$TS \models_{fair} \Phi$$

use bottom-up procedure à la CTL to determine $Sat_{fair}(\Phi)$
using as much as possible standard CTL model-checking algorithms
CTL fairness constraints

- A strong CTL fairness constraint: \(\text{sfair} = \bigwedge_{0 < i \leq k} (\Box \Diamond \Phi_i \rightarrow \Box \Diamond \Psi_i) \)
 - where \(\Phi_i \) and \(\Psi_i \) (for \(0 < i \leq k \)) are CTL-formulas over \(AP \)

- Replace the CTL state-formulas in \(\text{sfair} \) by fresh atomic propositions:
 \[
 \text{sfair} := \bigwedge_{0 < i \leq k} (\Box \Diamond a_i \rightarrow \Box \Diamond b_i)
 \]
 - where \(a_i \in L(s) \) if and only if \(s \in \text{Sat}(\Phi_i) \)
 - \(\ldots b_i \in L(s) \) if and only if \(s \in \text{Sat}(\Psi_i) \)
 - (for unconditional and weak fairness this goes similarly)

- Note: \(\pi \models fair \) iff \(\pi[j..] \models fair \) for some \(j \geq 0 \) iff \(\pi[j..] \models fair \) for all \(j \geq 0 \)
Results for $\models_{fair} (1)$

$s \models_{fair} \exists \bigcirc a$ if and only if $\exists s' \in Post(s)$ with $s' \models a$ and $\text{FairPaths}(s') \neq \emptyset$

$s \models_{fair} \exists (a \cup a')$ if and only if there exists a finite path fragment $s_0 s_1 s_2 \ldots s_{n-1} s_n \in \text{Paths}_{\text{fin}}(s)$ with $n \geq 0$

such that $s_i \models a$ for $0 \leq i < n$, $s_n \models a'$, and $\text{FairPaths}(s_n) \neq \emptyset$
Results for $\models_{fair} (2)$

$s \models_{fair} \exists \circ a$ if and only if $\exists s' \in Post(s)$ with $s' \models a$ and $\exists s' \models \Box true$ if and only if $\exists s' \in Post(s)$ with $s' \models a$ and $\forall s' \not= \emptyset$

$s \models_{fair} \exists (a \cup a')$ if and only if there exists a finite path fragment

$$s_0 s_1 s_2 \ldots s_{n-1} s_n \in Paths_{fin}(s) \quad \text{with } n \geq 0$$

such that $s_i \models a$ for $0 \leq i < n$, $s_n \models a'$, and $\forall s_n \not= \emptyset$

$s_n \models_{fair} \exists \Box true$ if and only if $\exists s' \models \Box true$
Basic algorithm

- Determine $\text{Sat}_{\text{fair}}(\exists \Box \text{true}) = \{ s \in S \mid \text{FairPaths}(s) \neq \emptyset \}$

- Introduce an atomic proposition a_{fair} and adjust labeling where:
 - $a_{\text{fair}} \in L(s)$ if and only if $s \in \text{Sat}_{\text{fair}}(\exists \Box \text{true})$

- Compute the sets $\text{Sat}_{\text{fair}}(\Psi)$ for all subformulas Ψ of Φ (in ENF) by:

 $\text{Sat}_{\text{fair}}(a) = \{ s \in S \mid a \in L(s) \}$
 $\text{Sat}_{\text{fair}}(\neg a) = S \setminus \text{Sat}_{\text{fair}}(a)$
 $\text{Sat}_{\text{fair}}(a \land a') = \text{Sat}_{\text{fair}}(a) \cap \text{Sat}_{\text{fair}}(a')$
 $\text{Sat}_{\text{fair}}(\exists \Diamond a) = \text{Sat}(\exists \Diamond (a \land a_{\text{fair}}))$
 $\text{Sat}_{\text{fair}}(\exists(a \lor a')) = \text{Sat}(\exists(a \lor (a' \land a_{\text{fair}})))$
 $\text{Sat}_{\text{fair}}(\exists a) = \ldots \ldots$

- Thus: model checking CTL under fairness constraints is
 - CTL model checking + algorithm for computing $\text{Sat}_{\text{fair}}(\exists \Box a)$!
The model-checking problem for CTL with fairness can be reduced to:

(1) the model-checking problem for CTL (without fairness), and

(2) the problem of computing $\text{Sat}_{\text{fair}}(\exists \Box a)$ for $a \in AP$

note that $\exists \Box \text{true}$ is a special case of $\exists \Box a$

thus a single algorithm suffices for $\text{Sat}_{\text{fair}}(\exists \Box a)$ and $\text{Sat}_{\text{fair}}(\exists \Box \text{true})$
Core model-checking algorithm

