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Abstract—Post-quantum cryptography gets increasing atten-
tion lately, as we have to prepare alternative cryptographic
solutions that will resist attacks from quantum computers. A
very large effort is being done to replace the usual primitives
such as encryption, signature or authentication. This effort also
pulls new cryptographic features such as Somewhat or Fully
Homomorphic Encryption schemes, based on lattices. Since their
introduction in 2009, lots of the burden has been overcome and
real applications now become possible. However many papers
suffer from the fast constant pace of evolution on the attack
side, so their parameter analysis is usually incomplete or obsolete.
In this work we present a thorough study of two schemes that
have proven their worth: FV and SHIELD, providing a deep
analysis of how to setup and size their parameters, to ensure both
correctness and security. Our overall aim is to provide easy-to-use
guidelines for implementation purposes.

I. INTRODUCTION

Homomorphic Encryption (HE) is a recent promising tool
in modern cryptography, that allows to carry out operations
on encrypted data. Historically, some early cryptographic
schemes presented partial homomorphic properties, for mul-
tiplication [21] or addition [34]. But it was only with the
works from [32] and [22] that key ideas were introduced
to support both operations simultaneously. These schemes
have been followed by many others [8], [18], [10], [9], [20],
[23], [11], [26]. It is important to notice that nearly all these
post-2009 schemes are built upon lattices, which introduces
a great difference when comparing with former partial HE
schemes, both on performance and security considerations.
First the lattice-based homomorphic schemes are usually heav-
ier in practice in terms of both efficiency and encrypted
data size, yet they are quantum-resistant unlike the former
partial HE schemes. In this paper, we will only focus on
these post-2009 schemes built upon lattices, which enable
both additions and multiplications over encrypted data. Among
HE schemes, Fully Homomorphic Encryption (FHE) schemes
allow the two types of elementary operations, without any
restrictions on their numbers, thus enabling to process virtually
any algorithm over encrypted data. However, the first FHE
schemes presented too many drawbacks for concrete use, they
had very high complexity and poor flexibility. So, to lighten
the overhead of homomorphic capabilities, a more promising
rationale has been investigated, the so-called Somewhat Homo-
morphic Encryption (SHE) schemes. These allow any number
of additions, but only a limited number of multiplications.
By (upper-)bounding the number of homomorphic operations,

SHE schemes considerably reduce the size of ciphertexts and
associated costs, making them usable in practice. Some of
these schemes allow to fix their parameters to reach a given
upper bound we call the multiplicative depth. Among the many
HE schemes that have been presented, the most promising
ones are based on ideal lattices. Here, we focus on 2nd and
3rd generation schemes, which are the most efficient.
For many years, the theoretical background of homomorphic
encryption schemes has been evolving. Thus, it has remained
a real challenge to draw practical parameters. Moreover,
former publications usually present values for specific use-
cases and do not address a wide range of applications. This
issue stands in the way toward broader implementation and
use of homomorphic encryption, therefore to address this,
we concisely and precisely present here how the extraction
of SHE parameters works. Using the usual methods in the
cryptography community, we make specific efforts to offer
ready-to-use content to people from outside this community,
providing pre-computed tables and simple formulas for a self-
determination of parameters. The state-of-the-art in homomor-
phic encryption is in continuous evolution, both on efficiency
and security front. The latest efficiency improvement comes
with bootstrapped schemes [19], [15], [7] which remove the
concerns about circuit multiplicative depth. Nevertheless, and
despite their potentials, for concrete applications we need
to consider sufficiently mature and tested solutions, to be
sure that their security is strong enough. We recently saw
examples of efficient schemes like Yashe[8] and F-NTRU[18]
being damaged by the subfield/sublattice attack [1], [27].
Consequently, we consider that today the most practical SHE
schemes in terms of both efficiency and security are: BGV[10],
FV[20] and SHIELD[26]. Software implementations of the
first two are available: for BGV there is HElib[24] and for
FV there are SEAL [28] and FV-NFLlib [17]. These schemes
are well-adapted to different settings as studied in [16], namely
BGV is best for large plaintext moduli whilst FV and SHIELD
are best for small plaintext moduli. We focus in this paper
on binary plaintexts. Several works benefit from this setting,
allowing to construct more generic operators such as compar-
ison, and facilitating the articulation with non-homomorphic
schemes to reduce the transmission overhead [33], [29], [12],
[13]. A recent study [4] also supports this choice. This is why
we provide detailed analysis of parameters settings ensuring
good security levels for the two best SHE schemes fitting this
kind of setting, FV and SHIELD.
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Fig. 1: Presentation of a client/server transaction in an homomorphic encryption scenario.

The main contributions of the paper are:
• a concise presentation of the two schemes with harmo-

nized notation;
• a review of parameters extraction for FV and SHIELD,

with several explorations to evaluate parameters for var-
ious applications, including cases never studied such as
batching for SHIELD;

• numerous tables of parameters under different constraints,
in order to cover a wide range of use cases.

One can easily compute more values with the method de-
scribed here.
The paper is organized as follows. Section II provides notation
and the basic theoretical background. Section III presents FV,
SHIELD with harmonized notation and provides a brief state
of the art of current implementation techniques. Section IV
discusses the methodology for parameters extraction. Sec-
tion V offers ready-to-use tables and compare these schemes
according to different scenarios. Section VI draws some con-
clusions.

