Transition Systems and Linear-Time Properties

Lecture #1 of Principles of Model Checking

Joost-Pieter Katoen

Software Modeling and Verification Group

affiliated to University of Twente, Formal Methods and Tools

University of Twente, September 29, 2009
Model checking

- Automated model-based verification and debugging technique
 - model of system = Kripke structure \(\approx \) labeled transition system
 - properties expressed in temporal logic like LTL or CTL
 - provides counterexamples in case of property refutation

- Various striking examples
 - Needham-Schroeder security protocol, storm surge barrier, C code

- 2008: Pioneers awarded prestigious ACM Turing Award
Course topics

- **Transition systems and linear-time properties**
 - traces, safety, liveness, fairness

- **Verifying regular linear-time properties**
 - omega-regular languages, Büchi automata, nested depth-first search

- **LTL model checking**
 - syntax, semantics, automata, model-checking algorithm

- **CTL model checking**
 - syntax, semantics, CTL versus LTL, model-checking algorithm
Course topics

- **Abstraction**
 - stutter (bi)simulation, LTL/CTL equivalence, minimisation algorithms

- **Partial-order reduction**
 - independence, ample sets, dynamic POR

- **Timed automata model checking**
 - region automata, timed CTL, zone automata

- **Probabilistic model checking**
 - Markov chains, probabilistic CTL, Markov decision processes
"This book offers one of the most comprehensive introductions to logic model checking techniques available today. The authors have found a way to explain both basic concepts and foundational theory thoroughly and in crystal clear prose. Highly recommended for anyone who wants to learn about this important new field, or brush up on their knowledge of the current state of the art."

(Gerard J. Holzmann, NASA JPL, Pasadena)
Content of this lecture

• Introduction
 – why model checking?, how to model check?

• Transition systems
 – paths, traces, program graphs

• Linear time properties
 – safety, liveness, decomposition

• Fairness
 – unconditional, strong and weak fairness
Content of this lecture

⇒ Introduction
 – why model checking?, how to model check?

• Transition systems
 – paths, traces, program graphs

• Linear time properties
 – safety, liveness, decomposition

• Fairness
 – unconditional, strong and weak fairness
Software verification techniques

• **Peer reviewing**
 – static technique: manual code inspection, no software execution
 – detects between 31 and 93% of defects with median of about 60%
 – subtle errors (concurrency and algorithm defects) hard to catch

• **Testing**
 – dynamic technique in which software is executed

• **Some figures**
 – 30% to 50% of software project costs devoted to testing
 – more time and effort is spent on validation than on construction
 – accepted defect density: about 1 defects per 1,000 code lines
Catching software bugs: the sooner, the better

<table>
<thead>
<tr>
<th>Analysis</th>
<th>Conceptual Design</th>
<th>Programming</th>
<th>Unit Testing</th>
<th>System Testing</th>
<th>Operation</th>
</tr>
</thead>
</table>

- **introduced errors (in %)**
- **detected errors (in %)**
- **cost of correction per error (in 1,000 US $)**

Time (non-linear)
Milestones in formal verification

- **Mathematical approach towards program correctness** (Turing, 1949)

- **Syntax-based technique for sequential programs** (Hoare, 1969)
 - for a given input, does a computer program generate the correct output?
 - based on compositional proof rules expressed in predicate logic

- **Syntax-based technique for concurrent programs** (Pnueli, 1977)
 - can handle properties referring to situations during the computation
 - based on proof rules expressed in temporal logic

- **Automated verification of concurrent programs** (Emerson & Clarke, 1981)
 - model-based instead of proof-rule based approach
 - does the concurrent program satisfy a given (logical) property?

these formal techniques are not biased towards the most probable scenarios
Model checking overview

- **requirements**
 - Formalizing
 - property specification

- **system**
 - Modeling
 - system model

- **Model Checking**
 - satisfied
 - violated + counterexample
 - insufficient memory

- **Simulation**
 - location error

- ‘‘not biased towards the most probable scenarios’’
The model checking process

• **Modeling phase**
 - model the system under consideration
 - as a first sanity check, perform some simulations
 - formalise the property to be checked

• **Running phase**
 - run the model checker to check the validity of the property in the model

• **Analysis phase**
 - property satisfied? → check next property (if any)
 - property violated? →
 1. analyse generated counterexample by simulation
 2. refine the model, design, or property . . . and repeat the entire procedure
 - out of memory? → try to reduce the model and try again
Content of this lecture

• Introduction
 – why model checking?, how to model check?

