
I
 R

 I
 S

 A
IN

S
T
IT

U
T
 D

E
 R

E
C

H
E
R

C
H

E
 E

N
 IN

FO

R
M

ATIQ
UE E

T S
YSTÈMES ALÉATOIRES

P U B L I C A T I O N
I N T E R N E
No

I R I S A
CAMPUS UNIVERSITAIRE DE BEAULIEU - 35042 RENNES CEDEX - FRANCEIS

S
N

 1
16

6-
86

87

902

POM: A VIRTUAL PARALLEL MACHINE
FEATURING OBSERVATION MECHANISMS

FRÉDÉRIC GUIDEC AND YVES MAHÉO

INSTITUT DE RECHERCHE EN INFORMATIQUE ET SYSTÈMES ALÉATOIRES

Campus de Beaulieu – 35042 Rennes Cedex – France
Tél. : (33) 99 84 71 00 – Fax : (33) 99 84 71 71

POM: a Virtual Parallel MachineFeaturing Observation MechanismsFr�ed�eric Guidec � and Yves Mah�eo ��Programme 1 | Architectures parall�eles, bases de donn�ees, r�eseaux et syst�emes distribu�esProjet PAMPAPublication interne n�902 | Janvier 1995 | 18 pagesAbstract: We describe in this paper a Parallel Observable virtual Machine (POM), whichprovides a homogeneous interface upon the communication kernels of parallel architectures.POM was designed so as to be ported easily and e�ciently on numerous parallel platforms.It provides sophisticated features for observing distributed executions.Key-words: Distributed memory parallel computers, virtual machine, communication li-brary, observation, traces (R�esum�e : tsvp)�guidec@irisa.fr��maheo@irisa.fr
CENTRE NATIONAL
DE LA RECHERCHE
SCIENTIFIQUE

Centre National de la Recherche Scientifique Institut National de Recherche en Informatique
(URA 227) Université de Rennes 1 – Insa de Rennes et en Automatique – unité de recherche de Rennes

POM : une machine parall�ele virtuelleincorporant des m�ecanismes d'observationR�esum�e : Nous d�ecrivons dans cet article une machine parall�ele virtuelle observable, laPOM. Celle-ci o�re une interface homog�ene au dessus des syst�emes de communication desarchitectures parall�eles. Elle a �et�e con�cue en vue d'un portage ais�e et e�cace sur de nom-breuses plates-formes et incorpore des m�ecanismes �elabor�es d'observation des ex�ecutionsr�eparties.Mots-cl�e : Machine parall�ele �a m�emoire distribu�ee, machine virtuelle, biblioth�eque decommunication, observation, traces

