

Theory of belief functions

The theory of belief functions

• Discernment space $\Theta = \{\theta_1, \ldots, \theta_n\}$, where θ_i are the classes exclusive and exhaustive Mass functions defined onto $2^{\Theta} = \{\emptyset, \{\theta_1\}, \{\theta_2\}, \{\theta_1 \cup \theta_2\}, \dots, \Theta\} \text{ with values on } [0, 1].$ Θ : ignorance $\blacktriangleright \quad \sum \quad m(X) = 1$ $X \in 2^{\Theta}$ \blacktriangleright $m(\emptyset) = 0$ • Discounting by the reliability: $m^{\alpha}(X) = \alpha m(X)$, $m^{\alpha}(\Theta) = 1 - \alpha(1 - m(\Theta))$ Dempster's combination: $m_{\rm D}(X) = \frac{1}{1-k} \sum_{Y_1 \cap Y_2 = X} m_1(Y_1) m_2(Y_2)$ where $k = m_{\text{Coni}}(\emptyset)$

Decision: credibility ≤ pignistic probability ≤ plausibility

An example of model

Discernment spaces:

- ► Is individual A dangerous? $\Theta_1 = \{Y_1, N_1\}$
- ▶ Is the suspect vehicle near the building B? $\Theta_2 = \{Y_2, N_2\}$

4 sources:

- ► S₀ Individual A is under surveillance due to previous unstable behavior
- S₁ Analyst 1 (who has 10 years of experience): it is probable that individual A is near building B
- S₂ ANPR: 30% probability that the vehicle is Individual A's white Toyota
- S₃ Analyst 2 (who is new in post): it is improbable that individual A is near building B

- ► S_0 on Θ_1 : $m_0(Y_1) = \beta_0 \ m_0(Y_1 \cup N_1) = 1 \beta_0$ with $\beta_0 > 0.5$
- S₁ Analyst 1 (10 years of experience): it is probable that individual A is near building B
 Only on Θ₂: m₁(Y₂) = β₁ m₁(N₂) = 1 − β₁ with β₁ > 0.5 Reliability: α₁ > 0.5

- ► S_0 on Θ_1 : $m_0(Y_1) = \beta_0 \ m_0(Y_1 \cup N_1) = 1 \beta_0$ with $\beta_0 > 0.5$
- ► S_1 Analyst 1 (10 years of experience): it is probable that individual A is near building B Only on Θ_2 : $m_1(Y_2) = \beta_1 m_1(N_2) = 1 - \beta_1$ with $\beta_1 > 0.5$ Reliability: $\alpha_1 > 0.5$ With the discounting: $m_1(Y_2) = \alpha_1\beta_1$, $m_1(N_2) = \alpha_1(1 - \beta_1)$, $m_1(Y_2 \cup N_2) = 1 - \alpha_1$

An example of model

Model

- ► S_0 on Θ_1 : $m_0(Y_1) = \beta_0 \ m_0(Y_1 \cup N1) = 1 \beta_0$ with $\beta_0 > 0.5$
- ► S_1 on Θ_2 : $m_1(Y_2) = \alpha_1\beta_1$, $m_1(N_2) = \alpha_1(1 \beta_1)$, $m_1(Y_2 \cup N_2) = 1 - \alpha_1$

▶
$$S_2$$
 on Θ_2 : $m_2(Y_2) = 0.3 \ m_2(N_2) = 0.7$

S₃ Analyst 2 (who is new in post): it is improbable that individual A is near building B
 Only on Θ₂: m₃(Y₂) = β₃ m₃(N₂) = 1 − β₃ with β₃ < 0.5 Reliability: α₃ < 0.5
 With the discounting: m₃(Y₂) = α₃β₃, m₃(N₂) = α₃(1 − β₃), m₃(Y₂ ∪ N₂) = 1 − α₃

An example of model

► S_0 on Θ_1 : $m_0(Y_1) = \beta_0 \ m_0(Y_1 \cup N_1) = 1 - \beta_0$ with $\beta_0 > 0.5$

►
$$S_1$$
 on Θ_2 : $m_1(Y_2) = \alpha_1\beta_1$, $m_1(N_2) = \alpha_1(1 - \beta_1)$,
 $m_1(Y_2 \cup N_2) = 1 - \alpha_1$

► S_2 on Θ_2 : $m_2(Y_2) = 0.3 \ m_2(N_2) = 0.7$

► S_3 on Θ_2 : $m_3(Y_2) = \alpha_3\beta_3$, $m_3(N_2) = \alpha_3(1 - \beta_3)$, $m_3(Y_2 \cup N_2) = 1 - \alpha_3$

Model on

$$\begin{split} \Theta_1 \times \Theta_2 &= \{ (Y_1, Y_2), (Y_1, N_2), (N_1, Y_2), (N_1, N_2) \} = \{ \theta_1, \theta_2, \theta_3, \theta_4 \} \\ \blacktriangleright \ S_0 \text{ on } \Theta_1 \colon m_0(\theta_1 \cup \theta_2) = \beta_0 \ m_0(\theta_1 \cup \theta_2 \cup \theta_3 \cup \theta_4) = 1 - \beta_0 \\ \text{with } \beta_0 > 0.5 \end{split}$$

 $S_1 \text{ on } \Theta_2: \ m_1(\theta_1 \cup \theta_3) = \alpha_1 \beta_1, \ m_1(\theta_2 \cup \theta_4) = \alpha_1(1 - \beta_1), \\ m_1(\theta_1 \cup \theta_2 \cup \theta_3 \cup \theta_4) = 1 - \alpha_1$

► S_2 on Θ_2 : $m_2(\theta_1 \cup \theta_3) = 0.3 \ m_2(\theta_2 \cup \theta_4) = 0.7$

► S_3 on Θ_2 : $m_3(\theta_1 \cup \theta_3) = \alpha_3\beta_3$, $m_3(\theta_2 \cup \theta_4) = \alpha_3(1 - \beta_3)$, $m_3(\theta_1 \cup \theta_2 \cup \theta_3 \cup \theta_4) = 1 - \alpha_3$

An example of model: Results

1000 generated $(\beta_0, \beta_1, \alpha_1, \beta_3, \alpha_3)$ Same decision with pignistic probability, credibility and plausibility Decision according to the chosen values of β_1 and α_1

An example of model: Results

1000 generated $(\beta_0, \beta_1, \alpha_1, \beta_3, \alpha_3)$ Same decision with pignistic probability, credibility and plausibility Decision according to the chosen values of β_1 and α_1

