
AlphaZ and the Polyhedral Equational Model
Tomofumi Yuki

Colorado State University
Sanjay Rajopadhye

Colorado State University

I. INTRODUCTION

With the emergence of multi-core processors, parallelism
has gone main-stream. However, parallel programming is
difficult for many reasons. Programmers now must think about
which operations can legally be executed in parallel, when to
insert synchronizations, and so on. In addition, parallelism and
non-determinism nature of it makes debugging much harder.

One approach to address this problem is automatic paral-
lelization, where programmers still write sequential code, and
it is left to the compiler to parallelize the program. However,
automatic parallelization is extremely difficult, and even after
decades of research it still remains largely unsolved. An alter-
native approach is to develop parallel programming languages,
designed to write parallel programs from the beginning [1],
[2], [3], [4], [5], [6].

One area where automatic parallelization has been success-
ful is regular and dense computations that fit the polyhe-
dral model. Although the applicable class of programs are
restricted, fully automatic parallelization has been achieved
for polyhedral programs. Approaches based on polyhedral
analyses are now part of production compilers [7], [8], and
many research tools [9], [10], [11], [12], [13], [14] that use
the polyhedral model have been developed.

The polyhedral model has its origins in reasoning of systems
of equations [15]. When programs are defined as equations,
there is no notion of memory or execution order. What needs
to be computed are defined purely in terms of values produced
by other equations.

The connection between loop programs and equational
representations was later made by Feautrier [16] through array
dataflow analysis. Array dataflow analysis gives precise value-
based dependence information, which can be used to take
loop programs into equational view. This equational view is
synonimous to the polyhedral representation of programs that
the polyhedral compilers manipulate.

By giving concrete syntax to polyhedral representations
of programs, we have an equational language to specify
polyhedral programs. In this paper, we illustrate some of the
benefits of equational programming, from perspectives of both
users and compilers. We also present the AlphaZ [17] system
that provides polyhedral analyses, transformations, and code
generators for such equational language.

II. THE Alpha LANGUAGE

The equational language we use is a variation of the Alpha
language [18]. After array dataflow analysis of an imperative

program, the polyhedral representation of the flow depen-
dences can be directly translated to an Alpha program. Fur-
thermore, Alpha has reductions as first-class expressions [19]
providing a richer representation. The language is mostly
mathematical equations, with one key difference: the domains
of all equations are explicitly given as polyhedral domains.

Polyhedral domains are how a set of operations (and other
things such as memory) are abstracted in the polyhedral model.
They are expressed as a polyhedron; a set of points constrained
by affine inequalities; or union of finite number of polyhedra.

An Alpha program consists of one or more affine systems.
The high-level structure of a system is the following:

affine <name> <parameter domain>
input

(<type> <name> <domain>;)*
output

(<type> <name> <domain>;)*
local

(<type> <name> <domain>;)*
let

(<name> = <expr>;)*
.

Each system corresponds to a System of Affine Recurrence
Equations (SARE). The system consists of a name, a parameter
domain, variable declarations, and equations that define values
of the variables.

A. Parameter Domain
Polyhedral objects may involve program parameters that

represent problem size (e.g., size of matrices) as symbolic pa-
rameters. Except for where the parameters are defined, Alpha
parser treats parameters as implicit indices. For example, a
1D domain of size N is expressed as {i|0<=i<N}, and not
{N,i|0<=i<N}.
B. Variable Declarations

Each variable in Alpha is specified a type and its domain.
The specified domain should have a distinct point for each
value computed throughout the program, including intermedi-
ate results. It is important not to confuse variables domains
with memory, but rather as simply the set of points where the
variable is defined. Some authors my find is useful to view this
as single assignment memory allocation, where every memory
location can only be written once.1

1We contend that so called, “single assignment” languages are actually zero-
assignment languages. Functional language compilers almost always reuse
storage, so nowhere does it make sense to use the term “single” assignment.



C. Reductions

Associative and commutative operators applied to collec-
tions of values are explicitly represented as reductions in
Alpha. Reductions often occur in scientific computations, and
have important performance implications. For example, effi-
cient implementations of reductions are available in OpenMP
or MPI. Moreover, reductions represent more precise infor-
mation about the dependences, when compared to chains of
dependences.

