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Abstract—Most practical Somewhat Homomorphic Encryp-
tion (SHE) schemes require the implementation of fast polynomial
arithmetic in the ring Zq[X]/f(X), for a given modulus q and an
irreducible polynomial f(X). That is why hardware accelerators
usually target the FFT/NTT algorithm, which has the smallest
complexity asymptotically. Unlike standard approaches, this pa-
per proposes a Karatsuba-based accelerator. Karatsuba imple-
mentation requires 3 steps: Pre-recursions producing several sub-
polynomials, a term by term multiplication of sub-polynomials,
and post-computations to reconstruct the output polynomial.
Compared to FFT/NTT, Karatsuba can address various size of
polynomials, and is sufficiently flexible to be adapted to specific
operations required by SHE schemes. In this paper, we propose a
hardware/software co-design where several Karatsuba recursions
are made in software, and the remaining ones plus the sub-
polynomial multiplication are made in hardware. We provide 3
different hardware approaches: An area efficient approach with
3 Karatsuba recursions in hardware, an intermediate design with
4 recursions, and a performance-oriented one with 5 recursions.
The study evaluates proposed hardware accelerators for 3 FPGA
platforms, the SoCkit and the DE5-net platforms from Terasic,
and the Catapult platform from Microsoft. The area efficient
approach can evaluate a degree-2559 polynomial multiplication in
2.44 ms and a relinearization/key switching evaluation in 2.29 ms,
with an important save of hardware resources compared to
FFT/NTT implementations. Compared to [1], our lightweight
approach saves 57% of ALM resources, 46% of registers, 99.95%
of embedded memory and 30% of DSPs. For the performance-
oriented design, the accelerator can evaluate a degree-2559
polynomial multiplication in 1.24 ms and a relinearization/key
switching evaluation in 1.1 ms.

I. INTRODUCTION

Lattice-based cryptography is on the spot since it has been
demonstrated by C. Gentry in 2009 that it can be used to con-
struct a Fully Homomorphic Encryption (FHE) scheme. With
the help of FHE, one can compute any small algorithms in the
cipher domain. To reduce the size of operands, one can bound
the number of achievable multiplications on one ciphertext,
constructing a Somewhat Homomorphic Encryption (SHE)
scheme. Most practical encryption schemes are based on
related problem, like the approximate-Great Common Divisor
(a-GCD) problem [2][3], NTRU problem [4][5] and Ring-
Learning With Error (R-LWE) problem [6][7][8][9][10][11].
Due to the relative flexibility of NTRU and R-LWE, recent
software and hardware implementations target these schemes.
Based on a ring of polynomials, both software and hardware
approaches implement fast polynomial arithmetic using the
FFT/NTT algorithm [12]. Two operations are usually per-
formed by hardware accelerators: the polynomial multiplica-

tion and the relinearization/key switching. However, because
SHE security knowledge is still under investigation, many
hardware accelerators have quite unsecured parameters, in
particular the oldest ones [13][14]. In [1], a classical but
optimized FFT implementation is presented for two parameter
sets. for parameter set n = 4096 and log2 q = 124 bits, the
proposed accelerator performs a polynomial multiplication
in 1.96 ms and a key switching in 4.79 ms. For parameters
n = 16384 and log2 q = 512 bits, the polynomial multiplication
is performed in 27.88 ms and the key switching in 20.8 ms.
Authors of [1] implemented 512 × 512 bits multipliers with
a small modular reduction by selecting a Solinas prime mod-
ulus [15]. Due to the size of polynomials and coefficients, a
cache is implemented to connect the external memory used to
store intermediate coefficients. They also report a bottleneck
due to large integer multiplication. That is why in [16] a pre-
computation is performed on polynomials to reduce the size
of coefficients. They split a ciphertext into a few polynomials
by using the Chinese Reminder Theorem (CRT) on each
coefficient. The overall architecture is based on an array of
crypto-units, which gives some flexibility to process several
residue polynomials in parallel. For parameters n = 32768 and
log2 q = 1228 bits, their accelerator performs an homomorphic
multiplication in 121 ms including 25 ms spent for CRT.
Unlike standard approaches, we investigate the use of Karat-
suba algorithm instead of FFT/NTT. Karatsuba has already
demonstrated its effectiveness for polynomial multiplication
in GF2 [17], in particular for elliptic curve cryptography, but
has not been much investigated for the general case. Compared
to FFT, Karatsuba can address various sizes of polynomials,
and above all, can be cleverly adapted to relinearization/key
switching as it will be presented in the following. In this
paper, we demonstrate that for various sizes and parameters,
Karatsuba algorithm can be a good alternative to FFT.
The main contributions of this work are as follows:

• A presentation of a hardware/software co-design polyno-
mial arithmetic accelerator for SHE schemes based on
Karatsuba algorithm.

• A complete study of 3 variants of the hardware accel-
erator, implementing 3, 4 and 5 Karatsuba recursions in
hardware.

• A thorough study of the hardware implementation, pro-
viding hardware implementation results for different FP-
GAs.



This paper is organized as follows. Section II recaps some key
information on SHE crypto-systems based on the arithmetic
on a ring of polynomials. Section III details the proposed
architecture, the evolution of the architecture to address more
Karatsuba operations in hardware, as well as the evaluation
of hardware resources for different FPGAs. Section IV draws
some conclusions.

II. THEORETICAL BACKGROUND

A. Notation

In the following, a polynomial is represented with
an uppercase and its coefficients with a lowercase. For
polynomial A, ai represents its ith coefficient. A vector of
polynomials is noted in bold. For vector A, A[i] is the ith

polynomial of the vector. For coefficient ai of polynomial A,
ai,(j..k) corresponds to the binary truncation of ai between
bits j and k. This notation is extended to polynomial A
where A(j..k) is the sub-polynomial where the truncation is
applied to each coefficient. All operations are performed on
the ring of polynomials Zq[X]/f(X), where q is an integer
and f(X) a degree-n irreducible polynomial. q and n are
chosen for security requirements, and also depend on the
number of homomorphic operations required.

B. Karatsuba algorithm

Karatsuba algorithm is an improvement of the standard
polynomial multiplication algorithm which reduces the num-
ber of sub-products.
Input polynomials P and Q of degree n − 1 are split into
two parts of equivalent size, that is to say n

2 coefficients.
Let PH and PL be two polynomials composed respectively
by the coefficients of highest degree of P and lowest degree
of P . By the same way, one constructs QH and QL. Input
polynomials are now expressed as P = PL + PHx

n/2 and
Q = QL +QHx

n/2.
When multiplying P × Q using the standard approach, the
resulting decomposition is given by:

A×B = (PL + PHx
n/2)(QL +QHx

n/2)

= PLQL + (PLQH + PHQL)x
n/2 + PHQHx

n

Karatsuba optimization is based on noticing that the mid-
dle factor (PLQH + PHQL) can be cleverly computed by
(PL +PH)(QL +QH)−PLQL−PHQH . As one can quote,
PLQL and PHQH are already computed and so do not require
additional multiplications.
At the end, Karatsuba requires 3 sub-polynomial multiplica-
tions instead of 4, at a cost of two pre-computations, namely
(PH + PL) and (QH + QL), and two post-computations for
the reconstruction of the middle factor. However, these pre-
and post-computations are made of additions and subtractions
only. To further reduce the number of sub-products, Karatsuba
algorithm can be recursively applied on sub-polynomials.

TABLE I: Parameters for FV extracted from [18] satisfying a
security level λ of 80 bits, with ω set to 27 bits.

L log2 q n

1 48 904
2 73 1428
3 98 1951
4 125 2515
5 152 3077
6 179 3636
7 207 4215
8 235 4792
9 264 5388
10 293 5982

Because each recursion of Karatsuba halves the size of sub-
polynomials, Karatsuba can achieve polynomial multiplication
of degree 2r(p+ 1)− 1, where r is the number of Karastuba
recursions and p the degree of the smallest sub-polynomial.