⇒ Transition systems
 – paths, traces, program graphs

• Linear time properties
 – safety, liveness, decomposition

• Fairness
 – unconditional, strong and weak fairness
Transition systems

- Model to describe the behaviour of systems

- Digraphs where nodes represent states, and edges model transitions

- State:
 - the current colour of a traffic light
 - the current values of all program variables + the program counter
 - the current value of the registers together with the values of the input bits

- Transition: (“state change”)
 - a switch from one colour to another
 - the execution of a program statement
 - the change of the registers and output bits for a new input
Formal definition

A transition system TS is a tuple $(S, Act, \rightarrow, I, AP, L)$ where

- S is a set of states
- Act is a set of actions
- $\rightarrow \subseteq S \times Act \times S$ is a transition relation
- $I \subseteq S$ is a set of initial states
- AP is a set of atomic propositions
- $L : S \rightarrow 2^{AP}$ is a labeling function

S and Act are either finite or countably infinite

Notation: $s \xrightarrow{\alpha} s'$ instead of $(s, \alpha, s') \in \rightarrow$
Paths

- An infinite path fragment π is an infinite state sequence:

 \[s_0 \ s_1 \ s_2 \ldots \] such that $s_i \in \text{Post}(s_{i-1})$ for all $i > 0$

- Notations for path fragment $\pi = s_0 \ s_1 \ s_2 \ldots$:

 - $\text{first}(\pi) = s_0 = \pi[0]$; let $\pi[j] = s_j$ denote the j-th state of π
 - j-th prefix $\pi[..j] = s_0 \ s_1 \ldots s_j$ and j-th suffix $\pi[j..] = s_j \ s_{j+1} \ldots$

- A path of TS is an initial, maximal path fragment

 - a maximal path fragment cannot be prolonged
 - a path fragment is initial if $s_0 \in I$

- $\text{Paths}(s)$ is the set of maximal path fragments π with $\text{first}(\pi) = s$
A mutual exclusion algorithm
Traces

- Actions are mainly used to model the (possibility of) interaction
 - synchronous or asynchronous communication

- Here, focus on the states that are visited during executions
 - the states themselves are not “observable”, but just their atomic propositions

- Traces are sequences of the form $L(s_0) L(s_1) L(s_2) \ldots$
 - just register the (set of) atomic propositions that are valid along the execution

- For transition systems without terminal states:
 - traces are infinite words over the alphabet 2^{AP}, i.e., they are in $(2^{AP})^\omega$
 - we will (mostly) assume that there are no terminal states
Traces

• Let transition system $TS = (S, Act, \rightarrow, I, AP, L)$ without terminal states

• The trace of path fragment $\pi = s_0 s_1 \ldots$ is $trace(\pi) = L(s_0) L(s_1) \ldots$
 – the trace of $\widehat{\pi} = s_0 s_1 \ldots s_n$ is $trace(\widehat{\pi}) = L(s_0) L(s_1) \ldots L(s_n)$.

• The set of traces of a set Π of paths: $trace(\Pi) = \{ trace(\pi) \mid \pi \in \Pi \}$

• $Traces(s) = trace(Paths(s))$ \hspace{1cm} $Traces(TS) = \bigcup_{s \in I} Traces(s)$
Example traces

Let $AP = \{ crit_1, crit_2 \}$

Example path:

$$\pi = \langle n_1, n_2, y = 1 \rangle \rightarrow \langle w_1, n_2, y = 1 \rangle \rightarrow \langle c_1, n_2, y = 0 \rangle \rightarrow \langle n_1, n_2, y = 1 \rangle \rightarrow \langle n_1, w_2, y = 1 \rangle \rightarrow \langle n_1, c_2, y = 0 \rangle \rightarrow \ldots$$

The trace of this path is the infinite word:

$$trace(\pi) = \emptyset \emptyset \{ crit_1 \} \emptyset \emptyset \{ crit_2 \} \emptyset \emptyset \{ crit_1 \} \emptyset \emptyset \{ crit_2 \} \ldots$$

