
Resource Management for Parallel Adaptive Components

Luc Courtrai, Frédéric Guidec, Nicolas Le Sommer, Yves Mahéo
VALORIA, Université de Bretagne-Sud, France

{Luc.Courtrai
�
Frederic.Guidec

�
Nicolas.Le-Sommer

�
Yves.Maheo}@univ-ubs.fr

Abstract

This paper reports the development of the Concerto plat-
form, which is dedicated to supporting the deployment of
parallel adaptive components on clusters of workstations.
The current work aims at proposing a basic model of a par-
allel component, together with mechanisms and tools for
managing the deployment of such a component. Another
objective of this work is to define and implement a scheme
that makes it possible for components to perceive their run-
time environment. This environment is modelled as a set
of resources. Any component can discover and monitor re-
sources, using the services offered by the platform.

1 Introduction

Clusters of computers are now found in an increasing
number of laboratories and companies where they take on
various forms. They may for instance play the role of low-
cost supercomputers. A group of workstations connected
via a high performance network may also be used as a clus-
ter, even though these workstations are still exploited for
common purposes. Such clusters can make interesting re-
sources for Grid Computing. In this perspective, the ob-
jective may be to deploy parallel applications on comput-
ing infrastructures that contains several clusters. However,
proposing a software solution that allows the development
of applications that take benefit from these architectures is
still a challenge.

Several approaches can be envisaged for designing and
deploying an application that exploit one or several clusters.
Among them, the component approach is worth being stud-
ied. It allows complex applications to be designed by as-
sembling available components. We consider in this paper
the case where each component is designed as a “parallel
code” that is to be deployed on a cluster

Even if it is possible to design a component in an ad hoc
manner so that it exploits at best a specific architecture, it
is preferable to favour the component’s portability. Each
component should ideally be deployable on a large range of

clusters. To achieve this goal, one may think of extending
the notion of virtual machine to the entire cluster in order to
hide the specificities of the underlying hardware platforms.
Another approach, that we explore, consists in enforcing the
adaptability of the component so it can allow for the hard-
ware and software specificities of the platforms on which it
is deployed.

Component adaptation has several facets. Auto-
adaptation occurs when the component itself is responsible
for deciding to adapt its behaviour to external conditions.
Such a component can be referred to as an adaptive com-
ponent. In other cases, it is the environment, especially the
hosting platform, that enforces an adaptation strategy by im-
posing that a component modify its behaviour according to
explicit directives. In this case, the component, must have
been designed so as to be able to receive such directives
from the platform. Such a component can be referred to
as an adaptable component. The difference between these
two forms of adaptation is not discussed any further in this
paper. Instead, we focus on the basic mechanisms that are
necessary in both cases to provide information that makes
possible the decision process and leads to adaptation.

If the adaptive component has the possibility to obtain in-
formation on the target architecture, it will be able to choose
an appropriate configuration when it is deployed. The state
of the platform can be expressed in the form of qualitative
and quantitative information covering aspects such as the
number of nodes in the cluster, the computation power of
these nodes, the bandwidth offered by the communication
links, the availability of a given peripheral device, or that of
a specific software library. However, an initial configuration
of the component may not always be sufficient. Whenever
a component cannot be deployed on a dedicated platform,
it may have to share resources with other components, and
even with other applications. In such circumstances new
conditions may arise at runtime, requiring that components
change their behaviour accordingly. A component should
thus have means to dynamically gather information pertain-
ing to its environment, so that it can adapt itself, for exam-
ple by redistributing data, by balancing its load differently,
or by choosing a new algorithm. The kind of information

1



that can help take such decisions is for instance the CPU
load observed on a given node, or the bandwidth available
on a link.

This paper describes the Concerto software platform.
This platform supports the deployment of parallel compo-
nents on a cluster, and it provides these components with
means to adapt themselves. The platform is dedicated to the
deployment and the support of parallel components written
in Java. Information that feeds adaptation decisions comes
from the observation of resources. In this particular context
the term “resource” has a broad meaning. We thus envisage
to deal with:

� “system” resources such as the memory or the CPU of
each cluster node, or a scientific computing library;

� “conceptual” resources related to the application itself,
such as the sockets or threads used by a component.

Our aim is to develop mechanisms that make it possible to
collect information related to a non-limited set of such re-
sources. The infrastructure we propose is extensible, as it
is designed in such a way that new types of resources may
be easily allowed for when needed. The Concerto platform
can thus evolve so as to take into account new hardware and
software specificities of clusters.

