

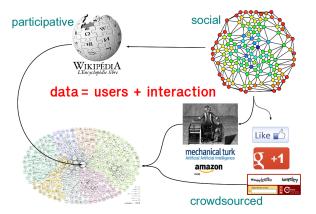
DRUID: Declarative & Reliable management of Uncertain, user-generated & Interlinked Data

DRUID Team - DKM department

.

IRISA, Lannion-Rennes

INSTITUT DE RECHERCHE EN INFORMATIQUE ET SYSTEMES ALÉATOIRES



Context

Crowdsourcing Fusion Applications

- Huge amount of data available
- e.g. Linked / Open Data
- But who are the sources of these data?

INSTITUT DE RECHERCHE EN INFORMATIQUE ET SYSTEME

Humans behind the data Challenges

- How to profile users, analyze their relationships?
- How to interact with them efficiently to solve data acquisition tasks, in a reliable way?

Team

10 teacher-researchers: Rennes-Lannion

Context: Useful

Social network analytics

- ► Tools for User Profiling, User Targetting, User influence, User preferences
- Supporting Social Sciences
- Crowdsourcing for complex tasks
 - 300,000 users available anytime on AMT
 - Participative sciences (FoldIt success, GalaxyZoo,...)

- Goal of crowdsourcing: "obtain needed services, ideas, or content by soliciting contributions from a large group of people"
- Human fallback: obtain an answer when machine learning is not mature enough
- Many crowdsourcing platforms solicit on-line crowd.
- Micro-tasks
 - audio transcription, text translation, image tagging, citizen science, audio or image quality perception
 - implicit collaboration
 - consensus usually achieved with majority voting: Information fusion more adapted

Some crowdsourcing problems

- How to extract ground truth? IA: obtain data for training
- Answers could be imprecise and uncertain: How to ask the questions? IA: Knowledge representation
- ► How to fuse the information? IA: Information fusion
- How to obtain knowledge on workers? IA: Knowledge representation, learning (supervised, unsupervised) Such as the reliability of a worker:
 - to be honest
 - to be expert in a domain
- How to assign/recommend tasks to workers according to their profile? IA: learning, prevision
- How to ask questions according to previous answers of the workers? IA: Reinforcement learning, active learning

∮ §IRISA

INSTITUT DE RECHERCHE EN INFORMATIQUE ET SYSTEMES ALÉATOIRE

Crowdsourcing: MH370 example

- Where Malaysia airlines flight MH370 disappeared without a trace in March 2014?
- DigitalGlobe and tomnod.com offer their satellite photos of ocean in crowdsourcing effort
- 3 million have joined the platform

: Many debris are on the image.

Imprecise proposition

: Ten debris are on the image.

Precise proposition

Imprecision is a kind of imperfection of information

Crowdsourcing (2/8) Fusion Applications

Bad weather

Good weather Certain proposition

Uncertain proposition

Uncertainty is another kind of imperfection of information

Goal

To combine information coming from many imperfect sources in order to improve the decision making taking into account of imprecisions and uncertainties

To model imperfections: Artificial Intelligence Reasoning by uncertainty theories: Probability theory (Bayesian approach) or possibility theory or the theory of belief functions

Fusion architecture for classifiers fusion

Crowdsourcing (4/8) Fusion Applications

s sources S_1 , S_2 , ..., S_s that must take a decision on an observation x in a set of n classes $x \in \Omega = \{\omega_1, \omega_2, \dots, \omega_n\}$

$$S_1 \qquad \begin{bmatrix} \omega_1 & \dots & \omega_i & \dots & \omega_n \\ M_1^1(x) & \dots & M_i^1(x) & \dots & M_n^1(x) \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ M_1^j(x) & \dots & M_i^j(x) & \dots & M_n^j(x) \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ M_1^s(x) & \dots & M_i^s(x) & \dots & M_n^s(x) \end{bmatrix}$$

- 4 steps
 - 1. Modeling
 - 2. Estimation
 - 3. Combination
 - 4. Decision

∮ SIRISA

Modeling: A probability is a positive and additive measure, p is defined on a σ -algebra of $\Omega = \{\omega_1, \omega_2, \dots, \omega_n\}$ and takes values in [0,1].

It verifies:
$$p(\emptyset) = 0$$
, $p(\Omega) = 1$, $\sum_{X \in \Omega} p(X) = 1$

Estimation: Choice of the distribution, and/or estimation of parameters **Combination:** Bayes rule

$$p(x \in \omega_i/S_1, \dots, S_s) = \frac{p(S_1, \dots, S_s/x \in \omega_i)p(x \in \omega_i)}{p(S_1, \dots, S_s)}$$
(1)

Independence assumption must of the time necessary **Decision:** *a posteriori* maximum, likelihood maximum, mean maximum, *etc.*

- ▶ Difficulties to model the absence of knowledge ex: Sirius: ignorance on life $p(life) = p(\overline{life}) = \frac{1}{2}$, but also $p(animal) = p(vegetate) = p(\overline{life}) = \frac{1}{3}$ so $p(life) = \frac{2}{3}$
- Constraint on the classes (exhaustive and exclusive)
- ► Constraint on the measures (additivity) Knowing information such as p(f|A) = 1 transfers information on p(A|f)