C. Relinearization/Key switching evaluation

The relinearization/key switching operation is a central
bottleneck of SHE schemes. During the homomorphic mul-
tiplication, a polynomial multiplication is performed between
ciphertexts. This leads to a malformed ciphertext which cannot
be further used for homomorphic evaluation. The transforma-
tion to a well-formed ciphertext is called relinearization or key
switching, depending on the scheme. In both cases, the core
arithmetic is the same. One has to select a parameter ω, which
is an adjustment variable in practice. The ciphertext is split
into l = dlog2 q/ log2 ωe parts, and each sub-polynomial is
multiplied/accumulated with an associated key γ[i]. The split
operation is usually called WordDecompw,q(A) :

• WordDecompw,q(A) :
A ∈ Rlw,q

q

for i in 0 to lw,q − 1

l0 = i× log2 ω
l1 = (i+ 1)× log2 ω − 1
A[i] = A(l0..l1)

end for
return A

The formal writing of relinearization/key switching operation
can be expressed as:

C = WordDecompw,q(C)

C̃ =

l∑
i=1

C[i]γ[i] (1)

Where C is the input ciphertext, γ the vector of
relinearization/key-switch keys and C̃ the resulting ciphertext.



D. Choosing parameters

In SHE, the size of operands is led by the number of op-
erations performed on a given ciphertext. Each ciphertext has
an initial noise which is growing between each homomorphic
operation until making the decryption procedure faulty. To
balance that issue, one has to increase the size of the modulus
q, inferring an increase of the polynomial degree to maintain
the required security level. Because the noise growth after an
addition is much less important than after a multiplication, it
is standard to determine parameters considering the number of
required multiplications only. It is called multiplicative depth
and is usually noted L. Table I gives some SHE parameters
for FV scheme.
As it can be noticed, the degree n of polynomial can be
quite distant from a power of two. The FFT/NTT algorithm
is much impacted by this issue, requiring to be below and
as closed as possible to a power of two to be efficiently
implemented. Two FFT/NTT are usually implemented, the
Positive Wrapped Convolution (PWC) which is associated to
the polynomial xn−1, and the Negative Wrapped Convolution
(NWC), which is associated to xn+1. During the computation
of the FFT/NTT-based multiplication, the resulting polynomial
is reduced by xn − 1 for the PWC, and xn + 1 for the
NWC. That is why in practice, one must double the size of
the FFT/NTT for a basic multiplication. However, because
xn+1 is an irreducible polynomial, the NWC does not require
to double the size of the FFT/NTT because homomorphic
operations are in the ring Zq[X]/f(X).
Even if the NWC is implemented most of the time for perfor-
mance reason, in practice it brings important issues. Because
xn + 1 is irreducible modulo 2, one cannot pack several
messages into one ciphertext, disabling Single Instruction
Multiple Data (SIMD) operations as explained in [19]. That
implies large expansion of data compared to the plaintext.
Because Karatsuba implements a standard multiplication, our
approach does not have such a limitation.
To demonstrate the interest of Karatsuba approach, this paper
focusses on multiplicative depth of 4, requiring polynomial
arithmetic of degree-2515. For such parameters, a FFT/NTT of
size 8192 is required in the standard approach, or 4096 for the
NWC one. To be as close as possible to the required n, we set
the smallest Karatsuba sub-polynomial to degree-4, associated
with 9 Karatsuba recursions. That allows polynomial multipli-
cations of degree at most 2ip− 1 = (4 + 1) · 29 − 1 = 2559.