The remaining of this paper is organized as follows. Sec-
tion 2 introduces the basic model of parallel components we
propose, and it describes the implementation of the deploy-
ment mechanisms. The modelling of resources within the
platform and the tools that permit the observation of their
state are presented in section 3. Section 4 concludes the
paper.

2 Parallel Components

Component-based application development is already
possible through the use of component technologies pro-
posed by industry, such as Microsoft COM [10] or Sun’s
Enterprise Java Beans. OMG (Object Management Group)
also develops its own solution with CORBA Component
Model [11]. However theses technologies have not been de-
signed to support parallel components, that is, components
that involve parallel activities. Some preliminary work has
been carried out on models or platforms that target paral-
lel components [1, 5]. In this work the main objective is to
reuse large scientific code relying on data parallelism.

The Concerto platform is dedicated to adaptive parallel
components. Although the concept of parallel component
is central to our project, our aim is not to propose a new
component model, but to provide an infrastructure that en-
forces the adaptability of components. In this perspective,
we propose below a minimal definition of what we mean by
parallel component in Concerto.

A programmer who wishes to develop a parallel com-
ponent for Concerto must design his component as a set of
cooperating threads. He must also define the factory part of
the component (name, interface, implementation). The plat-
form offers facilities for managing non-functional aspects
of the component.

Component interface

A parallel component hosted by the Concerto platform has
three interfaces.

� Factory interface: No constraints are put on the type
of the factory interface. The programmer may for ex-
ample propose an interface based on Java RMI. The
component is then an object implementing the Remote
interface, whose methods will be called remotely by
the clients of the component. The component may also
be a server listening to a port of the machine on which
a client must open a socket. One may also design a
distributed interface (that is to say, an interface associ-
ated with several objects that each implement a part of
the interface) in order to be connected in parallel with
another parallel component.

� Life cycle interface: Through this interface, the dif-
ferent steps of the life of the component can be con-
trolled. To date, this mainly covers deploying the com-
ponent on the cluster, and stopping this component. In
the future it should be possible to distinguish between
several phases within the deployment process, and to
propose persistence services.

� Resource interface. The component exhibits a resource
interface through which the user accesses informa-
tion related to the resources used by the component.
More precisely, the component itself is considered as
a resource in the Concerto platform. Hence Concerto
components are required to implement an observe()
method that returns an observation report (see Sec-
tion 3 for more details). By default, the observation
report generated by a component aggregates the obser-
vation reports on all the resources it uses. If the com-
ponent programmer finds it useful (for example for se-
curity reasons), he may restrict the amount of informa-
tion disclosed to the component’s client by defining a
particular type of observation report.

Internal structure of a component

When building a parallel component, the programmer de-
velops a set of Java threads (actually a set of classes imple-
menting the Runnable interface). These threads cooperate
to perform the methods of the component’s factory inter-
face.

2



Threads are gathered into placement (or distribution) en-
tities called fragments. A fragment is a set of threads that
belong to a single component, and that are bound to run
within the same virtual machine on the same cluster node.
These threads will thus be able to share a common object
space. Communication and synchronization between the
threads of a fragment are performed just like in any other
multi-threaded Java program. On the other hand, threads
that belong to different fragments must rely on external
communication and synchronization mechanisms, such as
sockets and RMI.

Component deployment

In order to deploy a component on a cluster, one must pro-
vide a description file for this deployment. This file de-
scribes:

� the component’s structure (expressed in terms of the
fragments and threads to be deployed);

� placement directives for the fragments. One can for ex-
ample duplicate some fragments on all cluster nodes,
or assign a fragment to a specific node.

� constraints imposed by the component in order for its
deployment to be feasible (availability of a specific
version of the JVM, of a RMI registry, etc.)

We have developed an XML dialect that permits the specifi-
cation of such directives. The Concerto platform can parse
this dialect so as to ensure the deployment of components
on a cluster.

3 Resource Modelling and Control

Motivation and main principles

The main objective of project Concerto is to provide soft-
ware components with means to perceive their runtime en-
vironment so that they can adapt their behaviour to the state
of this environment, and to its variations. We are develop-
ing in Java a software platform in which the runtime envi-
ronment of a component is modelled using objects that reify
the various resources offered.

As a general rule, we qualify as “resource” any hardware
or software entity a software component may use during its
execution. The resources considered to date in the Concerto
platform include system resources (CPU, system memory,
swap, graphical user interface, network interface, etc.) that
characterize chiefly the underlying hardware platform, as
well as “conceptual resources” (sockets, processes, threads,
directories, files, RMI server, etc.) that rather pertain to the
applicative environment considered.