The trace of the finite path fragment:

$$\hat{\pi} = \langle n_1, n_2, y = 1 \rangle \rightarrow \langle w_1, n_2, y = 1 \rangle \rightarrow \langle w_1, w_2, y = 1 \rangle \rightarrow \langle w_1, c_2, y = 0 \rangle \rightarrow \langle w_1, n_2, y = 1 \rangle \rightarrow \langle c_1, n_2, y = 0 \rangle$$

is:

$$trace(\hat{\pi}) = \emptyset \emptyset \emptyset \{ crit_2 \} \emptyset \{ crit_1 \}$$
Program graphs: A beverage vending machine

“Abstract” transitions:

\[
\begin{align*}
\text{start} & \xrightarrow{\text{true: coin}} \text{select} \\
\text{select} & \xrightarrow{\text{nsprite} > 0: \text{sget}} \text{start} \\
\text{select} & \xrightarrow{\text{nsprite} = 0 \land \text{nbeer} = 0: \text{ret_coin}} \text{start} \\
\text{start} & \xrightarrow{\text{true: refill}} \text{start} \\
\text{start} & \xrightarrow{\text{true: refill}} \text{start} \\
\text{start} & \xrightarrow{\text{true: refill}} \text{start}
\end{align*}
\]

<table>
<thead>
<tr>
<th>Action</th>
<th>Effect on variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>coin</td>
<td></td>
</tr>
<tr>
<td>ret_coin</td>
<td></td>
</tr>
<tr>
<td>sget</td>
<td>nsprite := nsprite − 1</td>
</tr>
<tr>
<td>bget</td>
<td>nbeer := nbeer − 1</td>
</tr>
<tr>
<td>refill</td>
<td>nsprite := max; nbeer := max</td>
</tr>
</tbody>
</table>
Some preliminaries

• typed variables with a **valuation** that assigns values to variables

 – e.g., $\eta(x) = 17$ and $\eta(y) = -2$

• the set of Boolean **conditions** over Var

 – propositional logic formulas whose propositions are of the form \(\overline{x} \in \overline{D} \)

 – \((-3 < x \leq 5) \land (y = \text{green}) \land (x \leq 2 \cdot x')\)

• **effect** of the actions is formalized by means of a mapping:

\[
\text{Effect} : \text{Act} \times \text{Eval(Var)} \rightarrow \text{Eval(Var)}
\]

– e.g., $\alpha \equiv x := y + 5$ and evaluation $\eta(x) = 17$ and $\eta(y) = -2$

– $\text{Effect}(\alpha, \eta)(x) = \eta(y) + 5 = 3$, and $\text{Effect}(\alpha, \eta)(y) = \eta(y) = -2$
Program graphs

A program graph PG over set Var of typed variables is a tuple

$$(Loc, Act, Effect, \rightarrow, Loc_0, g_0)$$

where

- Loc is a set of locations with initial locations $Loc_0 \subseteq Loc$
- Act is a set of actions
- $Effect : Act \times Eval(Var) \rightarrow Eval(Var)$ is the effect function
- $\rightarrow \subseteq Loc \times \text{Cond}(Var) \times Act \times Loc$, transition relation
- $g_0 \in \text{Cond}(Var)$ is the initial condition.

Notation: $\ell \xrightarrow{\ell_0, \alpha} \ell'$ denotes $(\ell, g_0, \alpha, \ell') \in \rightarrow$
Beverage vending machine

- \(\text{Loc} = \{ \text{start, select} \} \) with \(\text{Loc}_0 = \{ \text{start} \} \)

- \(\text{Act} = \{ \text{bget, sget, coin, ret_coin, refill} \} \)

- \(\text{Var} = \{ \text{nsprite, nbeer} \} \) with domain \(\{ 0, 1, \ldots, \text{max} \} \)

\[
\begin{align*}
\text{Effect}(\text{coin}, \eta) &= \eta \\
\text{Effect}(\text{ret_coin}, \eta) &= \eta \\
\text{Effect}(\text{sget}, \eta) &= \eta[\text{nsprite} := \text{nsprite} - 1] \\
\text{Effect}(\text{bget}, \eta) &= \eta[\text{nbeer} := \text{nbeer} - 1] \\
\text{Effect}(\text{refill}, \eta) &= [\text{nsprite} := \text{max}, \text{nbeer} := \text{max}]
\end{align*}
\]

