Delta-State-Based Synchronization
of CRDTs 1n Opportunistic Networks

Frédéric Guidec'??, Yves Mahéo'-?, Camille Noas?
1 IRISA, Université Bretagne Sud, France
2 Laboratoire Cogitamus, France

Abstract—Conflict-Free Replicated Data Types (CRDTs) are
distributed data types that support optimistic replication: replicas
can be updated locally, and updates propagate asynchronously
among replicas, so consistency is eventually obtained. This abil-
ity to tolerate asynchronous communication makes them ideal
candidates to serve as software building blocks in opportunistic
networks (OppNets), that is, mobile networks in which the
dissemination of information can only depend on unpredicted
transient radio contacts between pairs of nodes. In this paper
we investigate the problem of implementing CRDTSs in an Opp-
Net, and we propose a delta-state-based algorithm to solve this
problem. Experimental results confirm that this algorithm ensures
the synchronization of CRDT replicas in an OppNet, and that it
outperforms a pure state-based synchronization algorithm when
dealing with container CRDTs.

I. INTRODUCTION

Conflict-free Replicated Data Types (CRDTs) are used in
distributed system when eventual consistency of replicated data
is sufficient [1], [2], allowing replicas to diverge temporarily
while ensuring that they will eventually be reconciled into the
same state. Any replica of a CRDT can be updated locally,
without any coordination with other replicas. Information about
each update is passed asynchronously to the other replicas via
a synchronization protocol. When all replicas have received the
same set of updates they reach the same state.

CRDTs can be implemented as either operation-based
CRDTs, or state-based CRDTs. In an operation-based CRDT,
whenever an operation (update) is performed on a replica, this
operation is embedded in a message and sent to all other
replicas, which can then update their own state accordingly.
In a state-based CRDT, an operation is only applied to the
local replica’s state. Each replica periodically synchronizes with
other replicas by sending them its entire state. Upon receiving
the state of another replica, the receiver merges its local state
with the received state, using a function that deterministically
computes the join (least upper bound) of both states.

Unlike operation-based CRDTs, state-based CRDTs do not
require that each update be sent to all other replicas. It is
only needed that each replica synchronizes sufficiently often
with a few other replicas. Eventual consistency is ensured as
long as the synchronization graph is connected [2]. Shipping
entire states between replicas can yield a major communication
overhead, though. Delta-state CRDTs (or delta CRDTSs for
short) have been proposed as a means to reduce this overhead
by shipping only partial information about the sender’s state

(typically, a representation of the effect of recent update oper-
ations on the state) [3], [4].

CRDTs can be used in distributed systems in which nodes
may crash and network partitions may occur. Replicas will how-
ever ultimately converge, provided crashed nodes eventually
recover, and partitions heal. Opportunistic networks (OppNets)
are typically networks that exhibit such characteristics. An
OppNet is a network whose nodes are mostly mobile, and
that operates solely by exploiting transient direct radio contacts
between pairs of nodes [5].

Many message forwarding protocols have been designed
specifically to operate in OppNets, based on the “store, carry,
and forward” principle: each mobile node can serve as a “data
mule” for messages it has either produced itself or received
recently, storing these messages in a local cache, and carrying
them for a while before they can be forwarded to other nodes.
Implementing operation-based CRDTSs based on this model is
rather straightforward. Each operation performed on a replica
can be embedded in a message, which is then broadcast using
for example an epidemic forwarding protocol. But broadcasting
many small messages network-wide using the store, carry, and
forward approach is resource consuming, since each node is
expected to store as many messages as possible in its local
cache, for as long as possible, in order to maximize their
propagation in the network.

In this paper we investigate the implementation of state-
based CRDTs (more specifically, delta-state based CRDTSs) in
OppNets. Unlike operation-based CRDTs, state-based CRDTs
do not require broadcasting each update network-wide. Instead
each contact between two nodes can be exploited as an op-
portunity for these nodes to synchronize pair-wise. Since the
messages are exchanged only between neighbor nodes while
they are in radio contact, they are not meant to propagate
network-wide, so no forwarding protocol is required and there
is thus no need for each node to maintain a message cache.
The only information that needs to be maintained over time is
already contained in each replica’s state, and this is sufficient
to synchronize replicas. State-based synchronization requires
that entire states be exchanged between replicas, though. For
large CRDTs this approach can yield significant communication
overhead. In this paper we focus on delta-state-based synchro-
nization, which consists in shipping only partial states (called
deltas) between replicas whenever possible [3], [6], [7].

