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Abstract—Developing distributed applications for
Opportunistic Networks (OppNets) has mainly relied on
the message passing paradigm so far. Yet, the sharing of
distributed data is an alternative worth considering, and
Conflict-Free Replicated Datatypes (CRDTs) are interesting
candidates for this purpose. A CRDT is a distributed data type
that supports optimistic replication, and whose global consistency
can be maintained based solely on occasional synchronizations
of replicas. In an OppNet, these synchronizations can be driven
by the contacts between mobile devices, without any need for
network-wide routing. CRDTs can thus serve as interesting
software building blocks to develop distributed applications
for OppNets. In this paper, we demonstrate the feasibility
of using CRDTs in OppNets by presenting an experiment
conducted in real conditions, involving a collaborative editing
application in which communication relies exclusively on
opportunistic contacts between laptops. The software elements
used in the experiment consist mainly of a CRDT-based
text editor, and a communication module that supports the
synchronization between laptops, so as to ensure the eventual
consistency of the shared document. Experimentation results are
detailed, that confirm the viability and usability of this approach.

Keywords—Opportunistic networking; Experiment; CRDT;
Collaborative editing.

I. INTRODUCTION

Opportunistic Networks (OppNets) are infrastructure-less
networks composed of mobile devices that communicate via
direct device-to-device radio transmissions. Due to the sparse
or irregular distribution of the devices, such networks are
often partitioned, and do not provide permanent end-to-end
connectivity. Yet, network-wide communication is made pos-
sible following the store, carry and forward principle: when
a contact occurs between two devices, the opportunity to
exchange messages can be seized. The received information
can be stored locally, so that the device that carries it can
forward it later to another mobile device when the opportunity
of a new contact presents itself. Developing applications for
OppNets is challenging because of the inherent asynchronism
of the communications, with potential large delays needed for
reaching certain devices, from one to the next, according to
their movements.

A number of use cases have been envisaged for Opportunis-
tic Networks, namely when traditional network infrastructure
is not available (e.g., communication for disaster relief or
in remote areas) or when it is not desirable to use this
infrastructure (e.g., for data offloading, or to avoid censorship).

To support such use cases, the research activity over the
last two decades has primarily focused on message routing
or dissemination in an OppNet, assuming that network-wide
message passing is a de facto requirement of any distributed
application, and assuming somehow that a message-oriented
API is the best API for developers.

Yet, just like the High Performance Computing community
uses alternatively the message-passing paradigm (typically
via the Message Passing Interface [1]), or the shared-memory
paradigm (via OpenMP [2] for example), depending on ap-
plication needs, the developers of distributed applications for
OppNets should not be bound to rely on a message-passing
API, but they should also be offered the means to work with
shared data structures.

A promising class of distributed shared data structures,
called Conflict-Free Replicated Datatypes (CRDTs), has ap-
peared recently, stemming from research on distributed
databases and peer-to-peer networks [3]. CRDTs are dis-
tributed data types (counters, sets, maps, etc.) that support opti-
mistic replication: replicas can be updated locally without any
coordination, and synchronized asynchronously. CRDT repli-
cas may temporarily diverge, but information is exchanged
asynchronously between them thanks to a synchronization al-
gorithm running in the background. This algorithm guarantees
that all replicas eventually reach the same final state, provided
the synchronization graph is connected, that is, provided the
history of successive synchronizations is such that any update
is eventually taken into account by every replica.

In the literature, the papers dealing with CRDTs in Opp-
Nets present simulation results [4]-[8]. The question whether
CRDTs can be of practical use in a real OppNet setting re-
mains unanswered. The objective of this paper is to contribute
to answer this question. It describes the different elements of
the setting and the results of a real-world experiment carried
out in order to assess the possibility to write a document
collaboratively, by relying on the implementation of a CRDT
deployed in an OppNet. To our knowledge, it is the first time
that the use of a real application involving CRDTs in an Opp-
Net is reported. The choice of collaborative editing as a case
study is motivated by the fact that it is a demanding distributed
application, for respecting the causality of editing operations is
not trivial in an OppNet. Besides, several tested off-the-shelf
software elements designed for peer-to-peer wired networks
can be reused or adapted for OppNets, which makes it easier
to develop a robust solution.