II. PRELIMINARIES

A. Notation

Let Zq[X] = (Z/qZ)[X] be the set of polynomials with
integer coefficients modulo q. The mth cyclotomic polynomial
of degree n is noted Φm(X). We define Rq = Zq[X]/Φm(X)
the ring of polynomials with integer coefficients modulo q,
reduced by the cyclotomic polynomial Φm(X). A polynomial
is represented with an uppercase and its coefficients with a
lowercase. For polynomial A, ai represents its ith coefficient.
A vector of polynomials is noted in bold. For vector A, A[i] is
the ith polynomial of the vector. For a set R and a polynomial
A, A ← UR represents a uniformly sampled polynomial in
R, A ← BR a uniformly sampled polynomial in R with
binary coefficients and A ← DR,σ a polynomial of R with
coefficients sampled from a discrete Gaussian distribution with
width parameter σ, i.e. proportional to exp(−πx2/σ2). For
coefficient ai of polynomial A, ai,(j..k) corresponds to the
binary string extraction of ai between bits j and k. This
notation is extended to polynomial A where A(j..k) is the
sub-polynomial where the binary string extraction is applied
to each coefficient. A modular reduction by an integer q is

noted [·]q . For integer a, bac, dae and bae operators are
respectively the floor, ceil and nearest rounding operations.
This notation is extended to polynomials by applying the
operation on each coefficient. For vectors A and B, 〈A,B〉
represents

∑
A[i]B[i]. To simplify notation, we use several

variables: l = log2 q, N = 2 l and lω,q = dlog2 q/ log2 ωe, for
some integer ω. In the following, all polynomial operations
are considered performed in Rq .

B. Lattice introductory background

Lattices were first used in cryptology in the 1990s and serve
today as one of the most promising ground for post-quantum
schemes. In general, a lattice L of dimension n is a discrete
additive subgroup of Rn. Integer lattices are discrete additive
subgroups of Zn. In this paper we only work with the integer
lattices and simply call them lattices.

Lattices (of size n) are usually represented by a basis B, a
set of n independent integer vectors (b1,b2, . . . ,bn) of size
n whose integer linear combinations generate the lattice.

L(B) =

{
n∑
i=1

vibi : vi ∈ Z

}
=
{
BTv : v ∈ Zn

}
= BZn

In our lattices, B is always a square integer matrix, B ∈
Zn×n. For most of the discussion we restrict to this full rank
definition and will make it explicit when working with greater
generating families.

C. Ring-LWE

We recall here the definition of the Ring-Learning With
Errors problem [31]. It was recently introduced as a Ring
variant of the Learning With Errors problem from Regev [37]
which is a very expressive hard problem that helped build
many primitives, for the post-quantum era.
Definition Let R be a ring of degree n over Z (usually
R = Z[x]/(f(x)) for some cyclotomic polynomial f(x)). Let
q be a positive integer, χ a probability distribution on R of
width parameter σ and S a secret random element in Rq .
We denote by LS,χ the probability distribution on Rq × Rq
obtained by choosing A ∈ Rq uniformly at random, choosing
E ∈ R according to χ and considering it in Rq , and returning
(A,C) = (A, [A · S + E]q) ∈ Rq ×Rq .
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Decision-Ring-LWE is the problem of deciding whether
given pairs (A,C) are sampled according to LS,χ or the
uniform distribution on Rq ×Rq .

Search-Ring-LWE is the problem to recovering S from pairs
(A,C) sampled from LS,χ.

The hardness of Ring-LWE problem depends on the three
variables n, σ and q. The reduction presented in the introduc-
tory paper stands when σ > 2

√
n.

III. PRESENTATION OF THE SCHEMES

A. FV

FV [20] is a transposition of the scale-invariant Brakerski
scheme [9] to the Ring-LWE problem. Published at the same
time as YASHE, it does not suffer from any security flaw and
has been addressed as a very promising scheme in several
recent publications. The public key is a pair (AS + E,A) of
a Ring-LWE instance, and the secret key is the polynomial
S. After a homomorphic multiplication, the ciphertext is
composed of 3 terms instead of 2. To recover its initial form,
an additional step called relinearization is required, making
use of a relinearization key. FV also introduces two additional
parameters, namely t and ω. An integer t (much smaller than
q) corresponds to the upper bound of a message. When t = 2,
messages are binary. ω is a parameter associated with the
relinearization, and determines the size of the relinearization
key and the complexity of the relinearization operation. It is
usual to select ω as a 32-bit or 64-bit integer for computational
aspects.
• FV.PowersOfw,q(A) :

A ∈ Rlw,q
q

for i = 0 to lw,q − 1

A[i] =
[
Awi

]
q

end for
return A

• FV.WordDecompw,q(A) :
A ∈ Rlw,q

q

for i = 0 to lw,q − 1

l0 = i× log2 ω
l1 = (i+ 1)× log2 ω − 1
A[i] = A(l0..l1)

end for
return A〈

FV.PowersOfw,q(A),FV.WordDecompw,q(B)
〉

=
[
A×B

]
q
.