- \(g_0 = (\text{nsprite} = \text{max} \land \text{nbeer} = \text{max}) \)
From program graphs to transition systems

- Basic strategy: unfolding
 - state = location (current control) ℓ + data valuation η
 - initial state = initial location satisfying the initial condition g_0

- Propositions and labeling
 - propositions: “at ℓ” and “$x \in D$” for $D \subseteq \text{dom}(x)$
 - $\langle \ell, \eta \rangle$ is labeled with “at ℓ” and all conditions that hold in η

- $\ell \xrightarrow{\alpha, \eta} \ell'$ and g holds in η then $\langle \ell, \eta \rangle \xrightarrow{\alpha} \langle \ell', \text{Effect}(\alpha, \eta) \rangle$
Transition systems for program graphs

The transition system \(TS(PG) \) of program graph

\[
PG = (\text{Loc}, \text{Act}, \text{Effect}, \rightarrow, \text{Loc}_0, g_0)
\]

over set \(\text{Var} \) of variables is the tuple \((S, \text{Act}, \rightarrow, I, \text{AP}, L)\) where

- \(S = \text{Loc} \times \text{Eval}(\text{Var}) \)
- \(\rightarrow \subseteq S \times \text{Act} \times S \) is defined by the rule:
 \[
 \frac{\ell \xrightarrow{g:\alpha} \ell' \land \eta \models g}{\langle \ell, \eta \rangle \xrightarrow{\alpha} \langle \ell', \text{Effect}(\alpha, \eta) \rangle}
 \]
- \(I = \{ \langle \ell, \eta \rangle \mid \ell \in \text{Loc}_0, \eta \models g_0 \} \)
- \(\text{AP} = \text{Loc} \cup \text{Cond}(\text{Var}) \) and \(L(\langle \ell, \eta \rangle) = \{ \ell \} \cup \{ g \in \text{Cond}(\text{Var}) \mid \eta \models g \} \).
Content of this lecture

• **Introduction**
 – why model checking?, how to model check?

• **Transition systems**
 – paths, traces, program graphs

⇒ **Linear time properties**
 – safety, liveness, decomposition

• **Fairness**
 – unconditional, strong and weak fairness
Linear-time properties

- Linear-time properties specify the traces that a TS must exhibit
 - LT-property specifies the admissible behaviour of the system
 - later, a logical formalism will be introduced for specifying LT properties

- A linear-time property (LT property) over \(AP \) is a subset of \((2^{AP})^\omega\)
 - finite words are not needed, as it is assumed that there are no terminal states

- TS (over \(AP \)) satisfies LT-property \(P \) (over \(AP \)):

 \[TS \models P \text{ if and only if } \text{Traces}(TS) \subseteq P \]

 - TS satisfies the LT property \(P \) if all its “observable” behaviors are admissible
Semaphore-based mutual exclusion

\[y := y + 1 \]

\[y > 0 : \]
\[y := y - 1 \]

\[y = 0 \text{ means “lock is currently possessed”; } y = 1 \text{ means “lock is free”} \]
Transition system

\[
\begin{align*}
y &:= y + 1 \\
\langle c_1, n_2, y = 0 \rangle &\quad \langle w_1, n_2, y = 1 \rangle &\quad \langle n_1, n_2, y = 1 \rangle \\
\langle c_1, n_2, y = 0 \rangle &\quad \langle w_1, n_2, y = 1 \rangle &\quad \langle n_1, w_2, y = 1 \rangle \\
\langle c_1, w_2, y = 0 \rangle &\quad \langle w_1, w_2, y = 1 \rangle &\quad \langle n_1, c_2, y = 0 \rangle \\
\langle c_1, w_2, y = 0 \rangle &\quad \langle w_1, w_2, y = 1 \rangle &\quad \langle n_1, c_2, y = 0 \rangle \\
\langle c_1, w_2, y = 0 \rangle &\quad \langle w_1, c_2, y = 0 \rangle &\quad \langle n_1, c_2, y = 0 \rangle \\
\langle c_1, w_2, y = 0 \rangle &\quad \langle w_1, c_2, y = 0 \rangle &\quad \langle n_1, c_2, y = 0 \rangle \\
\end{align*}
\]
How to specify mutual exclusion?

