

•

An introduction to social network challenges

Arnaud Martin Arnaud.Martin@univ-rennes1.fr Université de Rennes 1 - IRISA - DRUID, Lannion, France Paris, January, 22th 2018

INSTITUT DE RECHERCHE EN INFORMATIQUE ET SYSTEMES ALÉATOIRES

- 1. What is a social network?
- 2. How to model a social network?
- 3. How to model information on social networks?
- 4. How to analyse social network?

(1/11) Social Network Model Model information Mining

An introduction to social network challenges, A. Martin -

INSTITUT DE RECHERCHE EN INFORMATIQUE ET SYSTEMES ALÉATOIRES

(2/11) Social Network Model Model information Mining

An introduction to social network challenges, A. Martin -

INSTITUT DE RECHERCHE EN INFORMATIQUE ET SYSTEMES ALÉATOIRE

(3/11) Social Network Model Model information Mining

Collaborative platforms

An introduction to social network challenges, A. Martin -

INSTITUT DE RECHERCHE EN INFORMATIQUE ET SYSTEMES ALÉATOIRE

(4/11) Social Network Model Model information Mining

22/01/18

A definition

A finite set of social actors (individual, organisations) with relations (collaboration, advice, control, influence, etc.) between them.

Remarks:

- Technical definition
- Is it really always finite?
- Relations and actors are never fixed
- Most of time not only one social network, not only one kind of group (community)

Application domains

(6/11) Social Network Model Model information Mining

8/71

- Sociology
- Ethnology
- Economy
- Demography
- Criminal networks
- Social media
- Literary
- Ecology
- etc.

Notion of communitiy

(7/11) Social Network Model Model information Mining

An introduction to social network challenges, A. Martin -

INSTITUT DE RECHERCHE EN INFORMATIQUE ET SYSTEMES ALÉATOIRES

Notion of communitiy

∮ ¶ R I S A

An introduction to social network challenges, A. Martin -

INSTITUT DE RECHERCHE EN INFORMATIQUE ET SYSTEMES ALÉATOIRES

22/01/18

10/73

- ▶ 31% of world population connected on social network
- Facebook: 1,8 billions of users/month 17.9 billions of \$
- Qzone: 653 millions of users/month
- Instagram: 600 millions of users/month
- Twitter: 317 millions of users/month
- LinkedIn: 106 millions of users/month
- Snapchat: 150 millions of users/day

Social network: main challenges

22/01/18

economical challenges:

games, publicities, business image, marketing (viral marketing), etc.

- political challenges: social influence, e.g. Jasmin revolution, Obama elections, Trump tweets, etc.
- social challenges: share knowledge: all information at any time, communication (to find a job, a partner, etc.), etc.

big data management:

How to access to the data? How to make requests on the data? How to reduce complexity of processes?, etc.

social mining:

How to extract information from the data? How to characterize the data?, etc.

privacy and security: How to protect people data? How to assure the security of people?, etc.

- 1. What is a social network?
- 2. How to model a social network?
- 3. How to model information on social networks?
- 4. How to analyse social network?

A graph: G A set (V, E) with $V = \{v_1, \ldots, v_V\}$ a set of vertices/nodes and $E = \{e_1, \ldots, e_E\}$ a set of edges/links $e_k \in E$ is couple of (v_i, v_j) .

- |V| = V: order of the graph
- |E| = E number of edges
- ▶ v_i and v_j are neighbour or adjacent if $\exists e_k \in E$ such as $e_k = (v_i, v_j)$
- ▶ $N(u) = \{v \in V, (u, v) \in E\}$: the neighbourhood of u
- ▶ Node degree: d(u) = |N(u)| *i.e.* the number of edges from u.
- Centrality of a node: $\frac{d(u)}{E-1}$
- Link density: $D = \frac{2E}{V(V-1)}$

See Ernesto Estrada talk for more features on the graphs...

An introduction to social network challenges, A. Martin -

NSTITUT DE RECHERCHE EN INFORMATIQUE ET SYSTEMES ALÉATOIRE

Social Network (3/16) Model Model information Mining

a graph:

an adjacent matrix:

An introduction to social network challenges, A. Martin -

TITUT DE RECHERCHE EN INFORMATIQUE ET SYSTEMES ALÉATOIRES

22/01/18

16/73

Social Network (4/16) Model Model information Mining

22/01/18

a graph:

a list of adjacent nodes: 1: 2 2: 1, 3, 5, 6 3: 2, 5 4: 6

5: 2,3

6: 2, 4

An introduction to social network challenges, A. Martin -

INSTITUT DE RECHERCHE EN INFORMATIQUE ET SYSTEMES ALÉATOIR

Social Network (5/16) Model Model information Mining

Challenge: drawing large graphs

An introduction to social network challenges, A. Martin -

INSTITUT DE RECHERCHE EN INFORMATIQUE ET SYSTEMES ALÉATOIRE

Specificity of social network

Social Network (6/16) Model Model information Mining

22/01/18

www.network-science.org

19/73

 $20/7^{2}$

22/01/18

Main social networks are scale-free network and have a degree distribution given by a power distribution:

 $P(k) = Ck^{-\gamma}$

P(k) is the proportion of nodes with the degree k, in general $2\leq\gamma\leq3$ C a constant. The density of a graph depend on the application domain (Melançon, 2006)

(Milgram 1967): In average, the number of links between two persons (nodes) is small (around 6). (Facebook, 2011): Each person is linked to other by 4.74 relations (in average).