Figure 1 illustrates the kind of OppNet we consider: the



Figure 1. Illustration of collaborative editing in an opportunistic network.

contributors to the shared document use their laptops over a
few days to edit the shared document collaboratively. Laptops
are considered here as target devices (rather than smartphones
or tablets), because they are more convenient to use for text
editing.

A contributor may be isolated while editing the document
(e.g., at home), in which case no transmission is possible
between his/her laptop and those of other contributors. When
several contributors are close to one another (e.g., in adjacent
rooms at work), their laptops can synchronize by exchanging
messages via direct wireless connections. When a user is on
the move, his/her laptop is assumed to be switched off.

The remainder of this paper is organized as follows. Sec-
tion II introduces the concept of CRDT and details the problem
of their synchronization, in particular in OppNets. Section III
quickly browses the works related to distributed applications
targeting OppNets, and in particular on collaborative applica-
tions like text editing. In Section IV, we present the different
software elements that support the text editing experiment we
have set up. The results of this experiment are detailed in
Section V. Section VI concludes the paper.

II. OVERVIEW OF CRDTS

When a data structure must be replicated in a distributed
system, there are different ways to maintain the consistency
of the replicas of this data structure. Some systems maintain
strong consistency at any time by constraining concurrent
updates of replicas, or preventing them altogether. Other
systems implement optimistic replication, allowing replicas to
diverge temporarily, while ensuring that they will eventually
reach a common state (eventual consistency).

Conflict-free Replicated Data Types (CRDTs) support op-
timistic replication: any replica can be updated locally, at
any time, without any coordination with the other replicas.
Synchronization occurs in the background, usually periodically
and between randomly selected pairs of replicas, by exchang-
ing information about past updates. If the synchronization
graph is connected (i.e., the consequence of each update is
eventually taken into account by each replica), all replicas
eventually reach the same state.

A. Concurrent updates and concurrency semantics

The implementation of traditional data types (counters,
registers, sets, maps, lists, graphs, etc.) as CRDTs has already
been addressed in the literature [3][9]. For each CRDT,

the updates it can support are identified, and a concurrency
semantics is defined. Note that several alternative concurrency
semantics can often be defined for the same abstract data type,
as shown below.

In order to illustrate how a CRDT can be used as a shared
data structure, let us consider a basic example. A Set CRDT
implements a shared set, and it can typically support updates
add() and rmv(). Since these updates cannot commute when
they are applied to the same element, a concurrency semantics
must be defined to resolve conflicts between concurrent add(x)
and rmv(x) updates. Figure 2 shows an example where a Set
CRDT (initially empty) is replicated in two replicas R1 and
R2. Element a is first added locally to the set in replica R1,
while element b is added locally in replica R2. The state is
thus temporarily different in R1 and R2, but a synchronization
occurs between them, after which they agree that the state of
the set is now {a, b}. Note that reconciling state {a} (from
R1) with state {b} (from R2) is not an issue, because although
add(a) and add(b) occurred concurrently in R1 and R2, they
apply to distinct elements a and b.

After the first synchronization, element a is removed and
then added again in R1, while it is only removed in R2. The
state is thus different again in R1 and R2, and this time the
last add(a) on R1 and rmv(a) on R2 conflict, as they occurred
concurrently and apply to the same element a. If both replicas
synchronize again, the final state depends on the concurrency
semantics chosen for this shared set. A possible option is to
give add(a) priority over rmv(a), so that the final state is {a, b}
in both replicas. Another option is to give rmv(a) priority over
add(a), so the final state is {b}. A Set CRDT that gives add()
priority over rmv() is called an Add-wins set in the literature,
and the opposite is called a Remove-wins set [3].

B. Synchronization of replicas

In the simple example shown in Figure 2, only two replicas
are considered, so synchronization is only required between
these two replicas. In a system that involves a large number
of replicas, synchronization must be addressed with caution in
order to guarantee that all replicas eventually converge, while
maintaining the cost of synchronization at a reasonable level.

Several methods of synchronization have been considered
in the literature, each method requiring a specific implemen-
tation of CRDTs. In an operation-based CRDT, whenever an
operation (update) is applied to a replica, a description of
this operation is embedded in a message, which is sent to all
other replicas. This approach tends to produce a large number
of small messages (each message carrying information about
a single update). Besides it requires a system that supports
reliable network-wide broadcast, and even causal broadcast if
the updates do not commute [3].