“Always at most one process is in its critical section”

- Let $AP = \{ \text{crit}_1, \text{crit}_2 \}$
 - other atomic propositions are not of any relevance for this property

- Formalization as LT property

 $P_{mutex} =$ set of infinite words $A_0 A_1 A_2 \ldots$ with $\{ \text{crit}_1, \text{crit}_2 \} \not\subseteq A_i$ for all $0 \leq i$

- Contained in P_{mutex} are e.g., the infinite words:

 $\{ \text{crit}_1 \} \{ \text{crit}_2 \} \{ \text{crit}_1 \} \{ \text{crit}_2 \} \{ \text{crit}_1 \} \{ \text{crit}_2 \} \ldots$ and
 $\emptyset \emptyset \emptyset \emptyset \emptyset \emptyset \emptyset \ldots$

 - this does not apply to words of the form: $\{ \text{crit}_1 \} \emptyset \{ \text{crit}_1, \text{crit}_2 \} \ldots$

Does the semaphore-based algorithm satisfy P_{mutex}?
Does the semaphore-based algorithm satisfy P_{mutex}?

Yes as there is no reachable state labeled with $\{ \text{crit}_1, \text{crit}_2 \}$
How to specify starvation freedom?

“A process that wants to enter the critical section is eventually able to do so’’

• Let $AP = \{ wait_1, crit_1, wait_2, crit_2 \}$

• Formalization as LT-property

$$P_{nostarve} = \text{set of infinite words } A_0 A_1 A_2 \ldots \text{such that:}$$

$$\left(\exists j. \ text{wait}_i \in A_j \right) \Rightarrow \left(\exists j. \ text{crit}_i \in A_j \right) \text{ for each } i \in \{ 1, 2 \}$$

\exists stands for “there are infinitely many”.

Does the semaphore-based algorithm satisfy $P_{nostarve}$?
No. The trace

\[\emptyset \{ \text{wait}_2 \} \{ \text{wait}_1, \text{wait}_2 \} \{ \text{crit}_1, \text{wait}_2 \} \]
\[\{ \text{wait}_2 \} \{ \text{wait}_1, \text{wait}_2 \} \{ \text{crit}_1, \text{wait}_2 \} \ldots \]

is a possible trace of the transition system but not in \(P_{\text{nostarve}} \).
Trace equivalence and LT properties

For TS and TS' be transition systems (over AP):

\[\text{Traces}(TS) \subseteq \text{Traces}(TS') \]
if and only if
for any LT property P: $TS' \models P$ implies $TS \models P$

\[\text{Traces}(TS) = \text{Traces}(TS') \]
if and only if
TS and TS' satisfy the same LT properties
Invariants

• LT property P_{inv} over AP is an invariant if it has the form:

$$P_{inv} = \{ A_0 A_1 A_2 \ldots \in (2^{AP})^\omega \mid \forall j \geq 0. A_j \models \Phi \}$$

 – where Φ is a propositional logic formula Φ over AP
 – Φ is called an invariant condition of P_{inv}

• Note that

 $$TS \models P_{inv} \iff \text{trace}(\pi) \in P_{inv} \text{ for all paths } \pi \text{ in } TS$$
 $$\iff \text{L}(s) \models \Phi \text{ for all states } s \text{ that belong to a path of } TS$$
 $$\iff \text{L}(s) \models \Phi \text{ for all states } s \in \text{Reach}(TS)$$

• Φ has to be fulfilled by all initial states and

 – satisfaction of Φ is invariant under all transitions in the reachable fragment of TS
Safety properties

• Safety properties may impose requirements on finite path fragments
 - and cannot be verified by considering the reachable states only

• A safety property which is not an invariant:
 - consider a cash dispenser, also known as automated teller machine (ATM)
 - property “money can only be withdrawn once a correct PIN has been provided”
 ⇒ not an invariant, since it is not a state property

• But a safety property:
 - any infinite run violating the property has a finite prefix that is “bad”
 - i.e., in which money is withdrawn without issuing a PIN before
Safety properties