An introduction to social network challenges, A. Martin -

INSTITUT DE RECHERCHE EN INFORMATIQUE ET SYSTEMES ALÉATOIRE

In social networks:

- The number of neighbours for a given node is approximately the same than the number of neighbours of its neighbours
- The distance L between two randomly chosen nodes is given by:

$L \simeq \ln E$

An introduction to social network challenges, A. Martin -

INSTITUT DE RECHERCHE EN INFORMATIQUE ET SYSTEMES ALÉATOIR

Distance on graph

- geodesic distance: between two vertices is the shortest path (number of edges)
- eccentricity: $\epsilon(u)$ is the greatest geodesic distance between u and another vertex
- radius: $\min_{u \in V} = \epsilon(u)$
- graph diameter: $\max_{u \in V} = \epsilon(u)$

Problem: detection of cycles - NP-hard algorithms

intermediary centrality of a node:

$$IC(u) = \sum_{s \neq u, t \neq u, s \neq t} \frac{\sigma_{st}(u)}{\sigma_{st}}$$

 σ_{st} : number of shortest paths between s and t, $\sigma_{st}(u)$: number of shortest paths between s and t passing by u IRISA 22/01/18

Social Network (11/16) Model Model information Mining

a directed graph: (e.g. followers in Tweeter)

an adjacent matrix:

An introduction to social network challenges, A. Martin -

TUT DE RECHERCHE EN INFORMATIQUE ET SYSTEMES ALÉATOIR

(Fortunato, 2010) some properties for a community:

- Two neighbours in a same community are approximately the same
- Two neighbours in a same community must be near
- The nodes of a community have a high average degree
- A community contains a high proportion of triplets (high clustering coefficient)
- A community has a large embeddedness (ratio on internal and external degree)

(Fortunato, 2010) some properties for a community:

- Two neighbours in a same community are approximately the same
- Two neighbours in a same community must be near
- The nodes of a community have a high average degree
- A community contains a high proportion of triplets (high clustering coefficient)

$$C(u) = \frac{2|\{e_{ij} = (v_i, v_j) \in E : v_i, v_j \in N(u)\}|}{|N(u)(N(u) - 1)|}$$

$$C(G) = \frac{1}{V} \sum_{u \in V} C(u)$$

 A community has a large embeddedness (ratio on internal and external degree)

∮≸IRISA

An introduction to social network challenges, A. Martin -

NSTITUT DE RECHERCHE EN INFORMATIQUE ET SYSTEMES ALÉATOIRI

(Fortunato, 2010) some properties for a community:

- Two neighbours in a same community are approximately the same
- Two neighbours in a same community must be near
- The nodes of a community have a high average degree
- A community contains a high proportion of triplets (high clustering coefficient)
- A community has a large embeddedness (ratio on internal and external degree)

For a given sub-graph G_c of G, A it adjacent matrix, $u \in G_c$:

$$k_u^{int} = \sum_{j \in G_c} A_{uj}$$
$$k_u^{ext} = \sum A_{uj}$$

i∉Gc

(Fortunato, 2010) some properties for a community:

- Two neighbours in a same community are approximately the same
- Two neighbours in a same community must be near
- ► The nodes of a community have a high average degree
- A community contains a high proportion of triplets (high clustering coefficient)
- A community has a large embeddedness (ratio on internal and external degree)

For a given sub-graph G_c of G, A it adjacent matrix, $u \in G_c$:

$$\xi_u = \frac{k_u^{int}}{k_u^{int} + k_u^{ext}}$$

(Fortunato, 2010) some properties for a community:

- Two neighbours in a same community are approximately the same
- Two neighbours in a same community must be near
- The nodes of a community have a high average degree
- A community contains a high proportion of triplets (high clustering coefficient)
- A community has a large embeddedness (ratio on internal and external degree)

Challenge: Give a definition of a community on a social network

See Mauro Sozio and Florence Sèdes talks...