Since a software component is liable to use all or some
of the resources available in its environment, the Concerto
platform must provide mechanisms that make it possible for
the component:

� to check the availability of any resource (or kind of
resource) in its environment;

� to discover the existence of a specific resource (or kind
of resource);

� to ask for the status of a specific resource;

� to ask that the platform notifies the component when
a given condition is reached regarding the status of a
specific resource.

Since the Concerto platform is dedicated to the deployment
of parallel software components on a cluster of machines,
the dissemination of resources over the nodes of this clus-
ter must be allowed for. The above-mentioned mechanisms
must thus make the distribution of resources transparent
for components. A thread belonging to a component must
be able to gather information not only about the resources
available on the node it runs on but also about distant re-
sources and resources distributed over whole cluster.

Modelling of system and conceptual resources

Any kind of resource liable to be used by components de-
ployed on the Concerto platform must be reified as Java ob-
jects. We have thus started the development of a class hier-
archy in order to model these resources. This hierarchy is
partially reproduced in Figure 1. It is meant to be extended
as new resource types are allowed for in the platform.

Some of the classes shown in Figure 1 model resources
that pertain to the hardware level. Classes CPU, Memory,
and NetworkInterface belong to this category. The class
ClusterNode is used to aggregate the three former classes,
so that any cluster node can be modelled as a single resource
object.

Other classes shown in Figure 1, such as classes Socket
and Thread, are standard classes defined in the JDK (Java
Development Kit). Their implementation was revised in
project Concerto in such a way that the state of the con-
ceptual resources they model can be observed at runtime.

Classes Fragment and Component were introduced in or-
der to define functionalities that are specific to project Con-
certo. With these classes, a parallel component and a com-
ponent fragment can be perceived as resources in the clus-
ter they are deployed on. One can therefore benefit from
the services implemented in Concerto to manage the com-
ponents deployed on a cluster, as well as the fragments de-
ployed on any cluster node.

3



Resource
+id(): ResourceId
+observe(): ObservationReport

Thread SocketCPU File

MemoryNetworkInterface DatagramSocket ThreadGroup

ResourceId

identified by

ClusterNode FragmentComponent

Figure 1. Object-based modelling of a few resource types.

Observation reports

Observation reports make it possible to gather information
about the state of the many kinds of resources distributed
in a cluster in a homogeneous way. A hierarchy of Java
classes was developed in order to allow the generation, the
collection, and the management of such reports (see Fig-
ure 2). Any Java object that models a resource in the Con-
certo platform implements method observe(), which returns
a report about the current state of the resource considered.
A report is modelled as a Java object that implements the
ObservationReport interface. Of course the actual content
of the report depends on the type of the resource considered.
Hence, when method observe() is called on a Thread object,
this object returns a report of type ThreadReport. The class
ThreadReport provides pieces of information that charac-
terize the state of the thread object considered (current pri-
ority level, amount of CPU and memory consumed since
this thread was started, etc.). Likewise, calling method ob-
serve() on a Memory object returns a MemoryReport, which
provides information about the current state of the system
memory.

Resource identification and tracking

In the Concerto platform, all resources are modelled as Java
objects that can be created and destroyed at any time. Nev-
ertheless, any resource object must be identified unambigu-
ously. Therefore, the platform implements mechanisms for
identifying and tracking resources at runtime. These mech-
anisms rely on a naming system that gives any resource a
unique name. Whenever a resource object is created on a
cluster node, this object is given a unique identifier (object
of type ResourceId, see Figure 1). Moreover, the resource
object created is immediately registered within a resource
manager (object of type ResourceManager), whose func-
tion is to identify and to keep track of any existing resource
object.

An instance of class ResourceManager is created on

each cluster node whenever a new component is deployed.
This resource manager permits the identification, location,
and collection of observation reports for:

� the conceptual resources used by the component it is
associated with;

� the system resources of the cluster (which are consid-
ered as global resources shared by all components);

� the other components that have been deployed on the
cluster (remember that each component is perceived as
a resource, and can therefore produce an observation
report on demand).

Search patterns make it possible to search for resources, and
to collect observation reports from these resources selec-
tively. They model search strategies as Java objects. For ex-
ample, one can create a search pattern object that describes
a local search strategy (i.e. search limited to a specific node
of the cluster), and another object that describes a global
search strategy (i.e. search performed on all the nodes of
the cluster). The interface SearchPattern serves as the root
of a hierarchy of classes that each describe a specific search
strategy (Figure 3).

The following segment of code shows how a resource
manager can be called when looking for specific resources.
In this example several kinds of search patterns are used in
order to specify that the search should apply (1) to local re-
sources only; (2) to the resources located on a remote node
whose identity is specified as an argument; (3) to the whole
cluster.