The reductions are expressed as reduce(⊕, fp, Expr),
where op is the reduction operator, fp is the projection
function, and E is the expressions/values being reduced. The
projection function fp is an affine function that maps points
in Zn to Zm, where m is usually smaller than n. When
multiple points in Zn is mapped to a same point in Zm,
those values are combined using the reduction operator. For
example, commonly used mathematical notations such as

Xi =

n∑
j=0

Ai,j

is expressed as

X[i] = reduce(+, (i, j → i), A[i, j])

This is more general than mathematical notations, since re-
ductions with non-canonic projections, such as (i, j → i+ j),
require an additional variable to express with mathematical
notations. For reductions with canonic projections, we use a
shorthand that specify the names of the indices introduced
within the reduction:

X[i] = reduce(+, [j], A[i, j])

III. BENEFITS OF EQUATIONAL PROGRAMMING

Programmers benefit from two aspects when programming
equationally:

• Separation of Concerns: The equational specification is
completely detached from the choice of memory alloca-
tions, schedules, and/or other implementation details.

• Equations to Equations: The mathematical equations used
to develop new methods can be directly translated to
equational programs.

Compiler benefit from “cleaner” representation of the pro-
gram. Polyhedral representations extracted from loop pro-
grams often have a number of complex boundary cases,
influenced by implementation decisions of the loop programs.
In addition, explicit representation of reductions can benefit
both users and compilers, by providing higher abstraction.

A. Separation of Concerns

One strong benefit to programmers come from the equa-
tional language not having any notion of memory or execution
order. The AlphaZ system accepts the equational language,
and a separate specification for memory allocations, schedules,
and other choices of implementation. Then it is the code
generator’s job to produce an efficient implementation that

reflects these choices. Furthermore, since the equational view
is identical to polyhedral representation of programs, some of
these choices may be made using analyses from polyhedral
compilation.

Thus, the equational specification is completely separated
from implementation details. When programmers implement
algorithms in C or FORTRAN, the algorithm quickly becomes
entangled with implementation details: the choice of memory
allocation, the schedule and so on. After spending some time
in performance tuning, it requires a huge effort to change the
algorithm itself.

Moreover, a specific implementation may not work for
different platforms. For example, programs must be largely
re-written if the target platform changes from multi-core
processors to GPGPUs.

B. Equations to Equations

When the scientists develop new method for computing or
modeling, it is usually developed in terms of mathematical
equations. Our conjecture is that it is then straight forward to
convert such equations into equational programs.

For example, take LU decomposition. Given an n×n matrix,
A, we want to find two matrices L and U , lower and upper
triangular respectively, such that A = LU . By definition, we
have the following:

Ai,j =

n∑
k=1

Li,kUk,j =

min(i,j)∑
k=1

Li,kUk,j

=



1 = i ≤ j : Ui,j

1 < i ≤ j : Ui,j +

i−1∑
k=1

Li,kUk,j

1 = j < i : Li,jUj,j

1 < j < i : Li,jUj,j +

j−1∑
k=1

Li,kUk,j

Then, we apply standard algebra to “solve” for L and U to
derive an algorithm:

Li,j =


1 = j < i :

Ai,j

Uj,j

1 < j < i : 1
Uj,j

(
Ai,j −

j−1∑
k=1

Li,kUk,j

)

Ui,j =


1 = i ≤ j : Ai,j

1 < i ≤ j : Ai,j −
i−1∑
k=1

Li,kUk,j

The above can (almost) directly be translated into a corre-
sponding Alpha program:



affine LUD {N|N>0}
input

float A {i,j|1<=(i,j)<=N};
output

float L {i,j|1<i<=N && 1<=j<i};
float U {i,j|1<=j<=N && 1<=i<=j};

let
L[i,j] = case

{|1==j} : A[i,j] / U[j,j];
{|1<i} : A -

reduce(+, [k], L[i,k]*U[k,j]);
esac;
U[i,j] = case

{|1==i} : A[i,j];
{|1<i} : A[i,j] -

reduce(+, [k], L[i,k]*U[k,j]);
esac;

.