(* states are assumed to be labeled with a_i and b_i *)

compute $Sat_{fair}(∃□true) = \{ s \in S \mid FairPaths(s) \neq \emptyset \}$

forall $s \in Sat_{fair}(∃□true)$ do $L(s) := L(s) \cup \{ a_{fair} \}$ od

(* compute $Sat_{fair}(Φ)$ *)

for all $0 < i \leq |Φ|$ do
 for all $Ψ \in Sub(Φ)$ with $|Ψ| = i$ do
 switch(Ψ):
 true : $Sat_{fair}(Ψ) := S$;
 a : $Sat_{fair}(Ψ) := \{ s \in S \mid a \in L(s) \}$;
 $a \land a'$: $Sat_{fair}(Ψ) := \{ s \in S \mid a, a' \in L(s) \}$;
 $¬a$: $Sat_{fair}(Ψ) := \{ s \in S \mid a \notin L(s) \}$;
 $∃□a$: $Sat_{fair}(Ψ) := Sat(∃□(a \land a_{fair}))$;
 $∃(a ∪ a')$: $Sat_{fair}(Ψ) := Sat(∃(a ∪ (a' \land a_{fair})))$;
 $∃□a$: compute $Sat_{fair}(∃□a)$
 end switch
 replace all occurrences of $Ψ$ (in $Φ$) by the fresh atomic proposition $a_Ψ$
 forall $s \in Sat_{fair}(Ψ)$ do $L(s) := L(s) \cup \{ a_Ψ \}$ od
 od
return $I \subseteq Sat_{fair}(Φ)$
Characterization of $\text{Sat}_{\text{fair}}(\exists \Box a)$

$s \models_{\text{fair}} \exists \Box a$ \quad where \quad \text{sfair} = \bigwedge_{0<i\leq k} (\Box \Diamond a_i \rightarrow \Box \Diamond b_i)$

iff there exists a finite path fragment $s_0 \ldots s_n$ and a cycle $s'_0 \ldots s'_r$ with:

1. $s_0 = s$ \quad and \quad $s_n = s'_0 = s'_r$

2. $s_i \models a$, for any $0 \leq i \leq n$, and $s'_j \models a$, for any $0 \leq j \leq r$, and

3. $\text{Sat}(a_i) \cap \{ s'_1, \ldots, s'_r \} = \emptyset$ or $\text{Sat}(b_i) \cap \{ s'_1, \ldots, s'_r \} \neq \emptyset$ for $0 < i \leq k$
Computing $\text{Sat}_{\text{fair}}(\exists \Box a)$

- Consider only state s if $s \models a$, otherwise *eliminate* s

 - change TS into $TS[a] = (S', Act, \rightarrow', I', AP, L')$ with $S' = \text{Sat}(a)$,
 - $\rightarrow' = \rightarrow \cap (S' \times Act \times S')$, $I' = I \cap S'$, and $L'(s) = L(s)$ for $s \in S'$

 ⇒ each infinite path fragment in $TS[a]$ satisfies $\Box a$

- $s \models_{\text{fair}} \exists \Box a$ iff there is a non-trivial SCC D in $TS[a]$ reachable from s:
 \[D \cap \text{Sat}(a_i) = \emptyset \quad \text{or} \quad D \cap \text{Sat}(b_i) \neq \emptyset \quad \text{for} \quad 0 < i \leq k \]

- $\text{Sat}_{\text{sfair}}(\exists \Box a) = \{ s \in S \mid \text{Reach}_{TS[a]}(s) \cap T \neq \emptyset \}$

 - T is the union of all non-trivial SCCs C that contain D satisfying (*)

how to compute the set T of SCCs?
Unconditional fairness

\[\text{ufair} \equiv \bigwedge_{0<i\leq k} \square \Diamond b_i \]

Let \(T \) be the set union of all non-trivial SCCs \(C \) of \(TS[a] \) satisfying

\[C \cap \text{Sat}(b_i) \neq \emptyset \text{ for all } 0 < i \leq k \]

It now follows:

\[s \models_{\text{ufair}} \exists \square a \text{ if and only if } \text{Reach}_{TS[a]}(s) \cap T \neq \emptyset \]

\[\Rightarrow T \text{ can be determined by a simple graph analysis (DFS) } \]
Example

\[
\begin{align*}
TS[a] &\models_{ufair} \exists a \text{ but } \overline{TS[a]} \not\models_{ufair} \exists a \\
\text{with } ufair = \Box \Diamond b_1 \land \Box \Diamond b_2
\end{align*}
\]
Strong fairness

- $sfair = □◊a_1 → □◊b_1$, i.e., $k=1$

- $s \models_{sfair} ∃a$ iff C is a non-trivial SCC in $TS[a]$ reachable from s with:
 1. $C \cap Sat(b_1) ≠ ∅$, or
 2. $D \cap Sat(a_1) = ∅$, for some non-trivial SCC D in C

- D is a non-trivial SCC in the graph that is obtained from $C[¬a_1]$

- For T the union of non-trivial SCCs in satisfying (1) and (2):

 $s \models_{sfair} ∃a$ if and only if $Reach_{TS[a]}(s) \cap T ≠ ∅$

 for several strong fairness constraints ($k ≥ 1$), this is applied recursively

 T is determined by standard graph analysis (DFS)
Time complexity

For transition system TS with N states and M transitions, CTL formula Φ, and CTL fairness constraint $fair$ with k conjuncts, the CTL model-checking problem $TS \models_{fair} \Phi$ can be determined in time $O(|\Phi| \cdot (N + M) \cdot k)$.