POM: a Virtual Parallel Machine Featuring Observation Mechanisms 31 IntroductionPOM is a Parallel Observable Machine featuring mechanisms for observing distributed appli-cations. It provides a homogeneous interface upon the many communication kernels availableon current parallel architectures, and it can be easily and e�ciently implemented on thesearchitectures.POM has not been designed in order to compete with communication interfaces andlibraries such as PVM [3], MPI [15] or P4 [4]. These systems mainly aim at easing the taskof the programmer of distributed applications by o�ering a wide variety of communicationservices (primitives for packing and unpacking typed data in messages, notion of commu-nications within groups of processes, XDR coding for exchanging data in a heterogeneousnetwork, etc.) and dynamic task management. Most of the time, such services are not pro-vided directly by the communication kernels associated with the operating systems, whichonly o�er basic low level communication primitives (e.g. untyped data exchanges betweenneighbouring nodes).Implementing services more \comfortable" for the application programmer requires thatcomplex mechanisms be grouped in software layers above the communication kernels men-tionned earlier. Although they e�ectively ease the task of the application programmer, thesemechanisms are di�cult to implement and their use is costly. For example, dynamic taskmanagement leads to naming problems, often solved by the implementation of name serverprocesses. One can also have to create processes just for managing communication groupsdynamically. Packing and unpacking typed data in messages requires that many memoryoperations be performed in order to handle sends and receives.The cost of such mechanisms may turn out to be highly prohibitive in some applicationdomains, such as scienti�c computation, where the seek for performances prevails over theimmediate comfort of the application programmer.The prior goal of POM is not to o�er numerous services to the application programmer.It mostly aims at masking the speci�cities of the various communication kernels of today'smachines with no signi�cative degradation of performances. In that sense, our approach isquite similar to that of projects PICL [9] and PARMACS [5]. However, one of our mainpriorities while designing POM was to de�ne a model of virtual machine and to clearlyspecify the semantics of the communications in this model. We also wanted to de�ne aneasily portable machine |i.e. a machine that can be ported on a given platform in a shorttime| and whose implementation can be achieved e�ciently on many parallel platforms.We also gave POM sophisticated observation mechanisms. Actually, we consider thatany parallel programming environment should include a set of tools to help the programmerdesign and implement new distributed applications, be it for checking the correctness bydetecting and removing bugs, or for improving performances. Considering that even theslightest perturbation in the execution of a distributed application can ruin its analysis,we decided to incorporate observation mechanisms at a low level in POM. Moreover, theobservation technique fostered in POM is based on the analysis of execution traces, ratherthan on a direct observation of distributed applications (in which case the observation isachieved inside the application). The various observation mechanisms o�ered by POM canPI n�902

4 Fr�ed�eric Guidec and Yves Mah�eoall be enabled or disabled separately. The intrusion in the distributed applications observedis thus kept as low as possible.2 The virtual machine2.1 Model of the machinePOM de�nes a model of virtual machine that consists of a set of application nodes numbered0 to N � 1. These nodes communicate via two distinct media :� the �rst medium is a fully connected network devoted to point-to-point communica-tions. The channels of this network are FIFO and reliable (messages are neither lostnor desequenced).� the second medium allows broadcasting messages. It is also a fully connected networkwith reliable FIFO channels. With this medium, a node can send a message simulta-neously on all output channels.By de�ning fully connected networks, we intentionally avoided considering the actualphysical topology of parallel architectures. This allows for the evolution of modern parallelmachines in which messages are routed more and more e�ciently by the hardware (or bythe low level system). The underlying topology thus remains hidden to the programmer.The distinction between the two networks is necessary because on many parallel plat-forms, it is di�cult to ensure at low cost that virtual channels carrying both point-to-pointmessages and broadcast messages are FIFO. Actually, on these platforms, point-to-pointand broadcast communications rely on distinct protocols, and sometimes on distinct phy-sical devices too. It is for example the case on the Intel ipsc: point-to-point messages andbroadcast messages do not necessarily follow the same physical path from the sender to thereceiver(s). The operating system does not ensure the sequencing of messages of di�erentkind. Incorporating in POM a software layer �lling this gap would be prohibitive.Besides the application nodes, POM can include a complementary observation node.When this observer is present, one must consider a third communication medium: a net-work of reliable FIFO channels linking each application node to the observer. Through thisobservation medium, communications only occur from the application nodes towards theobserver. An application node can send a message on its outgoing channel. The observationnode can receive on any incoming channel and it can test the channels for pending messages.2.2 Communication modelThe communication paradigm implemented in POM is that of asynchronous message pas-sing. POM permits most of the variations around this kind of communication:� communications can be performed in point-to-point mode or in broadcast mode; Irisa