• LT property P_{safe} over AP is a safety property if
 - for all $\sigma \in \left(2^{\text{AP}}\right)^\omega \setminus P_{\text{safe}}$ there exists a finite prefix $\hat{\sigma}$ of σ such that:
 \[
P_{\text{safe}} \cap \left\{ \sigma' \in \left(2^{\text{AP}}\right)^\omega \mid \hat{\sigma} \text{ is a prefix of } \sigma' \right\} = \emptyset
 \]

• Path fragment $\hat{\sigma}$ is a bad prefix of P_{safe}
 - let $\text{BadPref}(P_{\text{safe}})$ denote the set of bad prefixes of P_{safe}

• Path fragment $\hat{\sigma}$ is a minimal bad prefix for P_{safe}:
 - if $\hat{\sigma} \in \text{BadPref}(P_{\text{safe}})$ and no proper prefix of $\hat{\sigma}$ is in $\text{BadPref}(P_{\text{safe}})$
Example safety properties
Safety properties and finite traces

For transition system TS without terminal states and safety property P_{safe}:

$TS \models P_{safe}$ if and only if $\text{Traces}_{fin}(TS) \cap \text{BadPref}(P_{safe}) = \emptyset$
Closure

• For trace $\sigma \in (2^{AP})^\omega$, let $\text{pref}(\sigma)$ be the set of finite prefixes of σ:

$$\text{pref}(\sigma) = \{ \hat{\sigma} \in (2^{AP})^* | \hat{\sigma} \text{ is a finite prefix of } \sigma \}$$

 - if $\sigma = A_0 A_1 \ldots$ then $\text{pref}(\sigma) = \{ \varepsilon, A_0, A_0A_1, A_0A_1A_2, \ldots \}$

• For property P we have: $\text{pref}(P) = \bigcup_{\sigma \in P} \text{pref}(\sigma)$

• The closure of LT property P:

$$\text{closure}(P) = \{ \sigma \in (2^{AP})^\omega | \text{pref}(\sigma) \subseteq \text{pref}(P) \}$$

 - the set of infinite traces whose finite prefixes are also prefixes of P, or
 - infinite traces in the closure of P do not have a prefix that is not a prefix of P
Safety properties and closures

For any LT property P over AP:

P is a safety property if and only if $\text{closure}(P) = P$
Why liveness?

• Safety properties specify that “something bad never happens”

• Doing nothing easily fulfills a safety property
 – as this will never lead to a “bad” situation

⇒ Safety properties are complemented by liveness properties
 – that require some progress

• Liveness properties assert that:
 – ”something good” will happen eventually

[Lamport 1977]
The meaning of liveness

The question of whether a real system satisfies a liveness property is meaningless; it can be answered only by observing the system for an infinite length of time, and real systems don’t run forever.

Liveness is always an approximation to the property we really care about. We want a program to terminate within 100 years, but proving that it does would require addition of distracting timing assumptions.

So, we prove the weaker condition that the program eventually terminates. This doesn’t prove that the program will terminate within our lifetimes, but it does demonstrate the absence of infinite loops.
Liveness properties

LT property P_{live} over AP is a *liveness* property whenever

$$\text{pref}(P_{live}) = (2^{AP})^*$$

- A liveness property is an LT property
 - that *does not rule out any prefix*

- Liveness properties are violated in “infinite time”
 - whereas safety properties are violated in finite time
 - finite traces are of no use to decide whether P holds or not
 - any finite prefix can be extended such that the resulting infinite trace satisfies P
Liveness properties for mutual exclusion

- **Eventually:**
 - each process will eventually enter its critical section

- **Repeated eventually:**
 - each process will enter its critical section infinitely often

- **Starvation freedom:**
 - each waiting process will eventually enter its critical section
Safety vs. liveness

- Are safety and liveness properties disjoint? Yes
- Is any linear-time property a safety or liveness property? No
- But:

 for any LT property P an equivalent LT property P' exists which is a conjunction of a *safety* and a *liveness* property
A non-safety and non-liveness property

“the machine provides infinitely often beer
after initially providing sprite three times in a row”

• This property consists of two parts:
 – it requires beer to be provided infinitely often
 ⇒ as any finite trace fulfills this, it is a liveness property
 – the first three drinks it provides should all be sprite
 ⇒ bad prefix = one of first three drinks is beer; this is a safety property