• FV.GenKeys(λ) :
S ← DRq,σkey

, A← URq , E ← DRq,σerr

Pkey = (−AS + E,A)
Skey = S
return (Pkey, Skey)

• FV.GenRelinKeys(Pkey, Skey) :
A← U

lw,q

Rq
, E← D

lw,q

Rq,σerr

γ =

([
FV.PowersOfw,q

(
S2
key

)
−
(
ASkey + E

)]
q
,A

)
return γ

• FV.Encrypt(m,Pkey) :
U ← DRq,σkey

, (E1, E2)← D2
Rq,σerr

C =

([
q
tm+ Pkey[0]U + E1

]
q
,
[
Pkey[1]U + E2

]
q

)
return C

• FV.Decrypt(C, Skey) :
M̃ =

[
C[0] + C[1]Skey

]
q

m =
⌊
t
qM̃ [0]

⌉
return m

• FV.Add(CA, CB) :

C+ =

([
CA[0] + CB [0]

]
q
,
[
CA[1] + CB [1]

]
q

)
return C+

• FV.Mult(CA, CB , γ) :
C̃0 =

[⌊
t
qCA[0]× CB [0]

⌉]
q

C̃1 =
[⌊

t
q (CA[0]× CB [1] + CA[1]× CB [0])

⌉]
q

C̃2 =
[⌊

t
qCA[1]× CB [1]

⌉]
q

C× = FV.Relin(C̃0, C̃1, C̃2, γ)
return C×

• FV.Relin(C̃0, C̃1, C̃2, γ) :
CR = (CR,0, CR,1)

CR,0 =

[
C̃0 +

〈
FV.WordDecompw,q (C̃2), γ[0]

〉]
q

CR,1 =

[
C̃1 +

〈
FV.WordDecompw,q (C̃2), γ[1]

〉]
q

return CR

B. SHIELD

SHIELD [26] is a transposition of the GSW scheme [23]
to the Ring-LWE problem. It is a so called 3rd genera-
tion HE schemes, and does not require any relinearization,
but requires much more polynomials per ciphertext (namely
2 × N = 4 · log2 q for SHIELD, instead of 2 for FV). To
counterbalance, the inner noise grows more slowly than in
2nd generation HE schemes, reducing the size of the modulus
q and the cyclotomic polynomial degree n. The plaintext
modulus t can be chosen close to q, whereas with FV it must
be small1. By carefully examining SHIELD, one can notice
strong similarities with FV, especially for the key generation,
the encryption and the decryption. Because no relinearization
is required, the homomorphic multiplication is much more
natural than in FV.
• SHIELD.BD(A) :

(A ∈ RN×2q )

B ∈ BN×NRq

for i = 0 to N − 1

for j = 0 to log2 q − 1

B[i][j] = A[i][0](j)
B[i][j + log2 q] = A[i][1](j)

end for
end for
return B

1For use with non-binary plaintexts, this can be an interesting feature.
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• SHIELD.BDI(A) :
(A ∈ BN×NRq

)
B ∈ RN×2q

for i = 0 to N − 1

B[i][0] =
log2 q−1∑
j=0

A[i][j]2j

B[i][1] =
N−1∑

j=log2 q

A[i][j]2j

end for
return B

• SHIELD.GenKeys(λ) :
T ← DRq,σkey

, A← URq
, E ← DRq,σerr

B = A · T + E
Pkey =

[
B A

]
Skey =

[
1

−T

]
return (Pkey,Skey)

• SHIELD.Encrypt(m,Pkey) :
rN×1 ← BN×1Rq

, EN×2 ← DN×2
Rq,σerr

C = CN×2 = m · BDI(IN×N) + rN×1 ·Pkey + EN×2
return C

• SHIELD.Decrypt(C,Skey) :
M = C · Skey = m · BDI(IN×N) · Skey + error

m =
⌊
2
q ·M[0][0]

⌉
return m

• SHIELD.Add(C1,C2) :
C+ = C1 + C2

return C+

• SHIELD.Mult(C1,C2) :
C× = BD(C1) ·C2

return C×

return BGV.BitDecomp(C)T · τS1→S2

C. Batching

For each scheme above, the cleartext is a polynomial in
Rq . For convenience, messages are commonly chosen to be
integers. However, this integer representation turns out to be
limited when considering interesting homomorphic operations.
More evolved algorithms, e.g. calling comparison operators,
require dealing with binary messages. This latter representa-
tion brings two important issues. First, to perform an integer
addition or multiplication with the binary representation, one
must reconstruct the binary circuit of the operators. Second,
the size of ciphertexts is strongly impacted. To balance the
ciphertext expansion issue, the batching technique is a good
solution. Introduced in [39], the batching allows to ”pack”
several messages into one single ciphertext. To do so, the
associated cyclotomic polynomial must be reducible in Z2[X],
and have only simple root factors. Then, a polynomial CRT
is applied to pack the messages, with one message per factor.
Recent research [4] demonstrates that using binary encodings
for plaintext data is optimal.

D. Current implementation techniques and their limits

Since the chosen polynomial multiplication algorithm im-
pacts the parameters, we briefly introduce standard polynomial
multiplication algorithms. Four algorithms are usually imple-
mented:

The schoolbook algorithm with an asymptotic complexity
of O(n2);
The Karatsuba-Ofman algorithm [25] with an asymptotic
complexity of O(n1.58);
The Toom-Cook algorithm [40] with an asymptotic com-
plexity of O(n1.465);
The FFT algorithm [36] with an asymptotic complexity
of O(n log n).