III. KARATSUBA IMPLEMENTATION

The complete implementation relies on a hardware/software
co-design approach. Figure 1 provides a high level flowchart
for the proposed accelerator. On the software side, first
pre-computations are performed in order to generate sub-
polynomials. Then, sub-polynomials are sent continuously
to the hardware accelerator which performs the remaining
Karatsuba pre-computations. At that point, degree-4 sub-
polynomials are generated in hardware. Then, sub-polynomials
are multiplied using the standard multiplication algorithm. Fol-
lowing the polynomial multiplication, first post-computations

First pre-
computations

Remaining
pre-

computations

sub-
polynomials

multipli-
cation

First post-
computations

remaining
post-

computations

Legend

Software
operation
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Fig. 1: Flowchart of the proposed software/hardware co-design
approach.

are performed before sending back polynomials to the soft-
ware. Finally, the software computes the remaining post-
computations.
In order to be able to send continuously polynomials to the

hardware, proposed Karatsuba hardware implementation is a
fully pipelined one. When input polynomial coefficients are
sent in the ascending order, the accelerator produces output
coefficients continuously after a few clock cycles, depending
on the number of pipeline stages. Because the number of
coefficients of output polynomials is greater than input ones,
output polynomials are dispatched into two channels. The
accelerator can run into two modes: A standard mode for
the polynomial multiplication, and a relinearization/key switch
mode for relinearization/key switching. For this second con-
figuration, the relinearization key is required and must be sent
at the same time than the polynomial to be relinearized/key
switched.
To use embedded resources at their maximum frequency,
we set the datapath to 27 bits. It is the consequence that
embedded DSPs are efficiently implemented to run 27×27
bits integer products fastly. Because the size of coefficients
is greater than 27 bits, namely 125 bits, each coefficient
is split into 5 elements of 27 bits each. That implies that
all elementary operations, including adders, subtractors and
multipliers, are serialized. Another consequence is that our
accelerator performs polynomial operations on coefficients of
27×5 = 135 bits instead of 125 bits required by the security
parameters provided in Table I.
In the following, we propose 3 Karatsuba hardware imple-
mentations: a Karatsuba with 3 recursions in hardware called
Karatsuba-3, which allows the multiplication of two degree-
39 polynomials; an implementation with 4 recursions called
Karatsuba-4, performing a degree-79 polynomial multiplica-
tion; and a version with 5 recursions in hardware called
Karatsuba-5 for degree-159 polynomial multiplication.

A. Karatsuba-3

Figure 2 provides the high-level view of the architecture
of Karatsuba-3, where input sub-polynomials are named P
and Q. After the pre-computation and the pre-crossbar, the
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Fig. 2: Architecture of the Karatsuba hardware accelerator.
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Fig. 3: Schedule example after a pre-computation with 3 recursions of Karatsuba.

accelerator generates 4 lines of sub-polynomials, which are
multiplied in parallel. Post-crossbars and post-computations
perform the reconstruction of the output polynomial.

1) Pre-computation and pre-crossbar: The pre-
computation step is the first block of Karatsuba-3 and
performs 3 pre-recursions of Karatsuba on the input
polynomial. Our implementation is based on a recursive
architecture as it can be seen in Figure 2. During a pre-
computation, one has to split into two parts input polynomial
P , namely PL and PH . Because coefficients are sent in an
ascending order, a FIFO is implemented in order to store first
arrived coefficients, namely coefficients of PL, before adding
them term by term to last ones, namely coefficients of PH .
This creates two channels of polynomials: the first is just
the input and produces PL and PH ; and the second one is
just after the polynomial sum and produces sub-polynomial
PL + PH half of the time.
To perform an additional Karatsuba recursion, the same
operation must be applied to PL, PH and PL + PH . That
is why the architecture is duplicated on each channel, with
a minor modification on the FIFOs in order to manipulate
polynomials of halve size, namely PL, PH and PL + PH .
Because each PL + PH channel produces sub-polynomials
half of the time, after 3 pre-computations, several output
channels haven’t numerous valid sub-polynomials. That is
why a pre-crossbar is implemented in order to re-schedule

more efficiently sub-polynomials. Figure 3 proposes a
scheduling for Karatsuba-3.

