
Array Dataflow Analysis���
for Polyhedral X10 Programs

Tomofumi Yuki, Paul Feautrier,
Sanjay Rajopadhye, and Vijay Saraswat

Parallel Programming

n  Parallel Programing is
n  Difficult
n  Time consuming

n  Solutions:
n  Automatic parallelization

n  Only partially achieved

n  Highly Productive Parallel Languages
n  e.g., X10, Chapel, UPC, …
n  Still more difficult than sequential programs

2

Race Detection

n  Parallelism comes with non-determinacy
n  Source of parallel bugs (races)

n  Finding parallel bugs is extremely difficult
n  Not (consistently) reproducible
n  Static analysis tend to be too conservative

n Highly-Productive Languages:
n  Still require programmers to think parallel
n  Cannot help with races (at the language level)

3

Polyhedral X10

n finish/async
n  async S: Spawn a new activity to execute S
n  finish S: Wait for all activities in S to

terminate

n Unsupported parallel constructs
n  atomic/at (places): minor extensions
n  clocks: major extension (on-going)

n  Loop bounds and array accesses must be affine

4

finish/async vs doall!

n  Some can be viewed as doall

n However, X10 is more expressive

5

!
!

!
forall (i=0:N) {!
 S0;!
}!

finish {!
 for (i=0:N) {!
 async S0;!
 }!
} !

≈

!
!
!

for (i=0:N) {!
!S0;!

 async S1;!
}!

≈

n  Some can be viewed as doall

n However, X10 is more expressive
!
!
!

for (i=1:N) {!
!S0;!

 async S1;!
}!

≈

!
forall (i=0:N) {!
 S0;!
}!

finish {!
 for (i=0:N) {!
 async S0;!
 }!
} !

≈

finish/async vs doall!

6

!
!
 Key Challenge:

How to analyze such programs?

Contributions

n  Scope: Polyhedral X10 programs
n  Subset of X10; affine loops + finish/async!

n  Succinct characterization of happens-before
n  Algorithm is 5 lines

n  Extension of Array Dataflow Analysis
n  To finish/async programs
n  Results applied to race detection

n  Prototype implementation

7

Example

n S2<i> use value of
n  S0<i> if 0≤i≤N!
n  S1<i> if N≤i≤2N

8

finish {!
 for (i=0:N) {!
 async X[i] = S0();!
 }!
 for (i=N:2N) {!
 async X[i] = S1();!
 }!
}!
for (i=0:2N) {!
 S2(X[i]);!
}!

Example

n S2<i> use value of
n  S0<i> if 0≤i≤N!
n  S1<i> if N≤i≤2N!

n Race Detection
n  Source of S0<i> ���

overlap at i=N

9

finish {!
 for (i=0:N) {!
 async X[i] = S0();!
 }!
 for (i=N:2N) {!
 async X[i] = S1();!
 }!
}!
for (i=0:2N) {!
 S2(X[i]);!
}!

Example

n S2<i> use value of
n  S0<i> if 0≤i≤N!
n  S1<i> if N≤i≤2N!

n Race Detection
n  Source of S0<i> ���

overlap at i=N!

n  Feedback to user
n  Read X[i] of S2<i> has two sources S0<i>

and S1<i> when i=N!

10

finish {!
 for (i=0:N) {!
 async X[i] = S0();!
 }!
 for (i=N:2N) {!
 async X[i] = S1();!
 }!
}!
for (i=0:2N) {!
 S2(X[i]);!
}!

Outline

n  Introduction
n  Polyhedral X10
n Array Dataflow Anaysis
n Happens-Before Relation
n Race Detection
n Conclusions

11

Happens-Before Relation

n A happens-before B
n  Result of A is visible to B in all possible orders

of execution

n  Instance-wise Happens-Before
n  A<i,j> happens-before B<x,y>
n  Result of A at iteration <i,j> is visible to B at

iteration <x,y> in all possible execution

12

Array Data-flow Analysis

n  Exact dependence analysis
n  Statement instance-wise

n  e.g., Value produced by A at iteration <i,j> is
used by B at iteration <x,y>

n Array element-wise
n  e.g., Value written to array element ���
X[i,j] by A<i,j> is used by B<x,y>

n Original analysis is for sequential loop nests

13

ADA Formulation

n Given statement instances
n  r: reader
n  w: writer

n Candidate producers for r are w where:!
n  r and w are valid iterations
n  r and w access the same memory location
n  w happens-before r

n  Then find the most recent w
n Can be solved as Parametric ILP

14

Re-formulating Happens-Before

n Happens-Before for sequential program
n  Total order
n  Lexicographic order

n  For parallel programs
n  Partial order

n How to re-formulate for finish/async?
n  In a way ILP can still be used

15

Happens-Before with Async

n When are the following true?
n  S1<i> happens-before S1<i’>!
n  S0<i> happens-before S1<i’>

16

for (i=0:N) {!
!S0;!

 async S1;!
}!