In a state-based CRDT, each replica must synchronize
periodically with other replicas by sending them its entire
state. On each receiver the state of the sender is merged with
the local state, using a function that deterministically computes
the join (least upper bound) of both states. A major advantage
of this approach is that is does not require that each update
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Figure 2. Example of a run involving a Set CRDT replicated in two replicas R1 and R2.

be transmitted to all replicas, so no broadcast is required.
A periodic synchronization of each replica with a few other
replicas is sufficient to ensure the eventual convergence of all
replicas, as long as the synchronization graph is connected.
The main drawback of state-based CRDTs is that shipping
entire states between replicas can be costly. Delta-state CRDTs
reduce this cost by passing only partial information (a delta)
about the sender’s state (typically, only what is required to
allow the target receiver to update its own local state) [10]-
[12]. In order to determine what is required by another replica,
the sender must first receive a digest of this replica’s state, and
compare this digest with its own local state. The digest of a
state can typically take the form of a state vector.

C. CRDTs in OppNets

In the literature, it is commonly assumed that CRDTs
are to be deployed in Internet-based peer-to-peer networks.
Network-wide message routing or broadcast are thus presumed
to be available. In such conditions, each replica can either
1) send each update to all other replicas (in an operation-
based CRDT), or 2) select randomly any other replica and
synchronize with this replica (in a state-based or delta-state-
based CRDT).

In an OppNet, two mobile devices can only communi-
cate as long as they are neighbors. Implementing operation-
based CRDTs, which involves sending each update to all
other devices, is therefore not trivial as it requires at least
epidemic delay-tolerant dissemination. As for state-based and
delta-state-based CRDTs, they should rely on contact-driven
synchronization, each device synchronizing with its neighbors
rather than with randomly selected peers.

Synchronization algorithms for operation-based, state-
based, and delta-state-based CRDTs in OppNets have been
proposed and evaluated based on simulation scenarios in [4].
The results show that although all synchronization methods
ensure the eventual consistency of CRDTs, delta-state-based
synchronization clearly outperforms the two other modes of
synchronization. Operation-based synchronization is easy to
implement on top of an opportunistic communication layer
that supports reliable causal broadcast. However, it requires the
network-wide dissemination of many small messages (one for
each update applied to a replica). This can yield a significant
communication overhead in an OppNet, as well as storage
issues since each message must be maintained in a local cache
on each device. State-based and delta-state-based synchro-

nization can be implemented without any multi-hop routing
or network-wide dissemination, using only synchronization
between neighbors. The cost of state-based synchronization
is significant, though, as it requires exchanging entire states
between neighbor devices. Delta-state-based synchronization
gets the best of both other methods, as the amount of data
transfers required to ensure the synchronization of replicas is
kept at a minimum, and as there is no need for message routing
or message broadcast.

The work presented in [4] has shown that CRDTs can be
deployed in an OppNet, and converge as expected in such
an environment ; but the given results have been obtained by
running simulations. Whether distributed applications based
on CRDTs can be of practical use in a real OppNet setting
is still to be demonstrated. The purpose of this paper is to
contribute to this task.

III. RELATED WORK

Running distributed applications in OppNets has been con-
sidered in many papers over the last two decades, but, again,
most of these papers only present simulation results. Rare
are the papers that present communication systems and ap-
plications that have been fully implemented, and tested in
real conditions. Among these exceptions are [13] and [14],
which present DTN systems aiming at providing Internet-like
services in very sparsely populated areas, or in disaster-relief
scenarios. Distributed applications for content sharing (files,
music, news, software components, etc.) in OppNets have
likewise been presented in [15]-[18].

In the abovementioned applications, the content shared
over the network is considered as immutable. In contrast,
collaborative editing (or, more generally, collaborative work)
requires to share content that can change over time.

Although Web-based solutions such as wikis, Google Docs,
Etherpad, etc. have been available for a long time now, these
solutions usually rely on a client-server architecture, with
central servers whose role is to store shared documents and
ensure that concurrent editing of the same document does not
yield inconsistencies.