POM: a Virtual Parallel Machine Featuring Observation Mechanisms 5

Figure 1: Model of the virtual machine� sends are non-blocking, that is, the sending process resumes its execution as soon asthe message to be sent has been taken in charge by the underlying operating system;� receives can be deterministic (on a given incoming channel) or non-deterministic (onany incoming channel);� receives are blocking: the receiver resumes its execution only after the message awaitedhas been e�ectively received.Other kinds of communication, such as the rendez-vous, can be built easily on top of thesebasic operations.2.3 Task managingTasks are managed statically in POM: there must be a single process on each node of thevirtual machine, and all processes are created when the application is loaded on the targetplatform. This choice is mainly justi�ed by the fact that integrating multitasking in POMwould make its interface much more complicated. Porting POM would also become muchmore di�cult, if only because all parallel platforms do not o�er a multitasking executionkernel. Anyway, in the domain of scienti�c computation, for which POM was originallydesigned, multitasking is often perceived as either too costly, or simply useless. However,in order to permit the expression of intra-parallelism in each application node, we considerincorporating lightweight processes in a future version of POM.PI n�902

6 Fr�ed�eric Guidec and Yves Mah�eo2.4 Input/OutputCurrent researches (e.g. [8]) aim at de�ning high level interfaces for parallel I/O. Yet, thecapabilities of parallel architectures in this domain are still very di�erent. Most platformsdo not o�er any real parallel I/O mechanisms. This is the reason why we preferred not toincorporate any portable facilities for parallel I/O in POM.3 Observation mechanismsPOM makes it possible to combine application nodes together with an observation node,whose role is to collect and handle trace information relative to the behaviour of the ap-plication. The observation node can proceed to an \on the y" analysis of the informationreceived, or it can store this information for a post-mortem analysis. Actually, the observercan be just a part of a programming environment featuring software tools such as tracecollectors, distributed application debuggers, performance analysers and graphical viewers.Inserting \observation points"It is up to the application programmer to specify which events must be traced. To do so,the programmer must insert observation points in the code of the distributed application.This is quite similar to inserting breakpoints in a sequential program in order to performan interactive debugging. During the execution of the distributed application, every time anapplication node runs through an observation point, a trace message is sent to the observationnode. A trace message is typically composed of information for identifying and dating anevent. POM o�ers several dating mechanisms, whose management remains fully transparentto the application programmer. When loading a distributed application, the programmersimply needs to specify which kind of dating mechanism must be used. The events tracedcan thus be stamped and/or dated, and the dating can be achieved according to a local orglobal time reference.Stamping eventsStamping events makes it possible to analyse the synchronisations that occur between theapplication nodes during a distributed execution. These synchronisations are captured bythe notion of causal dependency, introduced by Lamport in 1978, and that abstracts thephysical time. Each application node manages a local stamp that is updated every time anapplication message is sent or received. POM ensures that the value of the local stamp ofthe sender is sent transparently together with the application message.To date, POM allows the user to choose between two kinds of stamps: vectorial stampswhose size remains constant during an execution, or \adaptive" stamps whose size can varydynamically [12]. POM was designed so that it can easily incorporate new kinds of stamps.Irisa

POM: a Virtual Parallel Machine Featuring Observation Mechanisms 7Physical dating of eventsPOM o�ers services for dating traced events. The default dating mechanism is based on thelocal time on each application node (value returned by the physical clock of the processor).POM also incorporates a mechanism for dating events globally. We opted for an approachbased on a statistical method that consists in estimating the drift of the physical clockof each application node with respect to a reference clock [7, 13]. Once the characteristicsof the clock drifts have been determined for each application node, it is possible to relatethe dates taken on the clocks of the application nodes to that of the reference node. Theaccuracy of the global time obtained this way is su�cient to ensure a coherent dating ofevents. The advantage of this approach is that it is not intrusive. The measurements requiredfor evaluating the clock drifts are performed before and after the actual execution of thedistributed application. This execution is thus not altered by the global dating mechanism.On the other hand, it is necessary to wait till the end of the distributed execution beforeglobal dates can be computed. The mechanism for global dating implemented in POM isthus only appropriate for a post-mortem trace analysis.Generic observersPOM provides the programmer with a set of primitives for developing observation pro-grams. These primitives make it possible to receive trace messages in a deterministic ornon-deterministic way, and to extract from these messages signi�cant information, such asthe name of the event traced, the physical date of this event (local or global), the value ofthe associated stamp, etc.The application programmer does not have to design a new observation program foreach distributed application. Actually, the primitives of POM permit the design of gene-ric observation programs that can perform the most simple observation functions, such ascollecting, �ltering and storing trace information. Generic observation programs can ea-sily interface with analysis tools such as those designed in our laboratory (visualizationof dependency graphs or graphs of global states, concurrency measurement, evaluation ofpredicates) [6, 10, 2]. Figure 2 shows the kind of visualization one can obtain. The graphreproduced in this �gure is the graph (ideal lattice) associated with the execution of an algo-rithm that computes a Jacobian on the Intel Paragon XP/S parallel machine. The regularityof the computation is obvious, and the presence of narrow parts in the graph is a hint thatthere may be a bad exploitation of the parallelism in some parts the computation.Observing with no observation nodeIt is neither always mandatory nor always desirable to allocate an observation node whenone simply needs to trace roughly the behaviour of a distributed application. Consequently,POM permits to trace a distributed execution without any observation node. In that case,instead of being sent to an observer, the information relative to the events traced is simplydisplayed on the standard output stream (stdout) of each application node. This approachPI n�902