ResourceManager manager = ResourceManager.getManager();
Set localIds = manager.getResourceIds(new LocalSearch()); // (1)
Set remoteIds =

manager.getResourceIds(new LocalSearch(remoteNodeId)); // (2)

Set allIds = manager.getResourceIds(new GlobalSearch()); // (3)

Once the identity of a resource object has been obtained,
one can require that the resource manager collects and re-

4



ObservationReport
+source(): ResourceId

SocketReport
+localAddress(): InetAddress
+remoteAddress(): InetAddress
+localPort(): int
+remotePort(): int
+rxBytes(): long
+txBytes(): long

ThreadReport
+priority(): int
+userTime(): float
+systemTime(): float

CPU_Report
+system(): float
+user(): float
+idle(): float

NetworkInterfaceReport
+isActive(): boolean
+hwAddress(): MAC_Address
+address(): InetAddress
+rxPackets(): long
+txPackets(): long
+rxBytes(): long
+txBytes(): long
+collisions(): long

Serializable

Figure 2. Observation reports modelling.

turns an observation report concerning this object. Whether
the resource object considered is local or remote remains
transparent for the caller.

The segment of code shown below is a continuation of
the former example. The caller calls the resource manager
and ask for an observation report on a specific resource ob-
ject (assuming that the value of resId was extracted from
one of the three id sets collected in the former example).

[...]

ObservationReport report = manager.observe(resId);

In the current implementation of the Concerto platform,
resource managers rely on the RMI mechanism for ex-
changing information. The objects modelling search pat-
terns and observation reports are all serializable, so they can
be transmitted between two nodes using the RMI mecha-
nism. This characteristic shows in the class hierarchies re-
produced in Figures 2 and 3.

Resource classification and selection.

The resources registered within a resource manager can be
of various types (eg CPU, Memory, Socket, Thread, File,
etc.). The Concerto platform implements mechanisms for
classifying and selecting resources based on the notion of
“resource pattern”.

The interface ResourcePattern (see Figure 3) defines a
function isMatchedBy(), which takes a resource object as
a parameter, and returns a boolean whose value depends
on whether this object satisfies the considered selection
criterion or not. In a simple case resource selection can
rely on the actual type of the resource object which is
submitted to the test. Hence, in the class CPU_Pattern

(which implements interface ResourcePattern), the method
isMatchedBy() simply checks that the object passed as a pa-
rameter is a CPU object. But one can also implement more
sophisticated selection mechanisms. For example the class
SocketPattern is implemented so as to achieve the selection
of socket objects based on criteria that take into account not
only the type of the resource (this object must be of type
Socket), but also the local and remote IP address and ports
associated with this socket, as well as the number of bytes
sent and received via this socket.

The following example shows the creation of three re-
source patterns. The first pattern permits the search for and
selection of parallel components. The second pattern per-
mits to select specifically resource objects that model the
CPUs in a cluster. The third pattern makes it possible to
select only those resource objects that model sockets re-
sources, and that additionally satisfy the following selection
criteria: the IP address of the remote host must belong to the
195.83.160/24 network, and the remote port must be in the
range 0 to 1023. On the other hand, the local IP address and
port the socket is bound to can take any value.

ResourcePattern componentPattern = new ComponentPattern();
ResourcePattern cpuPattern = new CPU_Pattern();
ResourcePattern socketPattern =

new SocketPattern(InetAddress.AnyAddress, "195.83.160/24",
PortRange.AnyPort, new PortRange(0, 1023));

[...]

The resource manager can handle requests that take a
ResourcePattern object as a parameter. One can thus re-
quest that the resource manager locate a specific set of re-
sources, or collect and return observation reports from these
resources. For example, assume that the resource manager
receives a search request with the componentPattern de-

5



FilePattern

ResourcePattern
+isMatchedBy(res:Resource): boolean

SocketPattern CPU_Pattern

ThreadPattern

Serializable

SearchPattern

GlobalSearch

LocalSearch
+node: NodeId

Figure 3. Modelling of the patterns that can be used to select resources (left-hand side of the hierar-
chy) and to describe search strategies (right-hand side of the hierarchy).

fined in the former example. It will thus search for those
resources that match this pattern, and return only the iden-
tities of component resources. On the other hand, if the
resource manager is required to search for those resources
that match the socket pattern, it will only consider the sock-
ets created by the calling component, and will select among
these sockets those whose characteristics (IP addresses, port
numbers, etc.) match the SocketPattern.