Recognizing that any solution involving servers is hardly
applicable in OppNets, an early solution for shared content
editing in such networks has been proposed in [19]. In this
proposal, a revision control mechanisms is used to merge
contributions whenever possible, but user intervention is still
required to solve conflicting contributions. In [20], the problem
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Figure 3. Software elements deployed on each laptop (the elements we have
developed are named in boldface).

of ensuring total order in OppNets is considered, as a means
to support a variant of the Logoot [5] replication algorithm
in such networks. A similar approach is presented in [6],
using IBR-DTN [21] for opportunistic communication, and a
modified LogootSplit [7] algorithm for ensuring consistency in
shared content editing. An approach based on OT (Operational
Transformation) is considered in [8], and the convergence of
an OT-based collaborative editing framework in opportunistic
networking scenarios is investigated. Unfortunately, all these
papers only present simulation results, and in most cases it is
unlikely that a fully-functional collaborative editing solution
exists beyond the simulation code.

In the remainder of this paper we describe the implementa-
tion of such a fully-functional solution, and demonstrate that
it is viable for actual collaborative editing in opportunistic
networking conditions.

IV. DESIGN AND IMPLEMENTATION

The key feature of our experiment is the use of a Conflict-
Free Replicated Datatype to guarantee the consistency of the
different contributions to the shared document. In our experi-
mental setup, several software elements have been assembled
to allow CRDT-based collaborative editing, forming two main
layers (see Figure 3). The upper layer runs in a Web browser.
It is thus a Web application that combines the editor itself
with the implementation of the CRDT that will ensure the
consistency of the shared document. The lower layer enables
the opportunistic communication between the contributors’
laptops, thus allowing the synchronization of the different
replicas of the CRDT. The two layers interact via a websocket.
In addition, a Web server is deployed locally to supply the
code and data of the Web application. Note that the fact that
our editing application is based on Web technologies is not a
fundamental requirement. It rather results from the choice of
an available, extensible and efficient CRDT-based editor.

A. Opportunistic communication

The main functions of the opportunistic communication
layer we developed are, on the one hand, to ensure neighbor
detection (i.e., to detect laptops located within the radio
range), and on the other hand to establish a bidirectional
communication channel between each pair of neighbors.

Neighbor detection is trivially based on the periodic broad-
casting, by each laptop, of HELLO messages that contain the
identity of the emitting device (typically the hostname), its

import * as Y from 'yjs'

const ydoc = new Y.doc();

const ytext = ydoc.getText('my document');

ytext.insert(0, 'abcde'); // insert text at pos. 0
ytext.delete(1, 3);         // delete bcd

Figure 4. Example of the use of a text CRDT via the Javascript Yjs module.

IP (Internet Protocol) address, and the TCP (Transmission
Control Protocol) port number it listens to. This broadcast
is only performed at one hop (i.e., without any routing), so
that each host can only detect its 1-hop neighbors. HELLO
messages are embedded in UDP (User Datagram Protocol)
datagrams, and addressed to a predefined multicast group.

When a laptop receives a HELLO message from a new
neighbor with a lower identity (in lexicographic order), it
opens a TCP session (with TLS [Transport Layer Security]
encryption) with this new neighbor. This session will then
serve as a bidirectional channel between the two neighbors,
as long as they remain in radio contact. When a contact is
lost between two neighbors, it can be reestablished later if
they meet again.

B. CRDT-based editor

We chose the Quill text editor [22] as the editing soft-
ware. This editor is written in HTML (HyperText Markup
Language)/CSS (Cascading Style Sheets)/Javascript. It can be
associated with Yjs [23], through the quill-yjs binding module,
so that the edited text is maintained internally as a CRDT.
Yjs is a Javascript implementation of several types of CRDTs
(array, map, text, etc.). It is mainly oriented to linear data
structures like text [24]. Figure 4 illustrates the manipulation
of a piece of text through the use of the Yjs Javascript library,
as could be done by the Quill editor (in this figure, and also in
Figures 5 and 6, the functions provided by Yjs are in boldface
type).

One of the most interesting characteristics of Yjs is its
efficient way of encoding a text CRDT as a double chained
list of inserted items (sequences of characters identified by
Lamport timestamps) accompanied with a set of deletions
(simple set of items), which confers a high efficiency for
human-produced text manipulation.