Challenges: classical problems

- Travelling salesman problem: Find the shortest way to visit given nodes only one time (NP-hard) - equivalent to vehicle routing problem
- Graph labelling and colouring: give a label to all nodes (or links) (NP-hard)
- Maximum flow: in flow network (valued directed graph) find the largest possible total flow
- Large graph compression
- Maximal clique enumeration (NP-hard)
- Independent set problem: find the largest possible independent set (set of vertices with no two of which are adjacent) (NP-hard)

Most of problem on graph are equivalent to NP-hard optimisation problems. Some approximation algorithms are developed. SIRISA

An introduction to social network challenges, A. Martin -

For different communities social network: Lancichinetti-Fortunato-Radicchi LFR benchmark: based on power law distribution, need:

- number of nodes
- minimum and maximum for the community sizes
- average, maximum degree
- ► etc

defines:

- number of edges
- number of communities

Challenge: realistic social network generation

Social Network (15/16) Model Model information Mining

Zachary's Karate club network

LFR generation

22/01/18

∮≸IRISA

An introduction to social network challenges, A. Martin -

INSTITUT DE RECHERCHE EN INFORMATIQUE ET SYSTEMES ALÉATOIRES

Challenge: realistic social network generation

22/01/18

(Largeron, et al, 2015), see Christine Largeron talk...

- Local preferential attachment: new link between vertices with high degree
- Small world
- Community structure: vertices are connected to vertices in a same group compared to other group (large embeddedness)
- Community homogeneity: similarity of vertices in a same group
- Homophily: vertices in a same group are more similar than with the other groups

allows:

- dynamical generation of social networks
- fix the number of vertices
- ▶ fix the number of communities
 ♥ IRISA

30/7

22/01/18

- 1. What is a social network?
- 2. How to model a social network?
- 3. How to model information on social networks?
- 4. How to analyse social network?

Social Network Model (1/20) Model information Mining

22/01/18

On social network some information can be considered:

- information on the links: LinkedIn, etc.
- information on the nodes: Facebook, LinkedIn, etc.
- information (message) throw the network: Tweeter, collaborative platforms, etc.

Valued graphs

Social Network Model (2/20) Model information Mining

G = (V, E, w) where $w : e \in E \longrightarrow \mathcal{X}$

an adjacent matrix:

An introduction to social network challenges, A. Martin -

22/01/18

32/73
Valued graphs

Social Network Model (3/20) Model information Mining

G = (V, E, p) where $p : e \in E \longrightarrow \mathcal{X}$

$\begin{array}{l} p_{12}(\mathsf{friend}) = 0.8\\ p_{12}(\mathsf{family}) = 0.15\\ p_{12}(\mathsf{colleague}) = 0.05 \end{array}$

33/71

22/01/18

an adjacent matrix:

	1	2	3	4	5	6
1	0	p_{12}	0	0	0	0
2	p_{12}	0	p_{23}	0	p_{25}	p_{26}
3	0	p_{23}	0	0	p_{35}	0
4	0	0	0	0	0	p_{46}
5	0	p_{25}	p_{35}	0	0	0
6	0	p_{26}	0	p_{46}	0	0

P46

P₁₂

 P_{26}

SIRISA

An introduction to social network challenges, A. Martin -

INSTITUT DE RECHERCHE EN INFORMATIQUE ET SYSTEMES ALÉATOIR

P₃₅

 P_{23}

P₂₅

Valued graphs

Network Model (4/20) Model information Mining

G = (V, E, m) where $m : e \in E \longrightarrow \mathcal{X}$

Veracity of information Doubt Reliability

34/7

22/01/18

an adjacent matrix:

An introduction to social network challenges, A. Martin -

Limits of the theory of probabilities

A probability is a positive and additive measure, p is defined on a σ -algebra of $\Omega = \{\omega_1, \omega_2, \dots, \omega_n\}$ and takes values in [0,1]. It verifies: $p(\emptyset) = 0$, $p(\Omega) = 1$, $\sum_{X \in \Omega} p(X) = 1$

- Difficulties to model the absence of knowledge (ex: Sirius)
- Constraint on the classes (exhaustive and exclusive)
- Constraint on the measures (additivity)

If one symptom f (for fiver) is always true when a patient get a illness A (flu) (p(f|A) = 1), and if we observe this symptom f, then the probability of the patient having A increases (because p(A|f) = p(A)/p(f) so $p(A|f) \ge p(A)$). The additivity constraint require then that the probability of the patient having not A decreases: $p(\overline{A}|f) = 1 - p(\overline{A}|f)$ so $p(\overline{A}|f) \le p(\overline{A})$ While there is no reason if the symptom f can be also observe in some other diseases.