Implementation details

The mechanisms we use in Concerto for modelling re-
sources and allowing their observation have a larger scope
than that of adaptive parallel components. These mecha-
nisms have been gathered in an environment called RAJE

(Resource-Aware Java Environment). RAJE permits the
reification and the observation of system resources. More-
over, it defines the main schemes for identifying, localizing
and observing resources. The Concerto platform is based
on the RAJE environment which is extended in order to al-
low for specific notions such as parallel components or frag-
ments.

The RAJE environment and the Concerto platform are
presently implemented on Linux and rely on a variant of
the Kaffe 1.0.6 JVM. Details on RAJE can be found in [7].
This paper describes how resource observation is imple-
mented and how consumption shares are imputed to Java
threads. Article [9] presents also RAJE (and the JAMUS

platform built upon RAJE). Namely, the services provided
by RAJE are compared to those offered by others tools such
as JRes [4], GVM [3], KaffeOS [2]. Naccio [6] Ariel [8],
etc.

4 Conclusion

This article presents the Concerto platform, which aims
at allowing the deployment and the support of parallel com-
ponents on clusters of workstations. Ongoing work focuses

on proposing a basic parallel component model, as well as
tools for the deployment of such components. Our objec-
tive is, in a first stage, to adopt as simple and versatile a
model as possible. We rather put the emphasis on the de-
velopment of mechanisms useful to adaptation. Indeed, the
clusters targeted by the Concerto platform are mainly non-
dedicated clusters composed for example of several work-
stations that are shared by several components, and even
several applications and users. The runtime environment of
parallel components is heterogeneous and may vary along
the component’s execution. So we have designed tools that
provide the components with means to perceive their ex-
ecution environment and its variations. The components’
environment is likened to a set of resources. Each compo-
nent can discover the existence of a particular resource and
observe its state thanks to the services the platform offers.

The development of the Concerto platform is still in
progress. The deployment tool, that includes a graphical
frontend, should be extended. Besides, we intend to make
interaction mechanisms available to the components so that
they can command the platform to inform them on changes
in the state of resources. This implies the definition of a
formalism that can be used by components to describe in-
teresting events and to implement a notification scheme that
allows for the distributed aspects of the components.

Acknowledgment

This work is supported by the French Ministry of Re-
search in the framework of the ACI GRID program.

References

[1] R. Amstrong, D. Gannon, A. Geist, K. Keahey, S. Kohn,
L. McInnes, S. Parker, and B. Smolinski. Towards a Com-
mon Component Architecture for High-Performance Scien-
tific Computing. In Proc. of the 8th International Sym-

6



posium on High-Performance Computing, Redondo Beach,
California, Aug. 1999.

[2] G. Back, W. C. Hsieh, and J. Lepreau. Processes in KaffeOS:
Isolation, Resource Management, and Sharing in Java. In
4th Symposium on Operating Systems Design and Imple-
mentation, Oct. 2000.

[3] G. Back, P. Tullmann, L. Stoller, W. C. Hsieh, and J. Lep-
reau. Techniques for the Design of Java Operating Systems.
In USENIX Annual Technical Conference, June 2000.

[4] G. Czajkowski and T. von Eicken. JRes: a Resource Ac-
counting Interface for Java. In ACM OOPSLA Conference,
1998.

[5] A. Denis, C. Pérez, and T. Priol. Towards High Performance
CORBA and MPI Middleware for Grid Computing. In Proc.
of 2nd International Workshop on Grid Computing, Denver,
Colorado, Nov. 2001.

[6] D. Evans and A. Twyman. Flexible Policy-Directed Code
Safety. In IEEE Security and Privacy, May 1999.

[7] F. Guidec and N. Le Sommer. Towards Resource Consump-
tion Accounting and Control in Java: a Practical Experience.
In ECOOP’2002, Workshop on Resource Management for
Safe Languages, Malaga, Spain.

[8] M. B. Jones, P. J. Leach, R. P. Draves, and J. S. Barrera.
Modular Real-Time Resource Management in the Rialto
Operating System. In 5th Workshop on Hot Topic in Op-
erating System (HotOS-V), May 1995.

[9] N. Le Sommer and F. Guidec. A Contract-Based Approach
of Resource-Constrained Software Deployment. In Proc.
of the 1st International IFIP/ACM Working Conference on
Component Deployment (CD’2002), Berlin, Germany.

[10] Microsoft. The Component Object Model Specification.
Technical report, Microsoft Corporation, Oct. 1995.

[11] OMG. CORBA Components. Technical Report OMG-
orbos-99-07-01, OMG TC Documents, July 1999.

7