Note that the equations are identical to the mathematical
equivalent, except that they are in a different syntax. The user
is required to specify domains of variables. In the above, the
matrix A is specified an N × N domain, and L and U are
specified triangular domains.

Similar steps can be taken for more complicated algorithms.
For example, RNA secondary structure prediction algorithm
used in the UNAfold software package [20], can be specified
in the Alpha language.

Although the class of programs that can be expressed as
equations are limited, we believe that for those it makes sense
to express as equations, equational language is a viable option.

C. Cleaner Representations

When polyhedral representations are extracted from loop
programs, it may not be as “clean” as the equivalent specifi-
cation written directly as equations. For example, Jacobi-style
stencils are regular programs that can easily be represented
in the polyhedral model. It is a type of stencil computations
where an n-dimensional data is updated iteratively over time,
and each update uses values from the previous time step.

When a programmer implements Jacobi stencils as loop
programs, even the most naı̈ve implementation would only
use two copies of the data array. Then the array being read
alternates each iteration, and so as the array being written.
Such alternation may be implemented in many different ways,
such as pointer swaps, unrolling of the time loop, explicit
copying, and so on. Apart from some of them that make
polyhedral analysis not applicable (e.g., pointer swaps), all of
them complicate its corresponding polyhedral representations.

We may avoid such unnecessary complications, if the pro-
gram is directly specified in equations. Extracted representa-
tions often reflect pre-mature optimizations, which sometimes
can be harmful to the compiler and to the final performance.

D. Reductions

Explicit representation of reductions is beneficial for both
users and compilers. For users, reductions commonly occur in
mathematical equations, which can be directly represented in
Alpha.

For compilers reductions, and its algebraic properties, can
enable otherwise impossible optimizations. Algebraic proper-
ties can sometimes be used to perform extremely powerful op-
timizations, such as complexity reduction [17], [21]. Moreover,
reductions are supported by commonly used parallelization
methods, namely OpenMP and MPI, and compilers can take
advantage of their efficient implementations.

IV. THE ALPHAZ SYSTEM

The AlphaZ system is a system for exploring new ap-
proaches in polyhedral compilation [17], [22]. It accepts
Alpha programs and also can process loop programs by first
translating into Alpha via dataflow analysis.

AlphaZ aims to provide maximum control to the user, as
opposed to other polyhedral tools that focus on full automa-
tion. Therefore, the user may specify a number of execution
strategies, such as:

• Schedule: affine schedules
• Memory Allocation: pseudo-projective mapping (affine

mapping + element-wise modulos)
• Parallel Loops: dimensions of schedules can be annotated

as parallel dimensions
• Tiling: dimensions of schedules can be flagged to be tiled

after code generation (post-processing is necessary for
parametric tiling [23], [24].)

All of the above may be found through existing analysis on
polyhedral programs, or be specified by the user.

These specifications are completely detached from the equa-
tional specification itself, and the user may try a number of
different choices of the implementations by giving different
specifications. We have code generators for C and C+OpenMP
parallelization, and code generators for C+CUDA and C+MPI
are currently being developed.

In addition to the code generators that require implementa-
tion details to be specified, we have a special code generator
that generates code only from the Alpha program. The
produced code executes in a demand-driven fashion, and is
memory inefficient. However, this code generator may be used
to test the program before figuring out the implementation
choices.

A. Human in the Loop

In addition to specifying the execution strategies, AlphaZ
provides a number of semantic preserving transformations for
manipulating equations. By exposing such control to the user,
domain specific knowledges and/or decisions guided by human
analyses can be reflected, instead of relying on the compiler
to do what the user wants.

For example, inlining of a reference to a value computed
by another equation increases the amount of computation,



but may lead to better performance, by exposing additional
parallelism for instance.

Such decisions are difficult to make for compilers, and
AlphaZ encourages users to interact with the system to guide
the compilation.

V. SLOPPY EQUATIONS

One of the challenges in using the Alpha language is its
preciseness. Contrary to our thought that the scientists would
prefer an equational language over FORTRAN, some of the
feedbacks we got were different. For the last few decades,
the equations had to be implemented in C or FORTRAN in
the end, and therefore, detailed boundary cases are often only
worked out during the implementation.