An introduction to social network challenges, A. Martin -

Bases on Belief functions

- Use of functions defined on sub-sets instead of singletons such as probabilities
- ► Discernment frame: Ω = {ω₁,..., ω_n}, with ω_i are exclusive and exhaustive classes
- Power set: $2^{\Omega} = \{\emptyset, \{\omega_1\}, \{\omega_2\}, \{\omega_1 \cup \omega_2\}, \dots, \Omega\}.$
- Several functions in one to one correspondence model uncertainty and imprecision: mass functions, belief functions, plausilibity functions
- \blacktriangleright Extension of 2^{Ω} to $D^{\Omega},$ hyper power set in order to model the conflicts
 - ► D^Ω closed set by union and intersection operators
 - D_r^{Ω} : reduced set with constraints $(\omega_2 \cap \omega_3 \equiv \emptyset)$

- ► The basic belief functions (bba or mass functions) are defined on 2^Ω and take values in [0, 1]
- ▶ Normalisation condition: $\sum_{X \in 2^{\Omega}} m(X) = 1$
- A focal element is an element X of 2^{Ω} such as m(X) > 0
- Closed world: $m(\emptyset) = 0$
- We note m_j the mass function of the source S_j

An introduction to social network challenges, A. Martin -

Special cases:

- If only focal elements are ω_i then m_j is a probability
- $m_j(\Omega) = 1$: total **ignorance** of S_j
- ► categorical mass function: $m_j(X) = 1$ (noted m_X): S_j has an imprecise knowledge
- $m_j(\omega_i) = 1$: S_j has a precise knowledge
- Simple mass functions X^w: m_j(X) = w and m_j(Ω) = 1 − w: S_j has an uncertain and imprecise knowledge

From (Shafer, 1976):

$$m_j^{\alpha}(X) = \alpha_j m_j(X), \forall X \in 2^{\Omega}$$

 $m_j^{\alpha}(\Omega) = 1 - \alpha_j(1 - m_j(\Omega))$

 $\alpha_j \in [0, 1]$ discounting coefficient can be seen as the reliability of the source S_j If $\alpha_j = 0$ the source are completely unreliable, all the mass is transferred on Ω , the total ignorance

An introduction to social network challenges, A. Martin -

s sources $S_1,~S_2,~\ldots,~S_s$ that must take a decision on an observation x in a set of n classes $x\in\Omega=\{\omega_1,\omega_2,\ldots,\omega_n\}$ classes

$$S_1 \qquad \begin{bmatrix} \omega_1 & \dots & \omega_i & \dots & \omega_n \\ m_1^1(x) & \dots & m_i^1(x) & \dots & m_n^1(x) \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ m_1^j(x) & \dots & m_i^j(x) & \dots & m_n^j(x) \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ S_s \qquad \begin{bmatrix} m_1^j(x) & \dots & m_i^j(x) & \dots & m_n^j(x) \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ m_1^s(x) & \dots & m_i^s(x) & \dots & m_n^s(x) \end{bmatrix}$$

An introduction to social network challenges, A. Martin -

INSTITUT DE RECHERCHE EN INFORMATIQUE ET SYSTEMES ALÉATOIRES

 $40/7^{2}$

- Assume: two cognitively independent and reliable sources S_1 and S_2 .
- ► The conjunctive rule is given for m_1 and m_2 bbas of S_1 and S_2 , for all $X \in 2^{\Omega}$, with $X \neq \emptyset$ by:

$$m_{\text{Conj}}(X) = \sum_{Y_1 \cap Y_2 = X} m_1(Y_1) m_2(Y_2)$$
 (1)

	Ø	ω_1	ω_2	ω_3	Ω
m_1	0	0.5	0.1	0	0.4
m_2	0	0.2	0	0.5	0.3
m	0.32	0.33	0.03	0.2	0.12

Dempster's rule:

$$m_{\rm D}(X) = \frac{1}{1 - \kappa} m_{\rm Conj}(X) \tag{2}$$

where $\kappa = \sum_{A \cap B = \emptyset} m_1(A)m_2(B)$ is generally called conflict or global conflict. That is the sum of the partial conflicts.

- That is not a conflict measure.
- Conjunctive rules are not idempotent

An introduction to social network challenges, A. Martin -

• In general the decision is made on Ω and not on 2^{Ω}

- Pessimist: $\max_{\omega \in \Omega} bel(\omega)$
- Optimist: $\max_{\omega \in \Omega} pl(\omega)$
- Compromise: $\max_{\omega \in \Omega} bet P(\omega)$

Pignistic probability:

$$\operatorname{betP}(\omega) = \sum_{Y \in 2^{\Omega}, \omega \cap Y \neq \emptyset} \frac{1}{|Y|} \frac{m(Y)}{1 - m(\emptyset)}$$
(3)

An introduction to social network challenges, A. Martin -

INSTITUT DE RECHERCHE EN INFORMATIQUE ET SYSTEMES ALÉATOIRE

43/7'

22/01/18

On social network some information can be considered:

- information on the links: LinkedIn, etc.
- information on the nodes: Facebook, LinkedIn, etc.
- information (message) throw the network: Tweeter, collaborative platforms, etc.