8 Fr�ed�eric Guidec and Yves Mah�eo

• • • •
•
•
•
••••

•
•
•
•
••••

•
•
•
•
••••

••••
••••
••••
••••

••••

•
•
•
••••

••••

•••

•••

•••
•
•
•
••••

••••

•••

•••

•••

••••
••••
••••
••••

••••

•
•
•
••••

••••

•••

•••

•••
•
•
•
••••

••••

•••

•••

•••

••••
••••
••••
••••

••••

•
•
•
••••

••••

•••

•••

•••
•
•
•
••••

••••

•••

•••

•••

••••
••••
••••
••••

••••

Figure 2: Hasse diagram of the lattice produced from the execution traces of the calculationof a jacobiancan be quite useful, for example when one prefers to allocate all the physical nodes availableon a given platform to the distributed application. It can also be useful when only a fewevents are to be traced, or when the distributed application requires the full bandwidth ofthe communication channels.Execution without observationWhen loading a distributed application, the user must specify what kind of trace informa-tion must be generated every time an observation point is reached, and which observationprogram must be used to collect and deal with this information. Irisa

POM: a Virtual Parallel Machine Featuring Observation Mechanisms 9The user describes the kind of observation required by passing ad hoc parameters toPOM's loader, which is detailed in section 4.2. The user can thus observe the behaviour of adistributed application and, once the application behaves as expected, s/he can disable theobservation mechanisms in order to get better performances.Although the observation mechanisms incorporated in POM are implemented on eachplatform so as to be as less intrusive as possible, POM is made available as two distinct libra-ries. The �rst library includes all the communication and observation mechanisms whereasthe second library, which only provides the communication mechanisms, is likely to exhibitbetter performances on some platforms.It is important to notice that both versions of the library o�er exactly the same servicesto the application nodes. Switching between an observable distributed application and anon-observable one simply requires re-compilation.4 Interface4.1 Modules APS and OBSThe services o�ered by POM are made available to the application programmer as a setof around forty primitives that forms two distinct modules. Module APS (APplication Ser-vices) permits the development of application programs, whereas module OBS (OBservationServices) is devoted to the implementation of observation programs.The number of primitives has been intentionally limited in order to obtain a simple andeasily implementable interface. For example, POM does not propose any non-deterministicreceive because such a function can be easily obtained by combining some of the existingprimitives. Likewise, we decided not to type messages. The interpretation of the content ofa message is thus left to the application programmer and neither packing nor unpacking isnecessary.APS primitivesThe primitives of module APS are mostly communication primitives. Two primitives areavailable for sending messages, in point-to-point mode (APS send) or in broadcast mode(APS bcast). The corresponding receives (APS recv from and APS recv bcast from respectively)are blocking primitives that necessitate that the incoming channel be identi�ed explicitly.Non-deterministic receive can be realized thanks to the two primitives APS probe from andAPS probe bcast from which are non-blocking primitives that test an incoming channel belon-ging to either the point-to-point communication network, or the broadcast communicationnetwork. Primitives APS probe and APS probe bcast detect pending messages on any incomingchannel for one or the other communication network. Once a pending message has been de-tected, the primitives APS info pid and APS info length can be used to get its origin and itslength.PI n�902