2) Serial polynomial Multiplier and serial integer multi-
plier: The serial polynomial Multiplier can run in two modes:
a standard polynomial multiplier which requires polynomials
P and Q; and a relinearization/key switching mode which
requires a polynomial P and relinearization/key switching key
γ. 4 serial polynomial multipliers are implemented because
4 channels of sub-polynomials are produced after the pre-
crossbar of each input polynomial. As it can be seen in
Figure 2, the first output of each pre-crossbar is connected to
the first polynomial multiplier, the second output to the second
multiplier, and so on. For readability reasons, connections
for relinearization/key switching key are not represented, but
mentioned with black and white circles.
Implemented degree-4 polynomial multipliers are based on
the standard polynomial multiplication algorithm. In order
to be able to send polynomials without interruption, a full-
parallel design is implemented and requires 5 serial inte-
ger multipliers in parallel. By the same way, serial integer
multipliers are based on the standard algorithm. Because
polynomial coefficients are split in 5 segments of 27 bits
each, the serial integer multiplier requires 5 DSPs. Thus, the
serial polynomial multiplier requires 25 DSPs, and 100 for the
overall accelerator.
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Fig. 4: Proposed architectures to perform 4 and 5 Karatsuba recursions in hardware.

3) Post-crossbar and post-computation: A reverse schedul-
ing is required to realign sub-polynomials before post-
computations. However, if the post-crossbar is implemented
following the same approach than the pre-crossbar, this one
would be quite complex because all sub-polynomials would be
aligned with the most delayed one. That is why in Figure 2, a
successive implementation of partial post-crossbars and post-
computations is implemented. Because the pre-crossbar only
moved 1/3 of all sub-polynomials, 2/3 of sub-polynomials can
be post-computed before any re-alignment, reducing the com-
plexity of successive post-crossbars and also storage require-
ments. Unlike the pre-computation, because post-computations
and post-crossbars are successively implemented, each post-
computation unit is an elementary one, and so is not imple-
mented using a recursive approach.

B. Implementing additional recursions in hardware
The initial design implements 3 Karatsuba recursions in

hardware and 6 recursions in software. In order to re-
duce software computation times, we propose an adaptation
of Karatsuba-3 to execute further recursions in hardware.
The study provides a method, especially for pre- and post-
crossbars, and hardware results for 4 and 5 recursions.

1) Impacts on the sub-systems: Implementing additional
recursions in hardware does not impact each sub-system
equally. Due to the scalability of pre- and post-computation
units, these components are not much impacted, but require
additional logic and temporary storage. Degree-4 polynomial
multipliers internal structure remains unchanged, because fur-
ther Karatsuba recursions only means additional lanes of sub-
polynomials at the output of pre-crossbars, and thus just
more degree-4 polynomial multipliers in parallel. For pre-
and post-crossbars, additional recursions means a more com-
plex schedule of sub-polynomials, and thus possible complex
crossbars. When 8 channels of sub-polynomials were produced
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Fig. 5: Spacial organization of sub-polynomials after 3 Karat-
suba pre-recursions, and the link with the spacial organization
of sub-polynomials in the previous recursion.

for Karatsuba-3, 16 are produced for Karatsuba-4 and 32 for
Karatsuba-5.

2) Adaptation of pre- and post-crossbars: For 4 and 5
recursions in hardware, the pre-crossbar has to manage re-
spectively 16 and 32 channels of sub-polynomials, which
possibly requires a complex architecture when one wants
to reduce as much as possible the number of channels in
order to limit hardware resources consumption. Instead of
designing complex crossbars, with a risk of reducing the
design maximum frequency, we propose a method which
does not require additional developments. Figure 5 presents
the spacial organization of sub-polynomials after 3 Karatsuba
pre-recursions, and the link with the spacial organization of
sub-polynomials in the previous recursion. Because the pre-
computation architecture is recursive, the spacial organization
of sub-polynomials is recursive too. To determine the spacial
organization of sub-polynomials for the next recursion, one