When the equations are discussed in a paper, boundary
conditions are omitted from the equations, since it usually does
not help explaining the method. Thus, equations including all
the boundary cases are sometimes not available.

The Alpha language requires every point in the domain of
variables to be precisely defined, including all of the bound-
aries. Therefore, direct translation to Alpha is sometimes not
possible.

For example, consider a Gauss-Seidel stencil computation
over 1D data:

for (t=0; t < T; t++)
for (i=1; i < N; i++)

A[i] = foo(A[i-1], A[i], A[i+1]);

The corresponding precise equational specification is the
following:

At,i =


t = 0 : Aini

t > 0 ∧ 0 < i < N : foo(Ai−1, Ai, Ai+1)

t > 0 ∧ i = 0 : Aini

t > 0 ∧ i = N : Aini

Note the case branches for initialization and boundaries
on the data. Since the loop program does not update the
boundaries, the corresponding cases of the equation always
depend on the input. With a one-dimensional domain, there
are only two boundaries, but with higher dimensions and more
complicated dependences, the number of boundary cases can
quickly grow. Specifying all of such boundaries is tedious and
error prone, and we would like to relieve the user from such
process.

One of the ideas we have in response to this challenge is
called sloppy equations. The equations in Alpha are required
to be precise, but we would like to allow sloppy specifications,
and then deduce the precise specification using polyhedral
analysis.

One example of sloppiness is default behavior. We allow one
of the case branches to have a keyword default instead of
constraints, and it becomes the default behavior for the set of

points with no other matching case. Then the 1D Gauss-Seidel
can be written as:

At,i =

{
t > 0 ∧ 0 < i < N : foo(Ai−1, Ai, Ai+1)

default : Aini

The precise domain of default can be analyzed from the
domain of A and other case branches. The analysis result
itself may be useful for the scientists in implementing in other
languages, even if they choose not to use AlphaZ generated
code.

Although the addition of sloppiness to Alpha language is
still experimental, and is currently not implemented, we be-
lieve that such addition will significantly increase the usability
of our equational language.

VI. CONCLUSIONS

In this paper, we have presented the equational view of the
polyhedral model. It is essentially intermediate representations
of polyhedral compilers with an equational concrete syntax.
There are benefits to having such an equational programming
language, both for programmers and for compilers.

By having an equational specification that only specify what
to compute, without any implementation details, complete
separation of the algorithm and implementation is achieved.
Moreover, convenient abstractions, such as reductions, can
easily be specified and utilized.

We believe that equational languages can be a viable DSL
for specifying polyhedral programs, such as stencils.

REFERENCES

[1] E. Allen, D. Chase, J. Hallett, V. Luchangco, J. Maessen, S. Ryu,
G. Steele Jr, S. Tobin-Hochstadt, J. Dias, C. Eastlund et al., “The Fortress
Language Specification,” Sun Microsystems, vol. 139, p. 140, 2005.

[2] B. Chamberlain, D. Callahan, and H. Zima, “Parallel programmability
and the Chapel language,” International Journal of High Performance
Computing Applications, vol. 21, no. 3, pp. 291–312, 2007.

[3] R. W. Numrich and J. Reid, “Co-array fortran for parallel programming,”
SIGPLAN Fortran Forum, vol. 17, no. 2, pp. 1–31, Aug. 1998.

[4] V. Saraswat, B. Bloom, I. Peshansky, O. Tardieu, and
D. Grove, “X10 language specification version 2.2,” Mar. 2012,
x10.sourceforge.net/documentation/languagespec/x10-latest.pdf.

[5] UPC Consortium et al., “UPC language specifications,” Lawrence Berke-
ley National Lab Tech Report LBNL–59208, 2005.

[6] K. Yelick, L. Semenzato, G. Pike, C. Miyamoto, B. Liblit, A. Krishna-
murthy, P. Hilfinger, S. Graham, D. Gay, P. Colella et al., “Titanium: A
high-performance Java dialect,” Concurrency Practice and Experience,
vol. 10, no. 11-13, pp. 825–836, 1998.