• Property is thus a conjunction of a safety and a liveness property

\textit{does this apply to all such properties?}
Decomposition theorem

For any LT property P over AP there exists a safety property P_{safe} and a liveness property P_{live} (both over AP) such that:

$$P = P_{\text{safe}} \cap P_{\text{live}}$$

Proposal: $P = \underbrace{\text{closure}(P)}_{=P_{\text{safe}}} \cap \underbrace{P \cup \left(\left(2^{AP}\right)^{\omega} \setminus \text{closure}(P)\right)}_{=P_{\text{live}}}$
Classification of LT properties

- Safety and liveness property
 \((2^{AP})^{\omega}\)

- Safety properties

- Liveness properties

- Invariants

- Neither liveness nor safety properties
Content of this lecture

• Introduction
 – why model checking?, how to model check?

• Transition systems
 – paths, traces, program graphs

• Linear time properties
 – safety, liveness, decomposition

⇒ Fairness
 – unconditional, strong and weak fairness
Does this program always terminate?

Inc ||| Reset

where

\[\text{proc Inc} = \text{while } \langle x \geq 0 \rangle \text{ do } x := x + 1 \text{ end while } \]

\[\text{proc Reset} = x := -1 \]

\(x\) is a shared integer variable that initially has value 0
Is it possible to starve?
Process two starves

Is it fair that process two has infinitely many possibilities to enter the critical section, but never enters it?
Process two starves

Is it fair that process two has infinitely many possibilities to enter the critical section, but only enters it finitely often?
Fairness

- Starvation freedom is often considered under process fairness
 ⇒ there is a fair scheduling of the execution of processes

- Fairness is typically needed to prove liveness
 - to prove some form of progress, progress needs to be possible

- Fairness is concerned with a fair resolution of nondeterminism
 - such that it is not biased to consistently ignore a possible option

- Problem: liveness properties constrain infinite behaviours
 - but some traces—that are unfair—refute the liveness property
Fairness constraints

- What is wrong with our examples? Nothing!
 - interleaving: not realistic as in no processor is infinitely faster than another
 - semaphore-based mutual exclusion: level of abstraction

- Rule out “unrealistic” executions by imposing fairness constraints
 - what to rule out? ⇒ different kinds of fairness constraints

- “A process gets its turn infinitely often”
 - always unconditional fairness
 - if it is enabled infinitely often strong fairness
 - if it is continuously enabled from some point on weak fairness
Fairness

This program terminates under unconditional (process) fairness:

\[
\text{proc Inc} = \text{while} \langle x \geq 0 \text{ do } x := x + 1 \rangle \text{ od}
\]

\[
\text{proc Reset} = x := -1
\]

\(x\) is a shared integer variable that initially has value 0.
Fairness constraints

For $TS = (S, \text{Act}, \rightarrow, I, AP, L)$ without terminal states, $A \subseteq \text{Act}$, and infinite execution fragment $\rho = s_0 \xrightarrow{\alpha_0} s_1 \xrightarrow{\alpha_1} \ldots$ of TS:

1. ρ is unconditionally A-fair whenever: $\text{true} \implies \forall k \geq 0. \exists j \geq k. \alpha_j \in A$
 - infinitely often A is taken

2. ρ is strongly A-fair whenever:

 \[
 (\forall k \geq 0. \exists j \geq k. \text{Act}(s_j) \cap A \neq \varnothing) \implies \forall k \geq 0. \exists j \geq k. \alpha_j \in A
 \]
 - infinitely often A is enabled

3. ρ is weakly A-fair whenever:

 \[
 (\exists k \geq 0. \forall j \geq k. \text{Act}(s_j) \cap A \neq \varnothing) \implies \forall k \geq 0. \exists j \geq k. \alpha_j \in A
 \]
 - A is eventually always enabled

 where $\text{Act}(s) = \left\{ \alpha \in \text{Act} \mid \exists s' \in S. s \xrightarrow{\alpha} s' \right\}$
Example (un)fair executions
Which fairness notion to use?