II. SYSTEM MODEL

As a general rule, in an OppNet, interactions are based solely
on unplanned and transient pair-wise radio contacts between
neighbor devices. So any opportunistic interaction protocol
must tolerate communication disruptions. The algorithm defined
in the next section is meant to run on top of a basic commu-
nication layer, whose characteristics are detailed below. This
communication layer only allows a mobile device to exchange
messages with its direct neighbors. We therefore do not assume
that a network-wide message routing or dissemination protocol
is implemented in the network.

Event new_neighbor() is raised by the communication layer
whenever a radio contact is established with a new neighbor,
and function current_neighbors() can be called to get a list
of the current neighbors. The way neighbor discovery is ac-
tually performed in the communication layer depends on the
characteristics of the underlying transmission technology (e.g.,
Bluetooth or Wi-Fi in ad hoc mode).

Function send() is used to send a message to a neighbor. This
transmission may fail for different reasons, for example if the
targeted neighbor has just moved out of transmission range. In
any case function send() does not return a status, since we do
not assume that transmission failures can be detected.

Event receive() is raised by the networking layer when a
new message has been received from a neighbor. Corrupted
messages, if any, are assumed to be discarded by the commu-
nication layer.

III. A DELTA-STATE-BASED-SYNCHRONIZATION
ALGORITHM

A synchronization algorithm designed for OppNets must
use radio contacts between mobile nodes as opportunities for
these nodes to synchronize the CRDT replicas they hold. A
pure state-based synchronization protocol can be sufficient for
CRDTs that don’t grow much, such as counters and registers,
but for container-like CRDTSs that can aggregate large amounts
of data, such as sets or maps, it is preferable to rely on a
synchronization protocol that only ships partial information
about a replica’s state whenever possible. The algorithm we
present below ships either digests, deltas (partial states), or
full states depending on circumstances in order to achieve
the synchronization of replicas. This algorithm is presented
in two flavors: one for causal CRDTs (whose implementation
requires maintaining some kind of causal context in a replica’s
metadata), and another one for non-causal CRDTs, for it
appears that the very same algorithm could not be used for
both kinds of CRDTs.

A number of functions must be defined in order to process
the replica on each node. The signatures of these functions
are presented in Alg.1. How these functions are implemented
depends on the actual kind of CRDT considered.

Function merge() must be used to merge the state of the local
replica with the (full or delta) state received from a neighbor.
Function ger_digest() must return the digest of a replica’s
state. This digest is assumed to summarize this state in a very

Algorithm 1 Functions for delta state-based synchronization

def ID_T: String // or MACaddr, or IMEI, etc.
def DIGEST_T: xxx // Hashcode or Version_Vector

static ID_T self.id «+» oppnet_id()
REPLICA_T self.state «+» L

function merge(REPLICA_T t1, REPLICA_T t2): REPLICA_T
function get_digest(REPLICA_T t): DIGEST_T

function generate_delta(MUTATOR m): REPLICA_T

function get_missing(REPLICA_T s1, REPLICA_T s2): REPLICA_T
function get_missing(DIGEST_T d1, REPLICA_T s2): REPLICA_T