The final choice on the polynomial multiplication algorithm
will greatly depend on the size of operands. As such, because
SHE/FHE requires computation on million-bit operands, the
polynomial multiplication is usually implemented with FFT.
The key idea behind FFT is to evaluate a polynomial mul-
tiplication using polynomial interpolation. For polynomials
with integer modular arithmetic, FFT can be adapted to such
arithmetic by using the NTT algorithm. In practice, the NTT
is a specialization of the FFT in a finite field, implying
modular integer arithmetic with a prime modulus q. The formal
definition of NTT is as follow: Lets N be a power of 2, q a
prime modulus such as q ≡ 1 mod 2N , and w be a primitive
N th root if unity in Zq . The NTT/iNTT of a given polynomial
A is defined by:

NTT(A)[i] =

N−1∑
j=0

A[j]wij

iNTT(A)[i] = n−1
N−1∑
j=0

A[j]w−ij

(1)

For two polynomials A and B, the polynomial multiplica-
tion can be computed as follow:

iNTT(NTT(A)� NTT(B)) = A ·B mod XN − 1 (2)

where � denote the point-wise multiplication of 2 vectors.
This NTT is also called Positive Wrapped Convolution (PWC)
and is not perfectly suited for homomorphic encryption be-
cause XN − 1 is not a cyclotomic polynomial. Thus, one
must double the size of the NTT and then performing the
polynomial modular reduction manually.
However, with a minor modification, the NTT can be tuned
the Negative Wrapped Convolution (NWC) which computes
A ·B mod XN + 1. Then, because XN + 1 is a cyclotomic
polynomial, the polynomial modular reduction is directly
integrated during NTT computations. Let ψ be a 2N root of
unity in Zq such as φ2 ≡ w mod q, (Â, B̂, Ĉ) ∈ Rq such as
Â[i] = φiA[i],B̂[i] = φiB[i] and C[i] = φ−iĈ[i], then:

Ĉ = iNTT(NTT(Â)� NTT(B̂))

C = A ·B mod XN + 1
(3)

For information, the best known algorithm to compute
NTT is the Shönhage-Strassen algorithm [38], which
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computes the polynomial multiplication with a complexity of
O(n log n log log n).

However, the NWC has an important issue when dealing
with batching. When factoring Xn+1 in Z2[X], the resulting
polynomial is (X + 1)N , which has a unique factor, namely
(X+1). This is incompatible with the batching technique pre-
sented in Section III-C. Thus, for binary messages, the NWC,
which is optimized for performance, is not well suited for
parallel computations. For non binary messages, it would be
possible to find some configurations compatible with batching
by selecting a particular modulus prime q.
The main issue of actual software implementations like im-
plementations of BGV, FV in [24], [28] and [17] is the fact
that only the NTT NWC is implemented (so no batching for
binary messages). To enable batching, two approaches can be
followed:
First, even if NTT NWC itself is not compatible with batching,
the FFT algorithm can be adapted to various interpolation
polynomials in order to compute the polynomial modular
reduction during computations.
Second, the NTT can be used to compute polynomial multipli-
cation (without polynomial modular reduction) followed by a
polynomial modular reduction. As an example, in [5], authors
of the paper have implemented FV with batching by using
the NTT PWC for the polynomial multiplication part, and a
Barrett [6] reduction for the polynomial modular reduction.
The Barrett reduction itself has been implemented at a cost of
roughly two polynomial multiplications.

IV. PARAMETERS EXTRACTION

As described in Section III-C, SHE proposes two types of
evaluations: an operation on integer messages and binary mes-
sages. The following section focuses on the binary approach
including also an exploration of the impact of the NWC NTT
and the batching technique.

A. Noise management

1) Notation: We briefly introduce additional notation for
the noise extraction. For polynomials A and B, we define
‖A‖∞ = max

0≤i<n
| ai |. When A ← DRq,σkey

and B ←
DRq,σerr

, we note ‖A‖∞ = Bkey and ‖B‖∞ = Berr. B0

refers to the upper bound of the noise for a fresh ciphertext,
BL denotes the noise bound after a multiplicative depth of
L. We also introduce the expansion factor δ, which bounds
the product of two polynomials. For two polynomials A
and B, the expansion can be expressed as δ = sup{‖A ·
B‖∞/‖A‖∞‖B‖∞} = n.

2) FV: The noise bound has been thoroughly studied
in [30], thus we only recall some key information below.
Initial noise. To determine the initial noise, we apply the
decryption procedure on a fresh ciphertext, focusing on the
encryption of a 0:

C[0] + C[1] · Skey = (AS + E)U + E1 + (AU + E2)Skey

= EU + E1 + E2S

Thus, the initial noise is B0 = Berr(1 + 2nBkey).