- Fairness constraints aim to rule out “unreasonable” runs

- **Too strong?** ⇒ relevant computations ruled out

 verification yields:
 - “false”: error found
 - “true”: don’t know as some relevant execution may refute it

- **Too weak?** ⇒ too many computations considered

 verification yields:
 - “true”: property holds
 - “false”: don’t know, as refutation maybe due to some unreasonable run

often a combination of several fairness constraints is used
Fairness assumptions

- A fairness assumption for Act is a triple

\[\mathcal{F} = (\mathcal{F}_{\text{ucond}}, \mathcal{F}_{\text{strong}}, \mathcal{F}_{\text{weak}}) \]

with \(\mathcal{F}_{\text{ucond}}, \mathcal{F}_{\text{strong}}, \mathcal{F}_{\text{weak}} \subseteq 2^{\text{Act}} \)

- Execution \(\rho \) is \(\mathcal{F} \)-fair if:
 - it is unconditionally \(A \)-fair for all \(A \in \mathcal{F}_{\text{ucond}} \), and
 - it is strongly \(A \)-fair for all \(A \in \mathcal{F}_{\text{strong}} \), and
 - it is weakly \(A \)-fair for all \(A \in \mathcal{F}_{\text{weak}} \)

fairness assumption \((\emptyset, \mathcal{F}', \emptyset) \) denotes strong fairness; \((\emptyset, \emptyset, \mathcal{F}') \) weak, etc.
Fairness for mutual exclusion

$$\mathcal{F} = (\emptyset, \{ \text{enter}_1, \text{enter}_2 \}, \emptyset)$$
Fairness for mutual exclusion

\[F' = (\emptyset, \{\text{enter}_1\}, \{\text{enter}_2\}, \emptyset) \]
Fairness for mutual exclusion

\[F'' = \left(\emptyset, \left\{ \text{enter}_1 \right\}, \left\{ \text{enter}_2 \right\}, \left\{ \text{req}_1 \right\}, \left\{ \text{req}_2 \right\} \right) \]

in any \(F'' \)-fair execution each process infinitely often requests access
Fair paths and traces

- Path $s_0 \rightarrow s_1 \rightarrow s_2 \ldots$ is \mathcal{F}-fair if
 - there exists an \mathcal{F}-fair execution $s_0 \xrightarrow{\alpha_1} s_1 \xrightarrow{\alpha_2} s_2 \ldots$
 - $\text{FairPaths}_\mathcal{F}(s)$ denotes the set of \mathcal{F}-fair paths that start in s
 - $\text{FairPaths}_\mathcal{F}(\text{TS}) = \bigcup_{s \in I} \text{FairPaths}_\mathcal{F}(s)$

- Trace σ is \mathcal{F}-fair if there exists an \mathcal{F}-fair path π with $\text{trace}(\pi) = \sigma$
 - $\text{FairTraces}_\mathcal{F}(s) = \text{trace}(\text{FairPaths}_\mathcal{F}(s))$
 - $\text{FairTraces}_\mathcal{F}(\text{TS}) = \text{trace}(\text{FairPaths}_\mathcal{F}(\text{TS}))$
Fair satisfaction

• **TS satisfies** LT-property \(P \):

\[
TS \models P \quad \text{if and only if} \quad \text{Traces}(TS) \subseteq P
\]

- \(TS \) satisfies the LT property \(P \) if *all* its observable behaviors are admissible

• **TS fairly satisfies** LT-property \(P \) wrt. fairness assumption \(\mathcal{F} \):

\[
TS \models_{\mathcal{F}} P \quad \text{if and only if} \quad \text{FairTraces}_{\mathcal{F}}(TS) \subseteq P
\]

- if all paths in \(TS \) are \(\mathcal{F} \)-fair, then \(TS \models_{\mathcal{F}} P \) if and only if \(TS \models P \)
- if some path in \(TS \) is not \(\mathcal{F} \)-fair, then possibly \(TS \models_{\mathcal{F}} P \) but \(TS \not\models P \)
Fairness for mutual exclusion

TS \not\models "every process enters its critical section infinitely often"

and TS \not\models_{F'} "every . . . often"

but TS \models_{F''} "every . . . often"
Fairness and safety properties

For TS and safety property P_{safe} (both over AP) such that for any $s \in \text{Reach}(TS)$: $\text{FairPaths}_F(s) \neq \emptyset$:

$$TS \models P_{safe} \quad \text{if and only if} \quad TS \models \not\models P_{safe}$$

Safety properties are thus preserved by “realizable” fairness assumptions