Theory of belief functions

Edinburgh, July 28, 2010

The theory of belief functions

- Discernment space $\Theta=\left\{\theta_{1}, \ldots, \theta_{n}\right\}$, where θ_{i} are the classes exclusive and exhaustive
- Mass functions defined onto $2^{\Theta}=\left\{\emptyset,\left\{\theta_{1}\right\},\left\{\theta_{2}\right\},\left\{\theta_{1} \cup \theta_{2}\right\}, \ldots, \Theta\right\}$ with values on $[0,1]$.
Θ : ignorance
- $\sum_{X \in 2^{\ominus}} m(X)=1$
- $m(\emptyset)=0$
- Discounting by the reliability: $m^{\alpha}(X)=\alpha m(X)$,
$m^{\alpha}(\Theta)=1-\alpha(1-m(\Theta))$
- Dempster's combination:

$$
m_{\mathrm{D}}(X)=\frac{1}{1-k} \sum_{Y_{1} \cap Y_{2}=X} m_{1}\left(Y_{1}\right) m_{2}\left(Y_{2}\right)
$$

where $k=m_{\text {Conj }}(\emptyset)$

- Decision: credibility \leq pignistic probability \leq plausibility

An example of model

Discernment spaces:

- Is individual A dangerous? $\Theta_{1}=\left\{Y_{1}, N_{1}\right\}$
- Is the suspect vehicle near the building B? $\Theta_{2}=\left\{Y_{2}, N_{2}\right\}$

4 sources:

- S_{0} Individual A is under surveillance due to previous unstable behavior
- S_{1} Analyst 1 (who has 10 years of experience): it is probable that individual A is near building B
- S_{2} ANPR: 30% probability that the vehicle is Individual A's white Toyota
- S_{3} Analyst 2 (who is new in post): it is improbable that individual A is near building B

An example of model

Model

- S_{0} Individual A is under surveillance due to previous unstable behavior
Only on $\Theta_{1}: m_{0}\left(Y_{1}\right)=\beta_{0} m_{0}\left(Y_{1} \cup N 1\right)=1-\beta_{0}$ with $\beta_{0}>0.5$

An example of model

Model

- S_{0} on $\Theta_{1}: m_{0}\left(Y_{1}\right)=\beta_{0} m_{0}\left(Y_{1} \cup N_{1}\right)=1-\beta_{0}$ with $\beta_{0}>0.5$
- S_{1} Analyst 1 (10 years of experience): it is probable that individual A is near building B
Only on Θ_{2} : $m_{1}\left(Y_{2}\right)=\beta_{1} m_{1}\left(N_{2}\right)=1-\beta_{1}$ with $\beta_{1}>0.5$ Reliability: $\alpha_{1}>0.5$

An example of model

Model

- S_{0} on $\Theta_{1}: m_{0}\left(Y_{1}\right)=\beta_{0} m_{0}\left(Y_{1} \cup N_{1}\right)=1-\beta_{0}$ with $\beta_{0}>0.5$
- S_{1} Analyst 1 (10 years of experience): it is probable that individual A is near building B
Only on $\Theta_{2}: m_{1}\left(Y_{2}\right)=\beta_{1} m_{1}\left(N_{2}\right)=1-\beta_{1}$ with $\beta_{1}>0.5$ Reliability: $\alpha_{1}>0.5$
With the discounting: $m_{1}\left(Y_{2}\right)=\alpha_{1} \beta_{1}, m_{1}\left(N_{2}\right)=\alpha_{1}\left(1-\beta_{1}\right)$, $m_{1}\left(Y_{2} \cup N_{2}\right)=1-\alpha_{1}$

An example of model

Model

- S_{0} on $\Theta_{1}: m_{0}\left(Y_{1}\right)=\beta_{0} m_{0}\left(Y_{1} \cup N_{1}\right)=1-\beta_{0}$ with $\beta_{0}>0.5$
- S_{1} on $\Theta_{2}: m_{1}\left(Y_{2}\right)=\alpha_{1} \beta_{1}, m_{1}\left(N_{2}\right)=\alpha_{1}\left(1-\beta_{1}\right)$, $m_{1}\left(Y_{2} \cup N_{2}\right)=1-\alpha_{1}$
- S_{2} ANPR: 30% probability that the vehicle is Individual A's white Toyota Only on $\Theta_{2}: m_{2}\left(Y_{2}\right)=0.3 m_{2}\left(N_{2}\right)=0.7$