compact form, so its transmission should be far less expensive
than that of the full state. For non-causal CRDTs (e.g., GO-
Counters, GO-Sets), the digest may typically be defined as
a simple hash code. For causal CRDTs, the digest can be
defined as a version vector. Such a digest makes it possible to
determine what is missing in each replica or, more formally,
what part of a replica’s state would be required to strictly
inflate the other replica’s state. Function generate_delta() will
be executed whenever an update (more formally, a mutator) is
applied to the local replica. This function returns a delta that
expresses the effect of the mutation. This delta can be sent to
another replica, to be merged there with its own local state.
Function get_missing() compares two replica states s; and s,
and determines what part of s, would be required to strictly
inflate s1. This function returns a delta state, which captures
the data required to inflate s; accordingly, or L (bottom) if
there is no way to inflate s;. Note that unless s; and s, are
equal, ger_missing(sy, s2) and get_missing(sa, s1) will always
return different results. Function get_missing() can also be used
when the digest of another replica has been received. When this
function is implemented for a non-causal CRDT (whose digest
is only defined as a hash code), it either returns L (bottom)
if both digests are equal, or s, if they are different. For a
causal CRDT (whose digest is defined as a version vector),
the function determines based on d; and s, what part of s;
would strictly inflate the other replica.

Any CRDT for which these functions are implemented is
actually a A-CRDT [4], that is, a CRDT whose replication can
be obtained by propagating a delta (A) of the current state that
is missing in another replica.

The delta-state-based synchronization algorithm we propose
is presented in Alg.2. Red code applies only for a non-causal
CRDT, and blue code applies only for a causal CRDT.

When two nodes get into contact, one of the nodes sends
its current digest to the peer node (lines 01-02). When a
host receives a digest from a neighbor (line 03), function
get_missing() is invoked to compare the received digest to the
local digest, and determine if part of the local state can be sent
to the neighbor.

The way function get_missing() behaves depends on whether
the CRDT considered relies on causal context or not. For a non-
causal CRDT, whose digest is only a hash code, comparing the
received and local hash codes only allows to determine if they
are equal or different (lines 37-39). If they are equal, then the

Algorithm 2 Delta-state-based (A-SB) synchronization algo-
rithm [Red code: non-causal CRDT, blue code: causal CRDT]

01 upon new_neighbor(neigh_id) do
02 if (self.id < neigh_id) then send(neigh_id, self.digest)

03 upon receive(neigh_id, neigh_digest) do
04 D <« get_missing(neigh_digest, self.state)
05 if (D # L) then send(neigh_id, D)

06 if (neigh_digest after self.digest) then

07 send(neigh_id, self.digest)

08 fi

09 function disseminate(targets, output):
10 forall id in targets do

11 send(id, output)

12 done

13 function process_input(neigh_id, input)
14 //input may be either a full state ora A
15 Ay, < get_missing(input, self.state)
16 if (Aj; # L) then

17 self.state < merge(self.state, A;;)

18 self.digest < get_digest(self.state)

19 targets = current_neighbors() \ neigh_id
20 disseminate(targets, A;;)

21 fi

22 upon receive(neigh_id, neigh_delta) do
23 process_input(neigh_id, neigh_delta)

24 upon receive(neigh_id, neigh_state) do

25 neigh_digest «— get_digest(neigh_state)

26 A, < get_missing(neigh_digest, self.state)
27 it (Ao # L) then send(neigh_id, Agur)

28 process_input(neigh_id, neigh_state)

29 upon update(m) do

30 self.digest <— get_digest(self.state)

31 Ay < generate_delta(m)

32 disseminate(current_neighbors(), Agur)

33 function get_missing(CRDT t1, CRDT t2): M
34 M+« {mect2state, m ¢ t1.state }
35 M «— get_missing(t1.state.digest, t2)

36 function get_missing(DIGEST_T d1, CRDT t2): M
37 if (d1+# t2.state.digest)

38 then M <« t2.state

39 elseM<«+— L

40 M« { me t2.state, mtimestamp > d1 }

state of the remote host is presumed to be equal to the local
state, in which case function get_missing() returns L (bottom)
and nothing is sent to the peer host. If both digests are different,
then there is no way to determine exactly what part of the local
state is missing on the remote peer, so function get_missing()
returns the full state of the local replica, which is then sent
to the remote peer. For a causal CRDT, function get_missing()
can determine exactly what is missing in the remote host, and
return a delta accordingly (line 40). Besides, if the local version
vector is late compared to that of the peer node, then the local
digest must be sent to the peer as well (lines 06-08).