Yjs itself is network agnostic: some extra code is required
to ensure the synchronization of replicas. This code must
be included in a Yjs provider. The providers distributed
with Yjs are not suited to opportunistic networking, as they
target Internet-based contexts (by using typically WebRTC
or centralized servers). We therefore developed our own Yjs
provider, called opp-provider, which supports delta-state-based
synchronization. This task was facilitated by two features of
Yjs: updates and state vectors. An update encodes a series
of changes in a document that can serve to modify another
document. Updates are commutative, associative, and idem-



potent. These properties are essential to ensure the eventual
convergence of all replicas, whatever the order in which
updates are applied to each replica. A state vector characterizes
the state of advancement of all replicas, as perceived by one
replica. It is essentially a set of Lamport timestamps that
captures the causal context. Updates and state vectors are
provided to the programmer as opaque structures encoded in
a compressed binary format.

// Capture the modification event and
// broadcast the update to the neighbors 

ydoc.on(‘update’, 
        (upd) => {
           broadcast(upd)
        }

// Receive the update and
// apply it to the document

 • On the reception of update  upd
    Y.applyUpdate(ydoc, upd)

Figure 5. Synchronization performed on a set of neighbors when a contributor
modifies the text (the code on the top runs on the laptop where the text is
modified).

The opp-provider is notified of editing events (issued by
the Yjs module) and neighbor discovery events (issued by
the underlying opportunistic communication layer). When a
contributor edits the text (by inserting or deleting a character),
the opp-provider immediately broadcasts the corresponding
update to all current neighbor laptops (if any). The receiving
neighbors can then apply this update on their own replica
(see Figure 5). From a contributor’s perspective, collaborative
editing operates in real time between his/her laptop and neigh-
bor laptops. The updates exchanged between these laptops are
embedded in small messages, as each update only pertains to
the last operation performed on the sender.

In contrast, when two laptops get into radio contact (and
become neighbors), their local states must be synchronized,
which usually requires exchanging larger messages. The two
new neighbors first exchange state vectors, and then exchange
only what the other laptop needs to reach a common state (see
Figure 6).

V. EXPERIMENT

A. Experimental conditions

In order to assess whether collaborative editing based on
opportunistic communication can be of practical use, we
decided to use this approach to write the latest deliverable
of a project our research team is involved in. This project
involves six permanent staff members, which all agreed to
participate in this experiment. These six participants are not
always collocated, though. For example, they all have teaching
duties, which do not always occur in the same campus or
in the same buildings. Besides, most team members work at

vector = Y.encodeStateVector(ydoc)
send(vector, neighbor)

• On the reception of a state vector v
    delta = Y.encodeStateAsUpdate(ydoc, v)
    send(delta, neighbor)

• On the reception of a delta d
    Y.applyUpdate(ydoc, d)
        

• On the reception of a state vector v
    sv = v
    vector = Y.encodeStateVector(ydoc)
    send(vector, neighbor)

• On the reception of a delta d
    Y.applyUpdate(ydoc,d)
    delta = Y.encodeStateAsUpdate(ydoc, sv)
    send(delta, neighbor)

Figure 6. Delta-state-based synchronization applied when two neighboring
laptops enter in contact (the code on the top is executed by the neighbor with
the larger identity).

home part of the time, so they meet only occasionally. As a
general rule, two meetings are organized every week, though,
on Tuesday and Friday afternoons, but not all team members
attend every meeting.

The appropriate software was installed on each participant’s
laptop (running Linux), and this laptop was configured so as
to support opportunistic communication. More specifically:

• A secondary Wi-Fi interface (small form factor USB
dongle) was added to each laptop, and this interface was
configured so as to operate continuously in Wi-Fi ad hoc
mode. The primary builtin Wi-Fi interface of each laptop
therefore remained available for daily activities such as
Web browsing, Email, etc. The secondary interface was
meant to be used only for opportunistic communication,
that is, in that case, for collaborative editing.

• The opportunistic communication layer (cf. Figure 3) was
installed on each laptop, configured to use the secondary
interface (with self-assigned IPv6 addresses), and run in
the background as a systemd service.