just has to duplicate the previous one two times: one time
on the same channels, and the other time to fresh channels.
Because the pre-crossbar role is to spatially organize in a better
manner sub-polynomials, the previous remark on spacial orga-
nization of sub-polynomials between two successive Karatsuba
recursions can be used to create a new somewhat efficient sub-
polynomial schedule. To generate the Karatsuba pre-crossbar,
one can reuse the Karatsuba-3 pre-schedule twice. One time on
the first 8 channels of the pre-computation unit of Karatsuba-4,
and the other one on the remaining channels. As one can see in
Figure 5, the south-west area is free of sub-polynomials, which
means that the second pre-crossbar will not run half of the
time. That is why compared to the Karatsuba-3 schedule, DSPs
usage only decreases by 25%. For 3 Karatsuba recursions,
the DSPs usage is of 84.38%, it decreases to 63.29% for 4
recursions, and reaches 47.46% for 5 recursions.
To counterbalance, the post-crossbar for the 4th iteration is
very simple, because the spacial organization for the step has
not been modified.

3) High-level architectures: Figures 4a and 4b provide
the architecture of Karatsuba-4 and Karatsuba-5 designs.
The Karatsuba-4 approach is presented in the following, but
Karatsuba-5 design follows the same approach.
All pre-computations are generated in a unique entity, by using
the proposed pre-computation unit presented in Section III-A1.
Then, the Karatsuba-3 pre-crossbar must be applied twice:
one time on the first 8 outputs of the pre-computation unit,
and a second time on the 8 remaining outputs. Remaining
computations on each branch until the 4th post-computation
remain the same than Karatsuba-3. Finally, the 4th post-
computation is performed after a quite simple post-crossbar.
As it can be noticed, the strategy provided to adapt pre-
and post-crossbars leads to duplicate the logic 2 times
for Karatsuba-4 compared to Karatsuba-3, and 4 times for
Karatsuba-5. This remark leads to two main issues. First, be-
cause FPGAs have limited embedded multipliers, the number
of DSPs required will drive the choice of the target FPGA.
For 3 Karatsuba recursions, 100 DSPs are required, which
is not a particular issue because even smaller FPGAs like a
Cyclone V have such a number of multipliers. This is not
all the time true for the next implementations, namely for 4
and 5 Karatsuba recursions, because respectively 200 and 400
DSPs are required. In particular, if one wants to target an
embedded system with an energy efficient design, Cyclone V
SoC family owns at most 112 DSPs, which limits the design
to 3 recursions. Second, doubling the number of logic between
each recursion will quickly lead to large design for small
FPGAs. It will also limit the number of parallel Karatsuba
implementable in parallel.

C. Hardware implementations results

Table II provides hardware implementation results. In order
to thoroughly explore the proposed approach, we address
3 different platforms. For embedded systems, we present
results for a SoCkit platform from Terasic, embedding a
small Cyclone V (5CSXFC6D6F31C6N) FPGA with 41,910

ALMs and 112 DSPs. The second platform is a DE5-net
450 from Terasic, especially designed for speeding up
software applications with the help of a PCIe. This platform
embeds a powerful Stratix V (5SGXEA7N2F45C2) FPGA
with 234,720 ALMs and 256 DSPs. The last one is the
Catapult platform from Microsoft, used in [1] to accelerate
Homomorphic Encryption. With its 172,600 ALMs and above
all its 1,590 DSPs, this platform can address all Karatsuba
implementations. Due to the relatively low design frequency
for the Cyclone V FPGA with the balanced mode of
Quartus, we present implementation results when aggressive
performance optimization mode is enabled in Quartus II. For
Karatsuba-5 design, only the Catapult platform can embed
this one due to the number of DSPs required, thus hardware
results are only given for this platform. Our implementation is
a fully pipelined implementation of Karatsuba, thus we do not
provide number of clock cycles required for the accelerator,
because it is not relevant. The overall computation time
will be determined in Section III-D, when the complete
design, including the software part running on the CPU
will be presented. Hardware resources of the FFT/NTT
implementation in [1] is also provided, able to perform a
FFT/NTT of size 4096 with coefficients of size 125 bits.