10 Fr�ed�eric Guidec and Yves Mah�eoModule APS additionally incorporates a few primitives that provide information such asthe number of application nodes, the identity of the local node, the local time returned bythe physical clock of the processor, etc.Module APS provides a primitive APS trace that allows the programmer to insert ob-servation points in the application program. When this primitive is invoked, a message isautomatically generated and sent to the observation node. This message contains the infor-mation passed as parameters to APS trace by the programmer, namely a string identifyingthe event observed and optional untyped data whose interpretation is left to the program-mer. To this basic information, POM automatically adds dating data, whose nature dependson the observation options speci�ed by the user when loading the application (see section 4.2for more details).Figure 3 shows how these APS primitives can be used to build a SPMD application thatpasses two tokens around a bidirectional ring (one token in each direction).OBS primitivesModule OBS allows the observer to receive trace messages thanks to a primitive that blocks,waiting for pending messages on a given incoming channel (OBS recv trace from). A non-deterministic receive can be done using either OBS probe trace or OBS probe trace from, to-gether with OBS info pid and OBS info length. Module OBS o�ers no send primitive. Theobservation node can only collect trace messages and extract data �elds from these mes-sages. For this, some functions of module OBS give access to the user data as well as to thevalue of the stamp and the local date embodied in a trace message. The global date of anevent can only be obtained after the distributed application has completed by using functionOBS convert to gclock which converts the local date of an event into the corresponding globaldate.Figure 4 illustrates how OBS primitives can be used to write an observer that comple-ments the distributed application of �gure 3.4.2 The loaderThe procedure for loading and running a distributed application on a given platform ismost of the time highly dependent on the characteristics of this platform. Each architectureimposes its own requirements when it comes to allocating a partition of processors andloading executable programs on this partition. The POM environment includes a loader toolnamed pom load, whose implementation may depend on the platform considered but whoseinterface remains homogeneous on all platforms. For example, loading a spmd applicationthat consists of six application nodes running the executable program ring described in�gure 3 can be performed easily with this short command line:> pom load -s 6 -on all ring Irisa

POM: a Virtual Parallel Machine Featuring Observation Mechanisms 11#include "aps.h"#include <stdio.h>#de�ne MSG1 "clockwise"#de�ne MSG2 "anti-clockwise"main()fint me, pid1, pid2, lg, N;char msg[100];APS init(0,NULL);me = APS node id();N = APS nb nodes();| Node 0 starts communicationif (me == 0) fAPS send(1, strlen(MSG1), MSG1);APS send(N�1, strlen(MSG2), MSG2);g| First direction:|| determine the source of the �rst messagewhile (! APS probe());lg = APS info length();pid1 = APS info pid();|| receive from this sourceAPS recv from(pid1, lg, msg);APS trace("First receipt", sizeof(int), &pid1);|| send to the opposite neighbourpid2 = (pid1==((me+1)%N) ?((me�1+N)%N) :((me+1)%N));if (me != 0) APS send(pid2, lg, msg);| Second direction:|| receive from the neighbourwhile (! APS probe from(pid2));lg = APS info length();APS recv from(pid2, lg, msg);APS trace("Second receipt", sizeof(int), &pid2);|| send to the opposite neighbourif (me != 0) APS send(pid1, lg, msg);APS end();gFigure 3: Example of SPMD code for the application nodesPI n�902