Modeling: The basic belief functions (bba or mass functions) are defined on 2^Ω and take values in [0,1] with

- ▶ Discernment frame: Ω = {ω₁,..., ω_n}, with ω_i are exclusive and exhaustive classes
- Power set: $2^{\Omega} = \{\emptyset, \{\omega_1\}, \{\omega_2\}, \{\omega_1 \cup \omega_2\}, \dots, \Omega\}.$
- It verifies: $\sum_{X \in 2^{\Omega}} m(X) = 1$ Estimation: Learning

Combination: Conjunctive rule

$$m_{\text{Conj}}(X) = \sum_{Y_1 \cap Y_2 = X} m_1(Y_1)m_2(Y_2)$$

Assume: cognitively independence of sources **Decision:** maximum of belief, plausibility, pignistic probability – possible decision on 2^{Ω} § IRISA

Special cases:

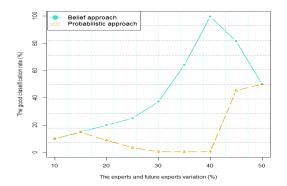
- If only positive masses are ω_i then m_j is a probability
- $m_j(\Omega) = 1$: total **ignorance** of S_j
- ► categorical mass function: $m_j(X) = 1$ (noted m_X): S_j has an imprecise knowledge
- $m_j(\omega_i) = 1$: S_j has a precise knowledge
- Simple mass functions X^w: m_j(X) = w and m_j(Ω) = 1 − w: S_j has an uncertain and imprecise knowledge

16/2

- 1. Introduction to information fusion
- 2. Theory of belief functions for information fusion
- 3. Applications
 - crowdsourcing
 - social network

Clustering on exactitude and precision degrees

- 1. Step 1: Calculate an exactitude degree based on the distance between $m_{U_j}^{\Omega_k}$ and the average of the responses proposed by the s-1 participants $(m_{U_{r_s-1}}^{\Omega_k})$
- 2. Step 2: Calculate a precision degree from the specificity degree based on the assumption "the majority has right"
- **3**. Step 3: Calculate a global degree and applied a clustering on it.


Comparison with a probabilistic approach: Just an exactitude degree, no precision degree with probability. (A. Ben Rjad, et al., 2016)

Results experiment

Goal: prove the interest of the use of the theory of belief functions instead of probability on generated data

expert and imprecise expert with the same percentage from 10% to 50%

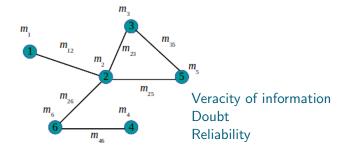
SIRISA

DRUID, Arnaud Martin - Arnaud.Martin@irisa.fr

INSTITUT DE RECHERCHE EN INFORMATIQUE ET SYSTEMES ALÉATOIRE

18/22

Questions for imprecise and uncertain answer

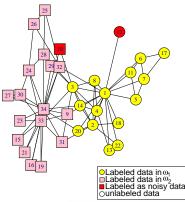

Crowdsourcing Fusion (3/5) Applications

19/22

	Portail de test audio
	APPRENTISSAGE séquence n° 6 sur 9
	Veuillez écouter l'extrait sonore attentivement.
	► <u> </u>
	Veuillez choisir un niveau de qualité audio de la séquence entendue. Cochez I ou 2 choix consécutifs si besoin.
	Excellent Bon Correct 🗸 Pauvre 🗸 Mauvais
	Indiquer le niveau de conflance dans votre réponse.
	Très sûr Plutôt sûr Moyennement sûr Peu sûr Pas sûr Remarque : Une réponse incertaine n'est en aucune façon pénalisante pour une évaluation du profil.
	renne que i one reponse meercane n'ex en dacane rayon penansance pour une enanación da prom-
	Besoin d'aide ? Continuer
IRISA	

Crowdsourcing Fusion (4/5) Applications

Node and link-attributed graphs $G = (V, E, m_u, m_e)$ where $m_u : V \longrightarrow \mathcal{X}$ and $m_e : e \in E \longrightarrow \mathcal{X}$ $m_u(v) = [m_1(v), \dots, m_a(v)]$


(Ben Dhaou, 2014, 2017)

Community detection: SELP

Semi-supervised Evidential Label Propagation algorithm (Zhou et al., 2018) Example on Karate Club network

Iteration 5

DRUID, Arnaud Martin - Arnaud, Martin@irisa.fr

INSTITUT DE RECHERCHE EN INFORMATIQUE ET SYSTEMES ALÉATOIR

Druid team has many connections with AI methods/problems

- Social networks
 - Preferences model and fusion: see Yiru Zhang poster
 - ► Word embeddings: ANR EPIQUE: see Ian Jeantet poster
- Crowdsourcing platforms (ANR HEADWORK)
- Sensor fusion (CIFRE TOTAL)
- Privacy and related problems (ANR CROWDGUARD):
 - Privacy of the individuals involved in personal-data-centic applications (*e.g.* crowdsourcing, social networks, open data)
 - Transparency of black box personalization algorithms (*e.g.* predictions of risk recidivism, web recommendations)

Implication of the team in AFIA: http://afia.asso.fr/

SIRISA