Node-attributed graphs

Social Network Model (15/20) Model information Mining

45/7

22/01/18

$$G = (V, E, F) \text{ where } F : V \longrightarrow \mathcal{X}$$
$$F(v) = [f_1(v), \dots, f_a(v)]$$

Attributes can be qualitative, quantitative (fuzzy, interval, probabilistic, belief, etc.). see Christine Largeron talk...

An introduction to social network challenges, A. Martin -

INSTITUT DE RECHERCHE EN INFORMATIQUE ET SYSTEMES ALÉATOIR

 $G = (V, E, m_u, m_e)$ where $m_u : V \longrightarrow \mathcal{X}$ and $m_e : e \in E \longrightarrow \mathcal{X}$ $m_u(v) = [m_1(v), \dots, m_a(v)]$

(Ben Dhaou, 2014, 2017)

An introduction to social network challenges, A. Martin -

INSTITUT DE RECHERCHE EN INFORMATIQUE ET SYSTEMES ALÉATOIR

22/01/18

 $46/7^{2}$

On social network some information can be considered:

- information on the links: LinkedIn, etc.
- ▶ information on the nodes: Facebook, LinkedIn, etc.
- information (message) throw the network: Tweeter, collaborative platforms, etc.

22/01/18

Characteristics of the messages:

- A message is a text (can be short text 140 characters on Twitter)
- That is not in general literature (many typos, errors, etc.)
- A message has an author
- A message can be send to some recipients
- A message has in general a date
- A message can have a label (type of message)
- A message can have an influence on the evolution of the network

Evolution of information on social network

Social Network Model (19/20) Model information Mining

Information on

- the existence of a node in the network
- the existence of a link between two nodes
- \blacktriangleright existence at time t can be model by a probability or a belief

STITUT DE RECHERCHE EN INFORMATIQUE ET SYSTEMES ALÉATOIRES

49/7

How can we protect our personal data? How do not send personal information? What is personal, what is public?

- Cryptography and network security
- Watermarking (Gross-Amblard, 2003)
- Preference elicitation in Personal Information management Systems (Allard et al., 2017)

See Oana Goga talk.

An introduction to social network challenges, A. Martin -

INSTITUT DE RECHERCHE EN INFORMATIQUE ET SYSTEMES ALÉATOI

- 1. What is a social network?
- 2. How to model a social network?
- 3. How to model information on social networks?
- 4. How to analyse social network?

An introduction to social network challenges, A. Martin -

Message mining

Challenges:

- Understand the messages
- Characterise emotion in the message
- Characterise the writer by the text (level of expertise, social level, etc.)
- Characterise positive/negative/neutral message
- Detect fake news
- Detect new topics, interest centres, etc.

Methods: coming from text mining must be lingual independent, robust to the form of the message, time dependent, etc.

An introduction to social network challenges, A. Martin -

INSTITUT DE RECHERCHE EN INFORMATIQUE ET SYSTEMES ALÉATOIRE

Challenges:

- Find criminals on a social network
- Find influencers for viral marketing
- Find spammers on participating platforms
- Find experts on participating platforms
- etc.

Expert identification in stackoverflow

Social Network Model Model information Person (3/16) Mining

	I committed by accident the wrong files into Git, but I haven't pushed the commit to the server yet.							
15854	How can I undo those commits?							
$\mathbf{-}$	git git-commit git-revert git-revert							
*	share edit edited Nov 19 at 16.51	community wiki 58 revs, 37 users 15% Peter Mortensen						
	 Warning; you should only do this if you have not yet pushed the commit up the history of others who have arready pulled the commit from the re Here's a very clear and thorough post about undoing things in git, strak 	Up Votes	$V pV_i$					
	19:39 27 This is a great resource straight from Github: How to undo (almost) anything with Git – jesonleonhand Feb 3 at 21:13							
	6 Before you post a new answer, consider there are already 65+ answer your answer contributes what is not among existing answers. – Sazzad	for this question. Make sure that Hissain Khan Jun 15 at 15:26						
71 Ansv	show 3 more comments	active oldest votes	Down Votes	$\longrightarrow DV_i$				
1 2	i nest							
16791 •	Undo a commit and redo \$ git commit -m "Something terribly misguided" \$ git reset HEMD- « edit files as necessary >> \$ git as necessary >> \$ git commit -c ORIG_HEAD	(1) (2) (3) (4) (5)	Number of Questions	$\rightarrow NbQu_i$				
	 This is what you want to undo This leaves your working tree (the state of your files on disk) commit and leaves the changes you committed unstaged (so staged for commit'in git is tatus, and you'll need to add th you only wart to add more changes to the previous commit, you could use git reset —soft HRA>. instead, which is li your existing changes staged. 	Number of Answers	► NbAn _i					
	 Make corrections to working tree files. git add anything that you want to include in your new common techniques, reusing the old commit message. research (JCR) (ENG) constit when - COREG-(ENG) will open an log message from the old commit and allows you to edit it. If y more represent working the two is to end the set of the	Number of Acc Answers	► NbAcAn _i					

22/01/18

54/7

Expert identification in stackoverflow

Social Network Model Model information Person (4/16) Mining

(Attiaoui, et al. 2017)

An introduction to social network challenges, A. Martin -

INSTITUT DE RECHERCHE EN INFORMATIQUE ET SYSTEMES ALÉATOIR

55/73

Expert identification in stackoverflow

Social Network Mode Model information Person (5/16) Mining

Evolution of the percentage of each class over 15 months.