Multiplicative noise. Following the approach in [30], to
ensure concreteness of FV, we must have

CL1 B0 + LCL−11 C2 < (∆− rt(q))/2

where
C1 = δt(4 + δBkey)
C2 = δ2Bkey(Bkey + t2) + δωlω,qBerr
∆ = bq/tc
rt(q) = q −∆t

For binary messages it yields:
C1 = n(4 + nBkey)
C2 = n2Bkey(Bkey + 1) + nωlω,qBerr
∆ = bq/2c
rt(q) = q − 2 ·∆

3) SHIELD: The authors of [26] only provided an asymp-
totic evaluation of SHIELD’s noise growth. We develop below
a more precise calculation, providing the constant terms.
In this section, BD and BDI refer to SHIELD.BD and
SHIELD.BDI respectively.
Initial noise. To determine the initial noise, we apply the
decryption procedure on a fresh ciphertext, focusing on the
encryption of a 0:

C · Skey = (m · BDI(IN×N) + rN×1 ·Pkey + EN×2) · Skey

= rN×1 ·Pkey · Skey + EN×2 · Skey

= rN×1 · E + EN×2 · Skey

We set E = rN×1 · E + EN×2 · Skey and we have

‖E [i]‖∞ ≤ nBerr +Berr + n ·Berr ·Bkey
= Berr(1 + n(1 +Bkey))

Thus, the initial noise can be bounded by B0 = Berr(1 +
n(1 +Bkey)).
Multiplicative noise. To determine the noise after a ho-
momorphic multiplication in SHIELD, we apply the de-
cryption procedure after the multiplication step. Recall that
SHIELD.Mult(C1,C2) = BD(C1) ·C2

BD(C1) ·C2 · Skey

= BD(C1)(m2 BDI(IN×N) · Skey + E2)

= m2 · BD(C1) · BDI(IN×N) · Skey + BD(C1) · E2
= m2 ·C1 · Skey + BD(C1) · E2
= m1 ·m2 · BDI(IN×N) · Skey +m2 · E1 + BD(C1) · E2

We set E× = m2 · E1 + BD(C1) · E2. To bound E×, which
is a vector, one must bound each elements. BD(C1) is always
a N × N -matrix of binary polynomials. Thus, each row of
BD(C1)·E2 is a product/accumulation of N = 2 log2 q binary
polynomials with polynomials bounded by ‖E2[i]‖∞. After
one homomorphic multiplication, the noise can be bounded
by

‖E×[i]‖∞ ≤ m2 ·B(1)
0 + 2n · log2 q ·B

(2)
0

≤ B0(1 + 2n · log2 q)
(4)

Then, by an immediate induction, the noise after L homo-
morphic multiplications can be expressed as BL = B0(1 +
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2n log2 q)
L. To be able to decrypt without error after L

homomorphic multiplications, the final noise must be lower
than q/2. We must have q/2 > B0(1 + 2n log2 q)

L.
Better noise for multiplication. Unlike in FV, noise in
SHIELD grows slowly if a ciphertext is multiplied by a fresh
one. By carefully examining Equation 4, one can deduce
that the noise of each ciphertext is independent. Thus, the
multiplicative noise growth can be more finely managed. When
a ciphertext is multiplied by L other fresh ciphertexts, the noise
growth can be expressed as BL = B0 + L(2n log2 q)B0 =
B0(1 + L(2n log 2q)).
With batching. Earlier, we extracted noise parameters when
m ∈ {0, 1}. However, if one wants to use batch operations,
the message is now a polynomial with coefficients in {0, 1},
which has a significant impact on the noise growth in SHIELD.
Lets express the new bound of the noise E×:

‖E×[i]‖∞ ≤ ‖m2 · E1‖∞ + ‖BD(C1) · E2‖∞
≤ n · ‖m2‖∞‖E1‖∞ + 2n · log2 q · ‖E2‖∞

(5)

In the case of the optimized circuit for SHIELD, i.e. the
second ciphertext is a fresh one, the noise new bound can be
expressed as :

Bi+1 = n ·Bi + 2n · log2 q ·B0 (6)

It is an arithmetico-geometric sequence of the form

Bi+1 = a ·Bi + b

where a = n and b = 2n log2 qB0. So BL = aL(B0− r) + r,
with r = b

1−a .

B. Security

While the noise management determines the multiplicative
depth and set a minimum q to ensure it, the security re-
quirement upper-bound the size of the modulus for a given
dimension n. This means that to ensure a given multiplicative
depth, one must increase the dimension n to be able to increase
the modulus q.

1) Attacks: As expected in cryptography, all the schemes
presented here come with hardness results, provided by re-
ductions to the Ring-LWE problem. This hard problem is one
of the best candidates for post-quantum cryptography. There
are no quantum attacks performing better the classical ones.
Yet, beyond these asymptotic reductions, we need concrete
hardness results to choose the scheme parameters according
to a security level objective, e.g. 80 bits or 128 bits. Albrecht
et al. [3] summarize the state-of-the-art of the attacks against
LWE. All of them apply against ring instances which are
particular cases. Another line of algebraic attacks exists also
against Ring-LWE [35].

A common approach to determine the security parameters
is to consider the advantage of the attacker at distinguish-
ing Ring-LWE samples from uniformly random samples, i.e.
breaking decision-Ring-LWE.