[7] T. Grosser, H. Zheng, R. Aloor, A. Simbürger, A. Größlinger, and
L. Pouchet, “Polly–Polyhedral optimization in LLVM,” in 1st Interna-
tional Workshop on Polyhedral Compilation Techniques, 2011.

[8] S. Pop, A. Cohen, C. Bastoul, S. Girbal, G. Silber, and N. Vasilache,
“GRAPHITE: Polyhedral analyses and optimizations for GCC,” in
Proceedings of the 2006 GCC Developers Summit, 2006.

[9] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan, “A
practical automatic polyhedral parallelizer and locality optimizer,” in
Proceedings of the 29th ACM SIGPLAN conference on Programming
Language Design and Implementation. New York, NY, USA: ACM,
2008, pp. 101–113.

[10] C. Chen, J. Chame, and M. Hall, “Chill: A framework for composing
high-level loop transformations,” Technical Report, University of South-
ern California, Tech. Rep., 2008.

[11] F. Irigoin, P. Jouvelot, and R. Triolet, “Semantical interprocedural
parallelization: An overview of the pips project,” in Proceedings of the
5th International Conference on Supercomputing. ACM, 1991, pp.
244–251.



[12] C. IRISA, “The MMAlpha environment.”
[13] B. Meister, A. Leung, N. Vasilache, D. Wohlford, C. Bastoul, and

R. Lethin, “Productivity via automatic code generation for PGAS
platforms with the R-Stream compiler,” in Proceedings of the Workshop
on Asynchrony in the PGAS Programming Model, 2009.

[14] L.-N. Pouchet, U. Bondhugula, C. Bastoul, A. Cohen, J. Ramanujam,
and P. Sadayappan, “Hybrid iterative and model-driven optimization in
the polyhedral model,” INRIA Research Report, Tech. Rep. 6962, June
2009.

[15] R. Karp, R. Miller, and S. Winograd, “The organization of computations
for uniform recurrence equations,” Journal of the ACM, vol. 14, no. 3,
pp. 563–590, 1967.

[16] P. Feautrier, “Dataflow analysis of array and scalar references,” Inter-
national Journal of Parallel Programming, vol. 20, no. 1, pp. 23–53,
1991.

[17] T. Yuki, G. Gupta, D. Kim, T. Pathan, and S. Rajopadhye, “Alphaz:
A system for design space exploration in the polyhedral model,” in
Proceedings of the 25th International Workshop on Languages and
Compilers for Parallel Computing, 2012.

[18] C. Mauras, “ALPHA: un langage équationnel pour la conception et la
programmation d’architectures parallèles synchrones,” Ph.D. disserta-
tion, L’Université de Rennes I, IRISA, Campus de Beaulieu, Rennes,
France, December 1989.

[19] H. Le Verge, “Reduction operators in alpha,” in Parallel Algorithms
and Architectures, Europe, ser. LNCS, D. Etiemble and J.-C. Syre, Eds.
Paris: Springer Verlag, June 1992, pp. 397–411, see also, Le Verge
Thesis (in French).

[20] N. Markham and M. Zuker, “Software for nucleic acid folding and
hybridization,” Methods in Molecular Biology, vol. 453, pp. 3–31, 2008.

[21] T. Yuki, G. Gupta, T. Pathan, and S. Rajopadhye, “Systematic imple-
mentation of fast-i-loop in UNAfold using AlphaZ,” Technical Report
CS-12-102, Colorado State University, Tech. Rep., 2012.

[22] T. Yuki, V. Basupalli, G. Gupta, G. Iooss, D. Kim, T. Pathan, P. Srinivasa,
Y. Zou, and S. Rajopadhye, “Alphaz: A system for analysis, transforma-
tion, and code generation in the polyhedral equational model,” Technical
Report CS-12-101, Colorado State University, Tech. Rep., 2012.

[23] A. Hartono, M. M. Baskaran, J. Ramanujam, and P. Sadayappan,
“Dyntile: Parametric tiled loop generation for parallel execution on
multicore processors,” in Proceedings of the 24th IEEE International
Symposium on Parallel and Distributed Processing. IEEE, 2010, pp.
1–12.

[24] D. Kim, “Parameterized and multi-level tiled loop generation,” Ph.D.
dissertation, Fort Collins, CO, USA, 2010.