Data set: 37 Go, 2 Million users, 2.5 Million answers, 1.7 Million questions, Data from December 2013 to March 2015 \mathbf{o} **IRISA**

An introduction to social network challenges, A. Martin -

INSTITUT DE RECHERC

56/7

Problem: Given a social network, find a set of influencers that are able to trigger a large cascade.

An introduction to social network challenges, A. Martin -

INSTITUT DE RECHERCHE EN INFORMATIQUE ET SYSTEMES ALÉATOIR

Problem: Given a social network, find a set of influencers that are able to trigger a large cascade.

An introduction to social network challenges, A. Martin -

INSTITUT DE RECHERCHE EN INFORMATIQUE ET SYSTEMES ALÉATOIR

Problem: Given a social network, find a set of influencers that are able to trigger a large cascade.

An introduction to social network challenges, A. Martin -

INSTITUT DE RECHERCHE EN INFORMATIQUE ET SYSTEMES ALÉATOIR

Solution: Influencers on Twitter (Jendoubi, et al, 2016, 2017)

- Define an influence measure based on belief functions by:
 - $\Omega = \{I, P\} \ I$ for influencer, P for passive
 - \blacktriangleright Calculate belief weights on each edge (u,v)
 - Integrate opinion of tweet
 - Combine the mass functions
- Compute influence maximisation by CELF algorithm (Leskovec et al. 2007)

Solution: Influencers on Twitter (Jendoubi, et al, 2016, 2017)

- Define an influence measure based on belief functions by:
 - $\Omega = \{I, P\} \ I$ for influencer, P for passive
 - Calculate belief weights on each edge (u, v)
 from numbers of common neighbours, number of tweets where u mentions v, number of tweets where v retweets from u
 - Integrate opinion of tweet
 - Combine the mass functions
- Compute influence maximisation by CELF algorithm (Leskovec et al. 2007)

Solution: Influencers on Twitter (Jendoubi, et al, 2016, 2017)

- Define an influence measure based on belief functions by:
 - $\Omega = \{I, P\} \ I$ for influencer, P for passive
 - Calculate belief weights on each edge (u, v)
 - Integrate opinion of tweet
 - Give a label to each word in the tweet using Stanford POS Tagger with the model GATE Twitter part-of-speech tagger,
 - Use the SentiWordNet dictionary to get the polarity of each word in the tweet
 - Build a belief function on $\Theta = \{Pos, Neg, Neut\}$
 - Combine the mass functions
- Compute influence maximisation by CELF algorithm (Leskovec et al. 2007)

Define first type of communities expected:

• Hard communities: each node v belongs to one and only one community in $\Omega = \{C_1, \ldots, C_n\}$

 $\left\{ \begin{array}{l} \mu_{vk}=1 \mbox{ if } v \in C_k \\ \mu_{vk}=0 \mbox{ otherwise} \end{array} \right.$

Fuzzy communities: each node v has a degree of membership $\mu_{vk} \in [0,1]$ to each community with $\sum_{k=1}^{n} \mu_{vk} = 1$

An introduction to social network challenges, A. Martin -

Define first type of communities expected:

- ▶ Possibilistic communities: the condition $\sum_{k=1} \mu_{vk} = 1$ is relaxed. μ_{vk} can be interpreted as a degree of possibility that
 - a node v belongs to the community C_k
- ▶ Rough communities: the membership of node v to community C_k is described by a pair $(\underline{\mu}_{vk}, \overline{\mu}_{vk}) \in \{0, 1\}^2$ indicating its membership to the lower and upper approximations of community C_k
- Belief communities: the membership of each node v is described by a belief function m_v over Ω.

Community detection

Social Network Model Model information Community (10/16) Mining

An introduction to social network challenges, A. Martin -

INSTITUT DE RECHERCHE EN INFORMATIQUE ET SYSTEMES ALÉATOIRES

22/01/18

61/73

Define first type of communities expected:

- ► Hard communities: each node v belongs to one and only one community in $\Omega = \{C_1, \ldots, C_n\}$
- Overlapped communities: each node v belongs to more than one community in Ω, C₁,...,C_n are not exclusive

With belief functions, work on $D^{\Omega},$ hyper power set in order to model the overlapped communities:

- $\blacktriangleright~D^{\Omega}$ closed set by union and intersection operators
- D_r^{Ω} : reduced set with constraints $(C_2 \cap C_3 \equiv \emptyset)$

See Rémy Cazabet talk...