An example of model

Model

- S_{0} on $\Theta_{1}: m_{0}\left(Y_{1}\right)=\beta_{0} m_{0}\left(Y_{1} \cup N 1\right)=1-\beta_{0}$ with $\beta_{0}>0.5$
- S_{1} on $\Theta_{2}: m_{1}\left(Y_{2}\right)=\alpha_{1} \beta_{1}, m_{1}\left(N_{2}\right)=\alpha_{1}\left(1-\beta_{1}\right)$, $m_{1}\left(Y_{2} \cup N_{2}\right)=1-\alpha_{1}$
- S_{2} on $\Theta_{2}: m_{2}\left(Y_{2}\right)=0.3 m_{2}\left(N_{2}\right)=0.7$
- S_{3} Analyst 2 (who is new in post): it is improbable that individual A is near building B
Only on Θ_{2} : $m_{3}\left(Y_{2}\right)=\beta_{3} m_{3}\left(N_{2}\right)=1-\beta_{3}$ with $\beta_{3}<0.5$ Reliability: $\alpha_{3}<0.5$
With the discounting: $m_{3}\left(Y_{2}\right)=\alpha_{3} \beta_{3}, m_{3}\left(N_{2}\right)=\alpha_{3}\left(1-\beta_{3}\right)$, $m_{3}\left(Y_{2} \cup N_{2}\right)=1-\alpha_{3}$

An example of model

- S_{0} on $\Theta_{1}: m_{0}\left(Y_{1}\right)=\beta_{0} m_{0}\left(Y_{1} \cup N_{1}\right)=1-\beta_{0}$ with $\beta_{0}>0.5$
- S_{1} on $\Theta_{2}: m_{1}\left(Y_{2}\right)=\alpha_{1} \beta_{1}, m_{1}\left(N_{2}\right)=\alpha_{1}\left(1-\beta_{1}\right)$, $m_{1}\left(Y_{2} \cup N_{2}\right)=1-\alpha_{1}$
- S_{2} on $\Theta_{2}: m_{2}\left(Y_{2}\right)=0.3 m_{2}\left(N_{2}\right)=0.7$
- S_{3} on $\Theta_{2}: m_{3}\left(Y_{2}\right)=\alpha_{3} \beta_{3}, m_{3}\left(N_{2}\right)=\alpha_{3}\left(1-\beta_{3}\right)$, $m_{3}\left(Y_{2} \cup N_{2}\right)=1-\alpha_{3}$

Model on
$\Theta_{1} \times \Theta_{2}=\left\{\left(Y_{1}, Y_{2}\right),\left(Y_{1}, N_{2}\right),\left(N_{1}, Y_{2}\right),\left(N_{1}, N_{2}\right)\right\}=\left\{\theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}\right\}$

- S_{0} on $\Theta_{1}: m_{0}\left(\theta_{1} \cup \theta_{2}\right)=\beta_{0} m_{0}\left(\theta_{1} \cup \theta_{2} \cup \theta_{3} \cup \theta_{4}\right)=1-\beta_{0}$ with $\beta_{0}>0.5$
- S_{1} on $\Theta_{2}: m_{1}\left(\theta_{1} \cup \theta_{3}\right)=\alpha_{1} \beta_{1}, m_{1}\left(\theta_{2} \cup \theta_{4}\right)=\alpha_{1}\left(1-\beta_{1}\right)$, $m_{1}\left(\theta_{1} \cup \theta_{2} \cup \theta_{3} \cup \theta_{4}\right)=1-\alpha_{1}$
- S_{2} on $\Theta_{2}: m_{2}\left(\theta_{1} \cup \theta_{3}\right)=0.3 m_{2}\left(\theta_{2} \cup \theta_{4}\right)=0.7$
- S_{3} on $\Theta_{2}: m_{3}\left(\theta_{1} \cup \theta_{3}\right)=\alpha_{3} \beta_{3}, m_{3}\left(\theta_{2} \cup \theta_{4}\right)=\alpha_{3}\left(1-\beta_{3}\right)$, $m_{3}\left(\theta_{1} \cup \theta_{2} \cup \theta_{3} \cup \theta_{4}\right)=1-\alpha_{3}$

An example of model: Results

1000 generated $\left(\beta_{0}, \beta_{1}, \alpha_{1}, \beta_{3}, \alpha_{3}\right)$ Same decision with pignistic probability, credibility and plausibility
Decision according to the chosen values of β_{1} and α_{1}

An example of model: Results

1000 generated $\left(\beta_{0}, \beta_{1}, \alpha_{1}, \beta_{3}, \alpha_{3}\right)$ Same decision with pignistic probability, credibility and plausibility
Decision according to the chosen values of β_{1} and α_{1}