Upon receiving a full state (line 28), function get_missing()
is invoked to compare this state (whose digest is assumed to
be embedded in the state’s metadata) to the local digest, and
thus determine if part of the local state can be sent back to the

peer host (line 27). Function process_input() is then invoked
to determine what part of the received state can be merged
with the local state. Function ger_missing() is therefore invoked
again (line 15), but this time it is to determine what can be
gained on the local host, rather than what is missing on the
remote host. The actual gain, if any, is merged with the local
state, and function disseminate() is invoked to send this data
to all the current neighbors of the local host, except the one
from which new data has just been received (thus avoiding the
retro-propagation of information between replicas).

Note that a host may be connected to several peers simulta-
neously. In a connected component of the graph, information
can therefore disseminate rapidly, rather than propagate only
when new contacts occur. Relaying what has just been received
from one neighbor to all other neighbors makes sense in an
OppNet, where contacts are transient and can be broken at any
time: forwarding deltas transitively is a way to speed up their
dissemination. A side-effect of this approach is that a host may
receive the same input several times from distinct neighbors.
This is the reason why function get_missing() is systematically
invoked when processing an input (line 15), so as to discard
any redundant information.

Upon receiving a delta state (line 22), function pro-
cess_input() is invoked directly, since there is no way for the
receiver to determine what may be missing on its neighbor
based on a delta state: this is only possible when receiving
either a digest or full state.

Finally, whenever an update operation occurs on the local
replica (line 29), a delta is generated based on the operation
(formally, the mutator) m that has been applied locally, and
this delta is sent immediately to all the current peers of the
local host. Note that the local digest is adjusted whenever the
local state is changed, that is, when an update is applied locally
(line 30), or when the local state is merged with another state
(line 18).

IV. EXPERIMENTATION

We describe in the following one of the experiments we
conducted with the LEPTON emulation platform [8] in order
to observe how our delta-state-based synchronization algorithm-
can perform in realistic conditions.

Mobility and application scenario: We consider a population
of 20 nodes moving in a 200m x 200m area, according to
a Levy walk model. The node speed varies between 1 and
2m/s, the relation between a flight length / (0 to 100m) and
its duration Aty is Aty = k.'=P, with k = 30.55 and p = 0.89.
The duration of each pause is chosen randomly (with a uniform
distribution) between 0 and 10s, the radio range is of 30 m.

The CRDT involved in the application scenario is an AW-
Set (Add Wins Set), a distributed set to which items can either
be added or removed [2]. An AW-Set is a causal CRDT, and
its digest can be expressed as a version vector. This makes it
possible to determine which events in a replica’s state occurred
before, after, or concurrently with the events captured in another
replica’s state (whose version vector is known). The application

1200 7\\ T TT 1T TTTT TTTT TTTT TTTT 1200 7\\ TT TTTT TTTT TTTT TTTT \\\\7 100 4
':E>:1000 — — '§:1000 — — 80
3 800 - — 4 g 80 e Il Metrics | SB | A-SB]
@ 600 |- u @ 600 [Digests - 5 # digests - 1201
‘@ @ O 40
2 400 [— 400 - — # full states | 1415 -
= = L Full states (SB) —— # -
20 delta states 4736
200 — — 200 —
Delta states (A-SB)
o bl ; i 0 Lo Total | 1415 | 5937
00:00 00:10 00:20 00:30 00:40 00:50 01:00 00:00 00:10 00:20 00:30 00:40 00:50 01:00 0 200 400 600 800 1000 1200

hh:mm hh:mm

(a) SB algorithm (b) A-SB algorithm

Msg size (# items)

(c) CDF of message size (d) Number of messages

Figure 1. AW-Set synchronization

timeline is split in two phases. During phase I, a new item
is added by each node to the AW-Set every minute and is
removed 90 seconds later. Phase I continues for 30 minutes,
afterwards all nodes enter phase II, during which they do not
update their local replica anymore. Phase II is meant to verify
that all replicas converge eventually, and that the network traffic
observed between neighbor nodes varies accordingly.

Synchronization algorithms: We implemented a pure state-
based (SB) algorithm, as well as the Delta State-Based (A-
SB) synchronization algorithm presented in Section III. The
SB algorithm is meant to serve as a baseline. It works as
follows: whenever a new contact is established between two
nodes, one of these nodes sends its full state to the peer node.
Upon receiving this input, the receiver compares it with its own
local state, and if both states are different it sends its own state
to the peer node. Both received states are of course merged
with the local state.