12 Fr�ed�eric Guidec and Yves Mah�eo#include "obs.h"#include <stdio.h>main()fint pid,lg;char trace[200];OBS init(0,NULL);while (!OBS application ended()) fwhile (!OBS probe trace());pid = OBS info pid();lg = OBS info length();if (OBS recv trace from(pid,lg,trace) != 0)printf("node %d : %s from node %dnn",pid,OBS name �eld(trace),�(int�)OBS data �eld(trace));gOBS end();g Figure 4: Example of code for the observation nodeAssume that the program obs ring of �gure 4 must be used to observe the behaviour ofthis spmd application, then the command line becomes:> pom load -s 6 -on all ring -obs obs ringThe syntax recognized by the loader permits more complex loadings. One can for exampleload a di�erent executable program on each application node (or on a subset of the appli-cation nodes). One can also pass parameters to the various executable programs (includingthe observation program), specify which kind of observation must be achieved during theexecution, etc. The following example shows how to load and start a distributed applicationbased on the master-slave model, with a single master task running the executable masterand six slave tasks running the same program slave. The master program takes as a para-meter the number of slave tasks. Moreover, the behaviour of this distributed applicationmust be observed by the observation program my obs. The trace information must includevectorial stamps (option -stm VECT) and events must be dated according to a global time(option -gtm).> pom load -s 7 -on 0 master 6 -on 1..6 slave -stm VECT -gtm -obs my obsIn these examples the application nodes are given identi�ers which are logical identi�ers.It is necessary to map these logical identi�ers with the physical nodes of the target platform.Irisa

POM: a Virtual Parallel Machine Featuring Observation Mechanisms 13On some machines, such as the Intel ipsc and Paragon XP/S, the operating system giveseach physical node of a partition of size N a logical identi�er ranging from 0 to N � 1.Therefore, the user of POM does not always need to describe explicitly the mapping of theapplication nodes. Yet, this can be done thanks to the option -map recognized by pom load.The explicit mapping remains mandatory when the platform considered is composed of a setof workstations. It is then necessary to name explicitly the workstations that will supportthe distributed application. Hence, for loading and starting on two workstations namedexcalibur and durandal a distributed application composed of two programs ping and pong, thecommand line can be as shown below:> pom load -s 2 -on 0 ping -on 1 pong -map 0 durandal -map 1 excalibur5 ImplementationTo date, POM has been ported on the Distributed Memory Parallel Computers (DMPC)of irisa, that is, the Intel machines ipsc/2 and Paragon XP/S. POM was implementedon these platforms using the communication kernels NX/2, OSF/1 and SUNMOS. It wasalso implemented so as to allow the execution of distributed applications on a network ofworkstations (e.g. Sun Sparc workstations), using TCP-IP and UDP sockets. Another versionmakes it possible to simulate parallelism on a single workstation. These two versions are quiteuseful because they allow the design and the experimentation of new distributed applicationswithout monopolizing the ipsc or the Paragon. Applications can thus be loaded and runon real parallel machines only after they have been exhaustively tested and corrected. Wealso implemented POM above PVM [3]. However, this version does not exhibit very goodperformances on parallel supercomputers: the mechanisms of PVM are too complex andimply too many memory copies to be able to compete with the performances obtained withthe more \direct" implementations of POM.PerformancesThis section reports the performances observed when experimenting POM on several plat-forms. We tested several versions of POM corresponding to alternative implementations ona network of Sun workstations and on the Intel Paragon XP/S.In order to compare the bandwidths that can be obtained with the di�erent versions ofthe POM library, we developed a very simple distributed application that consists of twonodes exchanging messages alternatively.We also measured the inuence of the observation services on the performances of thecommunications. The technique we use for computing the global time has no e�ect uponthe behaviour of the application, as explained in section 3. On the other hand, the stampingmechanisms can alter the communication performances, although measurements show thatthis alteration remains negligible.PI n�902

14 Fr�ed�eric Guidec and Yves Mah�eo

Figure 5: Bandwidth observed for short messages exchanged between two workstations.
Figure 6: Bandwidth observed for long messages exchanged between two workstations.Figure 5 shows the maximal bandwidths observed when running our application on twoSun Sparc 4/50 IPX workstations connected to the same Ethernet trunk. With the libraryIrisa