1) Karatsuba with 3 recursions: As one can see, important
efforts are required to reach acceptable performance for the
Cyclone V approach. The balanced design runs at 148.7 MHz
with 64% of logic consumption. If one wants to increase the
maximum frequency, one can reach up to 184.4 MHz with
minimum efforts, namely selecting the aggressive performance
mode in Quartus II, but at a cost of 80% of the available logic.
As one can see, the Quartus algorithm tries to limit the number
of embedded memory to increase performances, at a cost of
extra registers.
For Stratix V FPGAs, the design only requires 12.7% of
logic resources for the DE5-net 450 platform, and 17.2%
for the Catapult platform. Because the PCIe limits the max-
imum design frequency to 250 MHz, the frequency margin
permits to implement other accelerator in parallel, or even
other Karatsuba. For the DE5-net 450 platform, due to the
limitation in terms of DSP, only 1 additional Karatsuba can
be implemented. For the Catapult approach, a maximum of 5
Karatsuba can be implemented in parallel. However, in Altera
FPGAs, the PCIe is implemented on the FPGA-side as a 256
bits bus, full duplex, implementing 5 Karatsuba-3 in parallel
requires a bus of 27×2×5 = 270 bits large. Thus, in practice,
only 4 Karatsuba-3 can be implemented.
Compared to the FFT approach, our accelerator saves 57%
of ALM resources, 46% of registers, 99.95% of embedded
memory and about 30% of DSPs.

2) Karatsuba with 4 recursions: If one has a larger FPGA,
the Karatsuba implementation with 4 recursions can be a good
balance to accelerate SHE polynomial arithmetic. Karatsuba-
4 requires 26.5% of the overall logic in the DE5-net 450
platform, and 36% for the Catapult one. Due to the limitation
of DSPs on the DE5-net 450, no additional Karatsuba-4 design



TABLE II: Hardware implementations results compared to FFT implementation in [1].

Algorithm recursions platform mode ALM Registers Embedded
memory DSP fmax

Karatsuba 3 SoCkit Balanced 27,034 (64.5%) 70,273 12,855 100 (89%) 148.7 MHz
Performance 33,915 (80.9%) 93,310 4,297 100 (89%) 184,4 MHz

Karatsuba

3 DE5-net Balanced 29,718 (12.7%) 76,706 4,131 100 (39%) 355.75 MHz
Catapult Balanced 29,715 (17.2%) 76,730 4,131 100 (6.3%) 334.0 MHz

4 DE5-net Balanced 62,215 (26.5%) 155,427 12,638 200 (78.1%) 330.58 MHz
Catapult Balanced 62,202 (36%) 155,299 12,638 200 (12.6%) 355.75 MHz

5 Catapult Balanced 124,978 (72.4%) 309,416 101,380 400 (25.6%) 321.34 MHz

FFT [1] Catapult Performance 69,058 (40%) 144,747 8,031,568 144 (9.1%) 100 MHz

TABLE III: Implementations results compared to FFT implementation from [1], where (A) refers to the polynomial
multiplication and (B) the relinearization/key switching.

Our design FFT [1]
Setup (n, log2 q) (2560, 125) (4096, 125)

Hardware Karatsuba recursions 3 4 5

(A)

Software pre-computation 531 µs 385 µs 270 µs
Hardware accelerator 583.2 µs 388.8 µs 259.2 µs

Software post-computation 1.35 ms 931 µs 710 µs
Total 2.46 ms 1.704 ms 1.24 ms 1.96 ms

(B)

Software pre-computation 343 µs 212 µs 135 µs
Hardware accelerator 583.2 µs 388.8 µs 259.2 µs

Software post-computation 1.35 ms 931 µs 710 µs
Total 2.28 ms 1.53 ms 1.104 ms 4.79 ms

(A) + (B) Total 4.74 ms 3.23 ms 2.34 ms 6.75 ms

Area × latency (ALM · s)
(A) 73 105 154.9 136
(B) 68 95 137 331

(A) + (B) 141 201 292 466

can be implemented, and only 1 additional design for the
Catapult one. Regarding the resources consumption, if we do
not take into account embedded memory consumption, this
design is the closest one in terms of resources consumption
compared to the FFT implementation in [1].