For a Ring-LWE sample (a, u) = (a, as + e), the attack
consists in finding a short vector v ∈ q ·Λ(a)×, where Λ(a)×

is the dual lattice generated by a. With such a vector, the inner

TABLE I: Maximum log2 q for a given dimension n, where λ
is the security level. σerr = 2

√
n.

n 2048 4096 8192 16384
λ = 80 bits 89 bits 174 bits 348 bits 695 bits
λ = 128 bits 59 bits 114 bits 224 bits 444 bits

product 〈v, u〉 gives 〈v, e〉, which is a small Gaussian. In the
case where (a, u) is uniformly random, the inner product is
also uniformly random, hence the distinction objective. For
more information, the reader can refer to [3, Section 5.3].
Thus, the extraction of v is a turning point of the attack. To our
knowledge, the best way to find such a short vector is to use the
BKZ-2.0 algorithm. The size of the smallest short vector one
can recover is linked to a parameter called root Hermite factor
γ. It captures the quality of the output of BKZ algorithm,
the smaller γ, the better the quality. Chen and Nguyen [14]
experimented with BKZ and provide time estimates to achieve
root Hermite factors. So, following the work in [30], we get
a minimal γ from a security objective. Then we get an upper
bound on q

log2 q ≤ min
m>n

m2 log2 γ(m,λ) +m log2(σ/α)

m− n
Where σ is the width parameter of the error term, α =√
− log ε/π = 3.7577 with ε = 2−64 the distinguishing

advantage of the attacker.
2) LWE estimator: For convenience, it also possible to

use Albrecht’s estimator (available on BitBucket2) to estimate
attacks performances. It turned out that the recent attack
described in [2] was the best against our instances. For a brief
overview we put in Table 1 the maximal allowed log q for
several dimensions at 80 and 128 bits of security.

3) Determining security parameters: Real use-cases of
homomorphic cryptography define requirements for the mul-
tiplicative depth L and a security level λ to achieve, then one
needs to choose the corresponding security parameters.
Upper bound on q. First, one sets an arbitrary (tentative) n,
the cyclotomic polynomial degree, as low as possible. Then,
with the attack models of the estimator, one can determine an
upper-bound of q.
Lower bound on q. The next step is to evaluate if such a
modulus q is compatible with the required multiplicative depth
L. This depends of the scheme, unlike the upper bound. If it
does not, i.e. the security requires a q smaller than what is
needed by the multiplicative depth, one must increase n and
go back to the previous step in order to attempt to solve again
the two inequalities on q.

We summarize the approach in Algorithm 1, which we used
to compute the tables presented below.

V. PRACTICAL PARAMETERS

In this section, we explore different settings: arbitrary cir-
cuit, optimized circuit, NWC, batching, and report concrete
parameters for scheme comparison.

2https://bitbucket.org/malb/lwe-estimator, commit
61ac716
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Algorithm 1 Determine (n, σ and q) parameters from (L, λ)
for a given scheme

1: function CHOOSEPARAM(scheme, L, λ)
2: q ← 0
3: n← 1
4: repeat
5: σ ← 2

√
n

6: Mq ← MAX-MODULUS(n, λ)
7: mq ← MIN-MODULUS(n,L, scheme)
8: if mq < Mq then
9: q ← mq

10: else
11: n← n+ 1
12: end if
13: until q 6= 0
14: return n, σ, q
15: end function

TABLE II: Parameters for FV and SHIELD, where λ is the
security level and L the multiplicative depth. Arbitrary circuit.

(a) Selection of parameters for FV. Binary key, σerr = 2
√
n.

L
λ = 80 bits λ = 128 bits

ω = 32 bits ω = 64 bits ω = 32 bits ω = 64 bits
log2 q n log2 q n log2 q n log2 q n

1 54 1188 87 1982 55 1878 88 3106
5 159 3711 193 4507 166 6014 200 7292
10 303 7120 337 7917 317 11625 351 12898
15 454 10715 489 11549 475 17507 509 18729
20 611 14405 645 15187 639 23491 673 24755

(b) Selection of parameters for SHIELD. Binary key, σerr = 2
√
n.

L λ = 80 bits λ = 128 bits
log2 q n log2 q n

1 36 752 38 1247
5 120 2772 124 4454
10 238 5597 246 9005
15 364 8556 376 13834
20 495 11685 511 18838

A. Multiplicative depth for an arbitrary binary circuit

Table II provides parameters for FV and SHIELD for 80 and
128 bits of security. They are extracted in the proved-hardness
regime, that is to say σerr = 2

√
n for each scheme

Values for SHIELD seem the best in the tables. However the
number of sub-polynomials for a given ciphertext explodes
because it is proportional to log2 q for SHIELD. For example,
with L = 5, a ciphertext in SHIELD contains 2 × N = 4 ×
log2 q = 480 sub-polynomials of degree-2772 with 120 bits
coefficients, whereas FV only requires two sub-polynomials
of degree-3711 with 159 bits coefficients.
Consequently, in the case of an arbitrary binary circuit, FV is
best.

B. Multiplicative depth for an optimized circuit

As stated in the previous section, SHIELD seems inefficient
for arbitrary circuits. However, all third generation schemes

TABLE III: Parameters for SHIELD, where λ is the security
level and L the multiplicative degree. Optimized circuit. Bi-
nary message (No batching). Binary key, σerr = 2

√
n.

L λ = 80 bits λ = 128 bits
log2 q n log2 q n

1 36 752 38 1247
5 38 803 40 1323
10 40 849 41 1363
15 40 854 42 1396
20 41 869 43 1429

have a really interesting feature: when a ciphertext is multi-
plied by a fresh ciphertext, the noise growth is additive instead
of multiplicative for binary messages. Table III provides pa-
rameters for SHIELD for this optimized circuit. FV is omitted
here, because it presents no particular optimization.
Results are very impressive, SHIELD scale to large multiplica-
tive degree with nearly no impact on n and q. For SHIELD and
for 80 bits of security, the modulus only increases by 5 bits
between a multiplicative depth of 1 and 20 when the degree
of the associated cyclotomic polynomial remains under 1024.
As a reminder from Table II, FV requires at least n = 14405
and log2 q = 611 bits for a multiplicative depth of 20.