POM: a Virtual Parallel Machine Featuring Observation Mechanisms 15POM-UDP |implemented using UDP sockets|, maximal bandwidth slightly better than1100 Kbytes/s is reached, which is almost the nominal bandwidth of the Ethernet (around1250 Kbytes/s). However, this version of POM must be used with caution because it doesnot allow fully reliable communications. Figure 5 also shows that the library POM-PVM|another version of POM implemented above PVM 3.3.6| permits us to get interestingperformances (around 950 Kbytes/s) for short messages, whereas the library POM-TCP |which uses TCP sockets| exhibits lower performances (around 850 Kbytes/s for messageslonger than 20 Kbytes, and only 15 Kbytes for messages shorter than 1460 bytes).Although POM-PVM leads to better performances than POM-TCP for short and me-dium size messages, �gure 6 shows that for long messages, the performances of POM-PVMdecrease signi�cantly while the performances of POM-TCP are unaltered.Figure 5 also shows the bandwidth observed when the stamping service is enabled inPOM-TCP (a stamp is then associated with each message sent by an application node).Both curves (POM-TCP with and without stamping) are almost superimposed. Figure 6does not distinguish between the performances of POM-TCP with and without stamping,because the di�erence cannot be measured.

Figure 7: Transmission times observed for short messages on the Intel Paragon XP/S.Figure 7 shows the transmission times measured with several versions of the POM librarydeveloped for the Intel Paragon XP/S. This �gure shows that the latency observed withPOM-PVM is far greater than that observed with POM-NX (implemented directly abovePI n�902

16 Fr�ed�eric Guidec and Yves Mah�eothe NX-OSF/1 kernel). We also incorporated in �gure 7 the transmission times observedwith POM-NX when the stamping service is enabled. It turns out that with the currentversions of POM-NX, the latency is signi�cantly increased. However, we are con�dent thatwe can reduce this alteration in the near future by slightly modifying the implementationof POM-NX. Anyway, the global cost of stamping mechanisms remains acceptable. Besides,the performances of POM-NX when the stamping service is enabled are better than thoseof POM-PVM when the stamping service is disabled.

Figure 8: Bandwidth observed on the Intel Paragon XP/S.Figure 8 shows the maximal bandwidths observed on the Paragon for long messages (i.e.1 Mbyte and more). The performances observed when the stamping service is enabled donot appear in this �gure, because they superimpose with those obtained when the stampingservice is disabled. The maximal bandwidth observed with POM-NX and with POM-PVMis around 82 Mbytes/s. We veri�ed that this value corresponds to that of the maximalbandwidth that can be obtained when calling directly the NX primitives on our Paragon inits current con�guration (OSF/1 1.0.4, patch 2.5.1).6 ConclusionPOM allows the programmer of a distributed application to disregard a given architectureor a given operating system to a large extent. The communication services it o�ers are basicservices, but they can be easily and e�ciently implemented on most parallel machines. POMthus �ts especially well the design of applications for which performances are the primaryIrisa