3) Karatsuba with 5 recursions: For the Karatsuba with
5 recursions, one begins to reach the limit of the approach.
First, only the Catapult platform can embed this accelerator
due to the number of DSP required. Second, the number of
logic resources does not allow the implementation of multiple
units in parallel, because it requires 72.4% of the total amount
of ALMs. However, this implementation reduces as much
as possible the total computation time because the pre- and
post-computations required in software are limited. As one
can see, the number of embedded memory used grows up. A
possible explanation is that each additional post-crossbar/post-
computation requires to store even larger polynomials. For
the 5th recursion, a degree-159 polynomial must be stored,
implying 21,600 bits. It is also possible that the tool tries to
limit the use of registers, so ALMs, because the design begins
to reach the device limits.

D. Evaluation of the complete computation time

In order to completely evaluate degree-2559 polyno-
mial multiplication and relinearization/key switch operation,
the software computation of the remaining pre- and post-
computations is required. Table III recaps software compu-
tation time for the 3 different hardware implementations, and
the total computation time taking into account the hardware
latency. It also provides the area-latency product for each
design, taking into account the complete computation time
(polynomial multiplication + Relin/key switch).
The software is executed on an Intel core i7-4910MQ with 4
cores running at 2.9 GHz. Hardware computation time is given
by taking an operating frequency of 250 MHz, limitation due
to the PCIe.
As one can see, our accelerator is very competitive com-
pared to FFT/NTT implementation in terms of latency. Even
with the Karatsuba-3 design, our accelerator outperforms
FFT/NTT for the relinearization/Key switching step, with
approximately 47% of computation time saved. This is a
consequence that FFT/NTT has much less flexibility than
Karatsuba approach. For a pure polynomial multiplication, the
FFT/NTT still remains competitive for Karatsuba-3, due to
the lower complexity asymptotically. However, this is not the



case when additional recursions are made in hardware, because
the post-computation in software drops down. Thus, Karatsuba
approach is a good alternative to FFT/NTT in any scenario.
The area - latency product provides a good indicator to com-
pare designs, because it indicates the efficient use of FPGA
resources. As one can see, the fully optimized Karatsuba-3
design has the lowest area - latency product compared to other
Karatsuba implementations. It is a consequence of the not op-
timized schedule implemented for Karatsuba-4 and Karatsuba-
5. For the polynomial multiplication only, the area - latency
product shows that the FFT implementation is still competitive,
despite the fact that the polynomial multiplication achieved is
larger, namely for degree-4095 polynomials instead of 2559.
However, Karatsuba is much better for the relinearization/key
switching, because the FFT fails in terms of flexibility.

IV. CONCLUSION

In this paper, we demonstrate that for some cases, Karatsuba
algorithm can be a good alternative to FFT/NTT. The study
provides 3 architectures for speeding up degree-2559 poly-
nomials multiplication and the relinearization/key switching
with coefficients up to 135 bits, with a software/hardware co-
design approach. Proposed architectures perform respectively
3, 4 and 5 Karatsuba pre- and post-recursions, plus the sub-
polynomials multiplication.
For the first design with 3 recursions, the accelerator can per-
form a polynomial multiplication in 2.46 ms and a relineariza-
tion/key switching in 2.28 ms, which is already competitive
compared to FFT/NTT implementation in [1] due to the poor
flexibility to perform efficiently the relinearization/key switch-
ing. Remaining Karatsuba implementations keep reducing the
computational time, at a cost of doubling hardware resources
between each additional recursion. For 5 recursions in hard-
ware, the polynomial multiplication is performed in 1.24 ms
and the relinearization/key switching in 2.34 ms, which halves
computation times compared to the first Karatsuba design.
Thus, the paper provides some key information in order to
select an approach depending on the application constraint,
namely hardware resources available.
Future work will consist on developing a complete demonstra-
tor using the provided Karatsuba implementation.
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