Community detection

Methods: Depend on information in input and expected in output

1 Selection: can be from databases by requests, or by scanning the web

An introduction to social network challenges, A. Martin -

INSTITUT DE RECHERCHE EN INFORMATIQUE ET SYSTEMES ALÉATOIR

22/01/18

63/7

Community detection

Methods: Depend on information in input and expected in output

2 Preprocessing: depend on the data, transform the data in graph, list of adjacent nodes, belief functions information, etc.

∮ ∎IRISA

An introduction to social network challenges, A. Martin -

INSTITUT DE RECHERCHE EN INFORMATIQUE ET SYSTEMES ALÉATOIRI

22/01/18

63/7
Community detection

Methods: Depend on information in input and expected in output3 Transformation: Calculate extracted feature (by supervised or unsupervised methods)

∮ \$IRISA

An introduction to social network challenges, A. Martin -

INSTITUT DE RECHERCHE EN INFORMATIQUE ET SYSTEMES ALÉATOIR

22/01/18

Methods: Depend on information in input and expected in output4 Data Mining: Classify the data (by supervised or unsupervised methods)

An introduction to social network challenges, A. Martin -

INSTITUT DE RECHERCHE EN INFORMATIQUE ET SYSTEMES ALÉATOIR

63/7

Methods: Depend on information in input and expected in output5 Evaluation: Calculate some measures on the obtained patterns

An introduction to social network challenges, A. Martin -

INSTITUT DE RECHERCHE EN INFORMATIQUE ET SYSTEMES ALÉATOIR

22/01/18

Characterisation of classical clustering methods (a challenge):

- 1. hierarchical methods by division or agglomeration build partitions
 - Examples: Louvain algorithm, spectral approaches, etc.
- partitioning methods: Examples: C-means, Fuzzy C-means, Evidential C-means (Zhou et al., 2015)
- 3. Label propagation methods

Need

- a distance (or similarity) on data (structure of the graph and information on the graph)
- an optimisation process

Semi-supervised Evidential Label Propagation algorithm (Zhou et al., 2018)

∮ ≸IRISA

An introduction to social network challenges, A. Martin -

INSTITUT DE RECHERCHE EN INFORMATIQUE ET SYSTEMES ALÉATOIR

22/01/18

Social Network Model Model information Community (15/16) Mining

Example on Karate Club network

Initialization

∮ \$IRISA

An introduction to social network challenges, A. Martin -

INSTITUT DE RECHERCHE EN INFORMATIQUE ET SYSTEMES ALÉATOIRES

Social Network Model Model information Community (15/16) Mining

Example on Karate Club network

Iteration 1

∮ ¶ R I S A

An introduction to social network challenges, A. Martin -

INSTITUT DE RECHERCHE EN INFORMATIQUE ET SYSTEMES ALÉATOIRES

22/01/18

Social Network Model Model information Community (15/16) Mining

Example on Karate Club network

Iteration 2

∮≸IRISA

An introduction to social network challenges, A. Martin -

INSTITUT DE RECHERCHE EN INFORMATIQUE ET SYSTEMES ALÉATOIRES

Social Network Model Model information Community (15/16) Mining

Example on Karate Club network

Iteration 3

∮ ¶ R I S A

An introduction to social network challenges, A. Martin -

INSTITUT DE RECHERCHE EN INFORMATIQUE ET SYSTEMES ALÉATOIRES

Social Network Model Model information Community (15/16) Mining

Example on Karate Club network

Iteration 4

∮ ¶ R I S A

An introduction to social network challenges, A. Martin -

INSTITUT DE RECHERCHE EN INFORMATIQUE ET SYSTEMES ALÉATOIRES

Social Network Model Model information Community (15/16) Mining

Example on Karate Club network

Iteration 5

∮ ≸IRISA

An introduction to social network challenges, A. Martin -

INSTITUT DE RECHERCHE EN INFORMATIQUE ET SYSTEMES ALÉATOIRES

Community detection

Challenges:

- How to learn information on graphs?
- How many communities? A difficult problem in clustering in general
- How to combine methods? Methods of information fusion can be used
- How to well consider the dynamic aspect of social network?
- How to reduce the time consuming of algorithms? Some algorithms can be parallelised
- How to evaluate the obtained communities? A difficult problem in clustering, more difficult when we don't know what is a community.
- etc.

To end

Many challenges around social networks

- We don't know exactly what is a social network
- We are not sure of given information on social network (veracity, precision, existence, etc.)
- We don't know exactly what is a community
- We have a lot of information
- Almost all our problems need a NP-hard algorithm

Next presentations during these two days will give you some answers.