• The desktop settings on each laptop were configured so
that the Web browser opened as soon as the user logged
in, and the browser itself was configured so that the
Quill/Yjs page was loaded automatically. The participants
were asked to keep the browser running as much as
possible, and to maintain a window or tab on Quill/Yjs
in this browser (note that this did not prevent them to
browse other Web sites). The motivation was to ensure
that Yjs would keep running in the background, thus
ensuring automatically the synchronization between the
laptops used in this experiment.

• Each laptop was configured so as to log interesting events,
such as the laptop being switched on or off, the discovery
of a new neighbor, etc.

Overall, each laptop was configured so that its owner could
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Figure 7. Details of each laptop’s activity during the experiment.
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Figure 8. Details of each laptop’s activity on Wednesday.

keep using it as usual (browsing the Web, sending and receiv-
ing Email, etc.), while collaborative editing was performed
solely based on opportunistic communication. The general idea
was to enlist participants in this experiment without overly
disrupting their day-to-day activity.

B. Results

The whole experiment lasted 9 days, including one weekend
(from Monday to the next Tuesday). Figure 7 shows the
timelines of each laptop’s activity during that period. Each
laptop is identified by the initials of its owner’s name. In
this figure, each horizontal yellow segment corresponds to
a period during which the corresponding laptop was up and
running. Purple segments mark periods when editing activity
was observed on this laptop (i.e., the user was actually editing
the shared document). The thin vertical blue lines indicate the
beginning of a pairwise radio contact between two laptops,
that is, an opportunity for these laptops to synchronize their
copies of the shared document.

Figure 8 shows details about the activity observed on a
specific day (Wednesday) during the experiment.

Figure 9 shows the evolution of the number of active laptops
at any time during the experiment (blue), as well as the number
of pairwise connections between these laptops (red). It can
be observed that although several laptops were sometimes

TABLE I. EDITING EVENTS AND SYNCHRONIZATION.

Metrics Values

Size of the final document 102 651 characters (36 pages)

Nb. of editing events 114 612 “ins”, 6 821 “del”,
104 “cut”, 81 “paste”

Nb. of synchronizations
upon radio contact

109

Nb. of updates transferred
during radio contacts

102561

TABLE II. CONTACTS AND INTER-CONTACTS.

Metrics Values (* = min / max / avg / stdev )

Duration of the experiment 8d16h28’41”

Nb of participants (laptops) 6

Number of contacts 109

Durations of contacts 3’16”/4h19’34”/1h19’53”/41’28”*

Number of inter-contacts 94

Durations of inter-contacts 5’06”/95h29’37”/24h26’51”/30h18’35”*

running at the same time, this does not imply that all these
laptops were connected over the wireless ad hoc channel. For
example, on Wednesday afternoon all six laptops were up and
running most of the time, but only three pairwise connections
were observed. This is because, as explained earlier, the
participants were not always collocated, so each participant
could occasionally use his/her laptop —and possibly edit the
shared document— while being disconnected from any other
laptop, or while being connected with only one or two other
laptops.

Statistical details about the experiment are presented in
Tables I and II. They concern the editing events and the
transfers of synchronization messages, and the radio contacts
and inter-contacts between laptops.

The shared document produced during this experiment is
102 651-character long (36 pages, in plain text). The numbers
of ins, del, cut, and paste events triggered to produce this doc-
ument are detailed in Table I. Overall, 109 synchronizations
occurred between pairs of laptops upon radio contact, which is
consistent with the number of contacts observed (see Table II).
Each of these synchronizations involved the exchange of state
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Figure 9. Number of active laptops (blue) and number of pairwise connections between laptops (red).

vectors and delta states between two laptops, as shown in
Figure 10. The state vectors (at most 700 bytes) were of course
far smaller than the deltas transferred upon contacts.

While laptops were in contact, 102 561 transfers of updates
were observed. These transfers of updates are actually transfers
of deltas pertaining to the last operation applied on the sender,
but we distinguish updates from deltas here because updates
are significantly smaller. Figure 11 shows the evolution of
the size of the messages carrying these updates over time.
A large majority of these messages were indeed quite small
(about 130 bytes), for they concerned only the insertion or the
removal of a single character. Occasionally, larger messages
were observed (up to 700 bytes), when a user pasted a piece
of text in the shared document. Note that no attempt was made
to compress the data transmitted in the messages in this early
version of our editing system.