POM: a Virtual Parallel Machine Featuring Observation Mechanisms 17concern. Moreover, the observation services it provides broaden its range of application,since they permit the generation, the collection and the exploitation of execution tracesand incorporate mechanisms for stamping events and for computing global dates. POM cantherefore be perceived as a convenient facility to interface a distributed application withmany trace analysers and graphical viewers.To date, POM has been ported on several platforms as di�erent as the Intel Para-gon XP/S and a network of workstations. We could thus check its e�ective portability andit is now part of the various parallel programming environments developed in our labora-tory: the Pandore environment [1], a compiler-paralleliser for HPF-like languages; the Ei�elParallel Programming Environment (EPEE) [14]; and Echidna, a parallel execution environ-ment for programs written in Estelle [11]. In these three environments, communications arenot managed explicitly by the application programmer, they are automatically dealt withby the compiler (in the case of Pandore and Echidna) or encapsulated in a library (in thecase of EPEE). In this kind of context, POM turns out to �t our needs perfectly.In the future, we may port POM on new platforms such as the Cray T3D and theIBM SP1. We would also like to experiment POM on a set of workstations connected via aFDDI network. We also consider designing an extended POM featuring parallel I/O mecha-nisms and allowing lightweight processing on each application node.References[1] F. Andr�e, M. Le Fur, Y. Mah�eo, and J.-L. Pazat. The Pandore Compiler: Overviewand Experimental Results. Technical Report 869, IRISA, Rennes, October 1994.[2] C. Bareau, B. Caillaud, C. Jard, and R. Thoraval. Measuring Concurrency of RegularDistributed Computations. In TAPSOFT'95, Theory and Practice of Software Deve-lopment, LNCS, Springer Verlag (to be published), Aarhus, May 1995. Also availableas research report 2394, INRIA, October 1994.[3] A. Beguelin, G. A. Geist, W. Jiang, R. Manchek, K. Moore, and V. Sunderam. ThePVM Project. Technical Report, Oak Ridge National Laboratory, February 1993.[4] R. Butler and E. Lusk. User's Guide to the P4 Programming System. Technical Re-port TM-ANL-92/17, Argonne National Laboratory, 1992.[5] R. Calkin, R. Hempel, H.-S. Hoppe, and P. Wypior. Portable Programming with thePARMACS Message-Passing Library. Parallel Computing, 1994.[6] C. Diehl, C. Jard, and J.-X. Rampon. Reachability Analysis on Distributed Executions.In JP. Jouannaud MC. Gaudel, editor, Proc. TAPSOFT,93 LNCS 668, pages 629{643,Springer{Verlag, Orsay, Paris, April 1993.[7] A. Duda, G. Harrus, Y. Haddad, and G. Bernard. Estimating Global Time in Dis-tributed System. In Proc. 7th Int. Conf. on Distributed Computing Systems, Berlin,1987.PI n�902

18 Fr�ed�eric Guidec and Yves Mah�eo[8] P. Corbett et al.MPI-IO: A Parallel File I/O Interface for MPI. Research Report 19841(87784), IBM T.J. Watson Research Center and NASA Ames Research Center, Novem-ber 1994.[9] G. A. Geist, M. T. Heath, B. W. Peyton, and P. H. Worley. A User's Guide to PICL -A Portable Instrumented Communication Library. Technical Report ORNL/TM-11616,Oak Ridge National Laboratory, May 1992.[10] C. Jard, T. J�eron, G.-V. Jourdan, and J.-X. Rampon. A General Approach to Trace-Checking in Distributed Computing Systems. In Cellary W., editor, Proc. ICDCS,Poznan, Poland, June 1994.[11] C. Jard and J.-M. J�ez�equel. ECHIDNA, an Estelle-Compiler to Prototype Protocols onDistributed Computers. Concurrency Practice and Experience, 4(5):377{397, August1992.[12] C. Jard and G.-V. Jourdan. Dependency Tracking and Filtering in Distributed Com-putations. Research Report 851, Irisa, August 1994. See also \On the Coding of De-pendencies in Distributed Computations", Short paper, ACM PODC, Los Angeles, Au-gust 1994.[13] J.-M. J�ez�equel. Building a Global Time on Parallel Machines. In Proc. of the 3rd Inter-national Workshop on Distributed Algorithms, pages 136{147, LNCS, Springer Verlag,1989.[14] J.-M. J�ez�equel. EPEE: an Ei�el Environment to Program Distributed Memory ParallelComputers. Journal of Object Oriented Programming, 6(2):48{54, May 1993.[15] Message Passing Interface Forum. Document for a Standard Message{Passing Interface.Technical Report CS-93-214, University of Tennessee, November 1993.
Irisa