SHIELD is clearly better than FV in this setting, which is
not about evaluating circuit of depth L for all inputs, yet still
a degree-L function.

C. The case of the Negative Wrapped Convolution

Attracted by its performance, a majority of polynomial mul-
tiplication implementations use the NWC NTT. We provide
in Table IV the associated parameters for FV. For SHIELD,
parameters seem quite independent of the multiplicative depth.
Because the polynomial degree is oversized due to NWC, a
security of λ = 80 bits requires n = 1024, cf Table III, and we
can then go to very high L. Similarly, n = 2048 is required
for λ = 128 bits. For the same use case as FV for λ = 80 bits,
the polynomial degree is always 1024, with log2 q = 38 bits
for a multiplicative degree of 5, 40 bits for a multiplicative
degree of 10, and 41 bits for a multiplicative depth of 20. As
a reminder, NWC uses the cyclotomic polynomial xn + 1 and
the NTT computations are performed in the ring Z[x]/(xn+1).
Hence the polynomial reduction is directly integrated into NTT
computations. This performance tweak comes at the cost of
disabling the packing of several messages into one ciphertext,
no batching possible. Parameters are selected to maximize the
multiplicative depth for a given n, which is necessarily a power
of 2, because the NWC NTT set the cyclotomic polynomial
to xn + 1. When compared to the previous case, this slightly
increases the size of the modulus, for a given multiplicative
depth. For example with FV, for a multiplicative depth of 4,
optimized parameters are n = 3065 and log2 q = 132. In
a NWC NTT scenario, new parameters are n = 4096 and
log2 q = 135 bits. Thus, the ciphertexts are slightly larger
when compared to optimized ones, but the computation time
is still better than for standard multiplication which requires
a 2n-NTT with zero padding.
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TABLE IV: Parameters for FV and SHIELD in the case of
the NWC NTT, where λ is the security level and L the
multiplicative depth. Binary key, σerr = 2

√
n. Reminder: no

batching with the NWC NTT.

(a) Parameters for FV.

n

λ = 80 bits λ = 128 bits
ω = 32 bits ω = 64 bits ω = 32 bits ω = 64 bits
log2 q L log2 q L log2 q L log2 q L

2048 79 2 87 1 55 1 × ×
4096 159 5 166 4 109 3 88 1
8192 333 11 337 10 195 6 200 5
16384 675 22 677 21 443 14 414 12

(b) Parameters for SHIELD.

λ = 80 bits, n=1024 λ = 128 bits, n=2048
log2 q L log2 q L

36 1 38 1
38 5 40 5
40 10 41 10
40 15 42 15
41 20 43 20

TABLE V: Parameters of SHIELD for 80 bits of security when
batching is enabled, where λ is the security level and L the
multiplicative depth. Binary key, σerr = 2

√
n.

L log2 q n

1 36 752
2 47 1016
3 59 1306
4 71 1596
5 84 1911
10 149 3476

D. The case of batching in FV and SHIELD

As stated in Section III-C, the batching technique is very
useful to reduce the ciphertext expansion. Table V provides
parameters for SHIELD when the batching technique is used,
in an optimized circuit as described in Section V-B. FV is
not represented because batching does not modify security
parameters. Unlike when the messages are binary, SHIELD
parameters becomes sensitive to the multiplicative depth.
As early as a depth of 3, the dimension goes over 1024
and implies an associated NTT of size 2048. Moreover, the
modulus q grows significantly with the depth, on average
12 more bits per level. which leads to more and more sub-
polynomials for a given ciphertext. For a multiplicative depth
of 10, SHIELD with batching requires 596 sub-polynomials
of degree 3476 with coefficients of 149 bits, while without
batching it only requires 160 sub-polynomials of degree 849
with coefficients of 40 bits. Because SHIELD is more practical
for large multiplicative depth than FV, the use of batching with
SHIELD is not recommended.

E. Focus on polynomials choice for batching with FV

We have investigated the structure and the repartition of
cyclotomic polynomials in order to measure the practicality of
batching. Because there is no known efficient NTT to perform
polynomial modular reduction with arbitrary cyclotomic
polynomial (apart from the cases of NWC with Xn + 1 as
presented in Section V-C), the polynomial modular reduction
must be implemented manually. Thus, batching can only
be practical if we have cyclotomic polynomial that allow
efficient reduction for various multiplicative depth.
Because the polynomial modular reduction complexity is
closely related to the hamming weight of the cyclotomic
polynomial (i.e. the number of non-zero monomials), we
have minimized as much as possible this parameter. Table VI
provides the conclusions of our investigation. We only
have investigated batching for FV, since SHIELD suffers
from several issues with batching discussed in Section V-D.
For each multiplicative depth, we have extracted the four
cyclotomic polynomials with the lowest hamming weight
and compatible with batching. As can be seen, batching
can be implemented for each multiplicative depth with
various number of batches. In addition, for all parameters,
the hamming weight is very small when compared to the
degree of the cyclotomic polynomial, further supporting the
practicality of batching.