S0<0>

S1<0>

S0<1>

S1<1> S1<2>

S0<2>

for

async S0!

S1!

i!

0! 1!

a!
[i,0]!

[i,1,a]!

When async matters

n S1<i> happens-before S1<i’>?!

17

for

async

S1!

i!

1!

a!

[i,1,a]!

for

async

S1!

i’!

1!

a!

[i’,1,a]!

n  false!
n  even if i<i’ S1<i> may be

executed after S1<i’>!

When async matters

n S1<i> happens-before S1<i’>?!

18

for

async

S1!

i!

1!

a!

[i,1,a]!

for

async

S1!

i’!

1!

a!

[i’,1,a]!

n  false!
n  even if i<i’ S1<i> may be

executed after S1<i’>!
n  Intuition:���
async may only postpone
the execution of its enclosing
statements

When async does not matter

n S0<i> happens-before S1<i’>?

19

for

S0!

i!

0!

[i,0]!

n  true if i≤i’!for

async

S1!

i’!

1!

a!

[i’,1,a]!

When async does not matter

n S0<i> happens-before S1<i’>?

20

for

S0!

i!

0!

[i,0]!

n  true if i≤i’!
n  Intuition:���
S0<i> is completed before
the activity that executes
S1<i’> is spawned

n  if i=i’, S0 is still before S1
in textual order (0<1)

for

async

S1!

i’!

1!

a!

[i’,1,a]!

Happens-Before as Incomplete
Lexicographic Order
n  Lexicographic order

n  Compare each dimension
n  1st difference defines order

n  Incomplete Lexicographic Order
n  Compare a subset of dimensions

n  Intuition:
n  Some dimensions do not contribute

n  async not synchronized with finish!

21

for

async

S1!

i!

1!

a!

[i,1,a]!

for

async

S1!

i’!

1!

a!

[i’,1,a]!

Outline

n  Introduction
n  Polyhedral X10
n Happens-Before Relation
n Array Dataflow Analysis
n Race Detection
n Conclusions

22

Applying to Race Detection

n ADA for sequential programs:
n  Happens-Before is total
n  Each read has exactly one producer

n ADA for parallel programs:
n  Happens-Before is partial
n  The source may not be unique

n  If the source is ambiguous for a read
n  We have a data race!
n  ADA result can also help fixing the problem

23

Related Work

n ADA for doall parallelism [Collard and Griebl 1996]
n  Cannot handle finish/async

n  Instance-wise Happens-Before [Agarwal et al. 2007]
n  Not linked to dependence analysis
n  Our formulation is simpler
n  Handles at and places

n  Instance-wise race detection [Vechev et al. 2010]
n  Array accesses are over-approximated

24

Conclusions

n  Extended ADA to subset of X10 programs
n Application to race detection

n  More precise than prior work
n  Guarantees race-freedom at compile-time

n  Future work
n  Handling of clocks (X10 synchronization)
n  Extending other analyses (e.g., scheduling)
n  Lifting the “polyhedral” restriction

25

26

Happens-Before as Incomplete
Lexicographic Order
n  Lexicographic order

n  Compare each dimension
n  1st difference defines order

n  Incomplete Lexicographic Order
n  Compare a subset of ���

dimensions

27

0 2 1 3 0 2 2 0

0 2 1 1 0 3 1 1

A

B

2 3 2 0 1 0 2 0

2 1 1 0 1 0 3 1

A

B

Happens-Before as Incomplete
Lexicographic Order
n  Lexicographic order

n  Compare each dimension
n  1st difference defines order

n  Incomplete Lexicographic Order
n  Compare a subset of ���

dimensions

n  Intuition:
n  Parallel dimensions do not contribute
n  Remove parallel iterations from lex. order

28

0 2 1 3 0 2 2 0

0 2 1 1 0 3 1 1

A

B

2 3 2 0 1 0 2 0

2 1 1 0 1 0 3 1

A

B

Contributions (old)

n  Scope: Polyhedral X10 programs
n  Subset of X10; affine loops + finish/async!

n  Extension of Array Dataflow Analysis
n  Instance-wise and Element-wise analysis
n  Analyze finish/async parallel programs
n  Apply its results to race detection

n  Prototype implementation
n  Can be (eventually) integrated IDEs to flag races

while coding

29