Results: Figure 1 presents the results observed when running
the AW-Set scenario. In this figure the size of a message
exchanged between two nodes is expressed in terms of items
contained in the message’s payload. This is because an AW-
Set can be used to store all kinds of items (e.g., numerical
values, character strings, structured types). In any case the size
of a message transporting a full state or delta state is roughly
proportional to the number of items in this state, including
the associated metadata if needed. The drawback of using the
SB algorithm is apparent: the size of the messages exchanged
by neighbor nodes grows rapidly and reaches a plateau once
all replicas have converged (Fig. 1.a), whereas with the A-SB
algorithm (Fig. 1.b), only digests and deltas are shipped. Since
the digests exchanged by neighbor nodes are version vectors, it
is possible to avoid shipping full states altogether. The table in
Fig. 1.d and the CDF distributions presented in Fig. 1.c confirm
that although the number of messages exchanged with A-SB is
larger than with SB, these messages are a lot smaller, so the
overall communication load is reduced significantly with the
delta-state-based approach.

V. CONCLUSION

In this paper we have addressed the problem of synchronizing
CRDT (Conflict-free Replicated Data Type) replicas in an op-

portunistic network (OppNet), leveraging transient contacts be-
tween mobile nodes to synchronize the replicas maintained on
these nodes. The synchronization algorithm we have proposed
uses a delta-state-based approach, using messages containing
either state digests, delta states, or full states in order to mitigate
the overhead of always shipping full states, as is commonly
achieved in pure state-based synchronization protocols. This
makes it effective for the synchronization of container-like
CRDTs such as sets, lists, maps, graphs, etc. Experimental
results produced by running this algorithm to synchronize Add
Wins Sets in an emulated opportunistic networking setting
confirm that it outperforms a pure state-based synchronization
algorithm, while ensuring the same convergence of all replicas.

FUNDING

This work was supported by the French ANR (Agence
Nationale de la Recherche) under grant number ANR-16-CE25-
0005-02.

REFERENCES

[1] M. Shapiro, N. Preguica, C. Baquero, and M. Zawirski, “A Comprehensive
Study of Convergent and Commutative Replicated Data Types,” INRIA,
Tech. Rep. 7506, Jan. 2011.

[2] N. Preguica, “Conflict-free Replicated Data Types: an Overview,” Arxiv
Preprint https://arxiv.org/abs/1806.10254, 2018.

[3] P. S. Almeida, A. Shoker, and C. Baquero, “Efficient State-Based CRDTs
by Delta-Mutation,” in Networked Systems. Springer, 2015, pp. 62-76.

[4] A. van der Linde, J. a. Leitdo, and N. Pregui¢a, “A-CRDTs: Making 8-
CRDTs delta-based,” in 2nd Workshop on the Principles and Practice
of Consistency for Distributed Data (PaPoC 2016). London, United
Kingdom: ACM, Apr. 2016.

[5] L. Pelusi, A. Passarella, and M. Conti, “Opportunistic Networking: Data
Forwarding in Disconnected Mobile Ad Hoc Networks,” IEEE Communi-
cations Magazine, vol. 44, no. 11, pp. 134-141, Nov. 2006.

[6] P. S. Almeida, A. Shoker, and C. Baquero, “Delta state replicated data
types,” Journal of Parallel and Distributed Computing, vol. 111, pp. 162—
173, 2018.

[7] V. Enes, P. S. Almeida, C. Baquero, and J. a. Leitdo, “Efficient Synchro-
nization of State-Based CRDTS,” in 35th International Conference on Data
Engineering (ICDE’19). Paris, France: IEEE, Apr. 2019, pp. 148-159.

[8] A. Sanchez-Carmona, F. Guidec, P. Launay, Y. Mahéo, and S. Robles, “Fill-
ing in the missing link between simulation and application in opportunistic
networking,” Journal of Systems and Software, vol. 142, pp. 57-72, Aug.
2018.