Figure 12 shows the evolution of the size of the shared
document on each laptop. It can be observed that this size
sometimes trailed behind significantly on some laptops (see for
example laptops FL and LT on Friday), as some participants
worked far from any other participant, thus preventing their
laptop to synchronize with other laptops. The weekly meetings
on Tuesday and Friday afternoons allowed most laptops to
fully synchronize, although some participants did not attend
all meetings and therefore relied on unplanned contacts to get
the latest contributions of every other participant. For example,
the shared document was finalized (as planned) during the last
Tuesday meeting, even though one of the participants did not
attend this meeting. A contact with this participant’s laptop
occurred shortly after this meeting, which allowed this laptop
to get the final version of the document.

C. Outcome of this experiment

The experiment described earlier only involved six par-
ticipants over a few days. With this small-scale experiment
our prime motivation was to verify that collaborative editing
based on opportunistic communication is indeed doable and
practical. It turns out that editing a shared document in such
conditions is actually a near-real-time experience, with syn-
chronizations depending on unpredicted collocation between
contributors. At the end of the experimentation period, the

participants confirmed that while working on this deliverable
they did not perceive opportunistic synchronization as an
inconvenience.

Of course opportunistic synchronization requires that all
updates eventually reach all replicas. More specifically, the
synchronization graph must be connected, which is actually
a major requirement for any distributed application involving
CRDTs [3]. This experiment shows that this requirement can
easily be met in a real-life scenario.

D. Scalability

Scalability is usually a typical concern in distributed ap-
plications. Yet, the question whether an experiment similar to
that described above could have been performed with hundreds
of participants hardly makes sense, since editing a shared
document with so many contributors would probably not be
practical anyway.

Yjs can however support other kinds of CRDTs (namely
arrays or maps), which can serve as building blocks for a
large variety of data structures. The software system used in
our experiment could therefore be used to support large-scale
CRDT-based collaborative applications. In order to determine
if this software system would scale up, we ran additional
experiments in emulation mode. In these experiments, the
LEPTON platform [25] was used to simulate the mobility and
opportunistic contacts of a large number of virtual nodes. For
each of these virtual nodes, instead of running Quill/Yjs in
a Web browser, we used node.js and replaced the real editor
Quill by a dummy editor we developed in order to mimic the
editing events a real user would generate over time.

With this architecture we ran scenarios involving up to 200
virtual nodes editing the same shared document concurrently,
and did not observe any adverse effect on the eventual con-
vergence of all copies of the shared document.

VI. CONCLUSION

In this paper, we have described the experimental setup
and the results of a real-life experiment involving a group
of researchers that collaboratively edited a document over
nine days, relying exclusively on opportunistic communication
to synchronize their contributions to this document. The text
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Figure 10. Evolution of the size of the messages carrying state vectors (red) and delta states (blue) transferred between neighbor laptops upon contacts.
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Figure 12. Evolution of the size of the shared document on each laptop.

editor deployed on the users’ laptops relied on an off-the-shelf
implementation of a text CRDT to store the different replicas
of the shared document. A specific module ensured a delta-
state-based synchronization of the replicas between neighbor
laptops.

The analysis of the log files produced during the experiment
confirmed the opportunistic nature of the network formed by
the laptops, and the ability of the CRDT-based editing system
to maintain the consistency of the replicas stored on each
laptop.

This small-scale experiment was conducted in an academic
setting, avoiding deliberately —and somehow artificially— to

rely on the Internet for collaborative editing. It confirms that
actual collaborative work in opportunistic networking condi-
tions is indeed viable. Moreover, the mobility of the nodes
and the users’ behavior are not fundamentally different from
those found in other application domains, which let us think
that the usefulness of the approach is quite general. Besides, a
simulation run involving the same CRDT-based editing system
with 200 virtual contributors shows that scalability is not an
issue (although having that many contributors edit the same
document simultaneously would probably be useless).

We believe this work paves the way for the deployment
and use of distributed collaborative applications in situations



where opportunistic communication would be the primary and
possibly only option, in remote areas or in a disaster-relief
situation for example.
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