An introduction to social network challenges, A. Martin -

INSTITUT DE RECHERCHE EN INFORMATIQUE ET SYSTEMES ALÉATOIR

To end

Many challenges around social networks

- We don't know exactly what is a social network
- We are not sure of given information on social network (veracity, precision, existence, etc.)
- We don't know exactly what is a community
- We have a lot of information
- Almost all our problems need a NP-hard algorithm Next presentations during these two days will give you some answers.

My proposal: use the theory of belief functions in order to well model uncertainty and imprecision of information

An introduction to social network challenges, A. Martin -

INSTITUT DE RECHERCHE EN INFORMATIQUE ET SYSTEMES ALÉATOIRE

References

- Stanford POSTagger: http://nlp.stanford.edu/software/tagger.shtml
- GATE Twitter part-of-speech tagger: https://gate.ac.uk/wiki/twitter-postagger.html
- SentiWordNet: http://sentiwordnet.isti.cnr.it/
- Santo Fortunato, Community detection in graphs. Physics Reports, 486(3):75-174, 2010
- Santo Fortunato, Darko Hric, Community detection in networks: A user guide, Physics Reports, 659, pp 1-44, 2016
- Guy Melancon, Just how dense are dense graphs in the real world?: a methodological note. In Proceedings of the 2006 AVI workshop on BEyond time and errors: novel evaluation methods for information visualization, pp 1-7. ACM, 2006
- C. Largeron, P.N. Mougel, R. Rabbany, O.R. Zaiane, Generating attributed networks with communities, PloS one
 SIR 19(4), 2015

References

- David Gross-Amblard, Query-preserving watermarking of relational databases and XML documents, Proceedings of the twenty-second ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems, 2003
- Tristan Allard, Tassadit Bouadi, Joris Duguépéroux, Virginie Sans, From Self-Data to Self-Preferences: Towards Preference Elicitation in Personal Information Management Systems, International Workshop on Personal Analytics and Privacy (In conjunction with ECML PKDD 2017)
- Shafer, G. A mathematical theory of evidence. Princeton University Press, (1976)
- J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, Cost-effective outbreak detection in networks, KDD 2007

RISA

Personal references: with belief functions

- Kuang Zhou, Arnaud Martin, Quan Pan, Zhunga Liu, SELP: Semi-supervised evidential label propagation algorithm for graph data clustering, International Journal of Approximate Reasoning, Elsevier, 2018, 92, pp.139-154
- Dorra Attiaoui, Arnaud Martin, Boutheina Ben Yaghlane, Belief Temporal Analysis of Expert Users: case study Stack Overflow, Big Data Analytics and Knowledge Discovery DAWAK, Aug 2017, Lyon, France
- Dorra Attiaoui, Arnaud Martin, Boutheina Ben Yaghlane, Belief Measure of Expertise for Experts Detection in Question Answering Communities: case study Stack Overflow, 21st International Conference on Knowledge-Based and Intelligent Information & Engineering Systems, Sep 2017, Marseille, France

Personal references: with belief functions

Social Network Model Model information Mining

- Siwar Jendoubi, Arnaud Martin, Ludovic Liétard, Hend Ben Hadji, Boutheina Ben Yaghlane, Two Evidential Data Based Models for Influence Maximization in Twitter, Knowledge-Based Systems, 2017
- Salma Ben Dhaou, Kuang Zhou, Mouloud Kharoune, Arnaud Martin, Boutheina Ben Yaghlane, The Advantage of Evidential Attributes in Social Networks, 20th International Conference on Information Fusion, Jul 2017, Xi'an, China
- Kuang Zhou, Arnaud Martin, Quan Pan, Zhun-Ga Liu, Median evidential c-means algorithm and its application to community detection, Knowledge-Based Systems, 2015, 74, pp.69 - 88
- Kuang Zhou, Arnaud Martin, Quan Pan, A similarity-based community detection method with multiple prototype representation, Physica A: Statistical Mechanics and its Applications, Elsevier, 2015, pp.519-531

An introduction to social network challenges, A. Martin -

RISA

NSTITUT DE RECHERCHE EN INFORMATIQUE ET SYSTEMES ALÉATOIRE

- Imen Ouled Dlala, Dorra Attiaoui, Arnaud Martin, Boutheina Ben Yaghlane, Trolls Identification within an Uncertain Framework, International Conference on Tools with Artificial Intelligence - ICTAI, Nov 2014, Limassol, Cyprus
- Salma Ben Dhaou, Mouloud Kharoune, Arnaud Martin, Boutheina Ben Yaghlane, Belief Approach for Social Networks, Belief 2014, Oxford, United Kingdom
- Kuang Zhou, Arnaud Martin, Quan Pan, Evidential Communities for Complex Networks, 15th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, Jul 2014