F. Keys and ciphertexts sizes

One of the key aspect of Homomorphic Encryption is
obviously the size of keys and ciphertexts. In order to fairly
evaluate FV and SHIELD, we have compared the volume
of data required for each scheme in a scenario requiring
8 bits of information. Figure 2 provides the conclusions of
the study. For FV, the size of relinearization keys are also
included because they are required during the homomorphic
multiplication. For small multiplicative depths, namely under
8, FV requires a lower amount of data than SHIELD. This is
consequence that SHIELD requires large parameters for the
first multiplicative depths. But for larger depths, the improved
noise management of SHIELD is highly beneficial. The main
issue for FV is the size of the relinearization key. For a
multiplicative depth of 15, it is as large as 17.8 MB, when
SHIELD does not require such a key. It can be reduced
a bit by enlarging ω at an additional computation cost. In
Fig. 3 and 4, we show for FV the respective sizes of the
relinearization key and 8 ciphertexts. Both are transmitted
from client to server, and we can see that going from ω = 32
to ω = 64 significantly decreases the relinearization key sizes,
and then the transmission overhead on this client to server
communication. It is interesting also to notice that when the
server sends a computation result back to the client, it does not
need to include this extra key material, and in this case only
the orange bars corresponding to ciphertexts are of interest.
Hence, these figures illustrate both the different transmission
overhead for client-server and server-client communications,
and the interest of using ω = 64 instead of ω = 32 for the
client-server upload.
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t

2 4 6 8 10 12 14
0

1

2

3
·104

Multiplicative depth

D
at

a
si

ze
(k

B
)
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TABLE VI: Parameters of FV for 80 bits of security when
batching is enabled, where L is the multiplicative depth,
batching the number of packed operations, m the rank of the
cyclotomic polynomial and hw the hamming weight of the
associated cyclotomic polynomial. Binary key, σerr = 2

√
n

Range of n L batching hw m
Actual
n

[1024, 2048]

1

2 7 3375 1800
6 9 3087 1764
12 33 2835 1296
24 59 2925 1440

2

2 7 3645 1944
6 17 3159 1944
18 49 2997 1944
20 57 4125 2000

[2048, 4096]

3

2 7 5625 3000
6 9 5103 2916
18 25 4617 2916
30 49 3875 3000

4

2 7 6075 3240
6 23 4459 3528
12 33 7875 3600
20 57 7425 3600

5

2 17 6591 4056
12 33 8505 3888
24 59 7605 3744
40 65 5125 4000

[4096, 8192]

6

2 7 9375 5000
10 17 6875 5000
12 33 11025 5040
20 57 9075 4400

7

2 7 10125 5400
6 9 9261 5292
18 25 9747 6156
20 57 12375 6000

VI. CONCLUSION

This study has provided some new and helpful information
concerning practical issues of homomorphic encryption for bi-
nary circuits. We have studied the two most practical schemes
for this case: FV a second generation scheme, and SHIELD a
third generation one. Our study covers parameter extraction for
both, and explores the cases of NWC/NTT and batching. FV
has in major cases shorter ciphertexts than SHIELD, thanks
to the relinearization step. More precisely, an FV ciphertext is
only composed of two polynomials, but with higher degree
and coefficient size. However, FV is very sensitive to the
multiplicative depth and has no particular optimization for any
binary circuit. SHIELD is a third generation scheme, which
means that the relinearization step is somehow included in the
multiplication. The noise growth is much lower than for FV,
leading to ciphertexts composed of smaller sub-polynomials.
Yet there are many polynomials to handle, 2 × log2 q times
more. This is not a major issue for SHIELD because, if the
computation is optimized to prefer multiplication with fresh
ciphertexts, it can achieve a very high multiplicative depth
(up to 20) without impacting much the sub-polynomial size.

For example, maintaining it below 1024 for log2 q ≤ 41 bits.
As SHIELD authors reported, numerous but small polynomials
multiplication can be very efficiently implemented in GPU and
counterbalance the size of ciphertexts.

Concerning batching, SHIELD is, unlike FV, very sensitive
to batching. For a multiplicative depth of 4, SHIELD with
batching requires n = 1596 and log2 q = 71. This has a critical
impact compared to the no-batching version because we now
require to double the size of the NTT/NWC, and double the
size of the integer multiplication operands. This phenomenon
worsens when the multiplicative depth grows.
To conclude, SHIELD is a good candidate when the multi-
plicative depth is important, say L ≥ 10, and even more when
the computation involves fresh ciphertexts all along. But this
only holds when the bandwidth is not a problem. However, if
one wants to efficiently use the bandwidth, if the multiplicative
depth is not too important (L ≤ 9), then FV is probably a
better solution, and even more when coupled with the batching
technique.

Future work on implementations could provide further
insights on the real performances and behaviors of these
schemes. Later when bootstrapped schemes will have gained
maturity, they should be included in a similar analytical work.
Also, for other kinds of applications requiring large plaintext
moduli, it could be interesting to propose a similar study.
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[1] Martin Albrecht, Shi Bai, and Léo Ducas. A Subfield Lattice Attack
on Overstretched NTRU Assumptions: Cryptanalysis of Some FHE and
Graded Encoding Schemes. In Proc. of CRYPTO, 2016.

[2] Martin R Albrecht. On Dual Lattice Attacks Against Small-Secret LWE
and Parameter Choices in HElib and SEAL. In Proc. of EUROCRYPT,
2017.

[3] Martin R. Albrecht, Rachel Player, and Sam Scott. On the Concrete
Hardness of Learning with Errors. Journal of Mathematical Cryptology,
2015.
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