
Automatic Complexity Reduction with

the Polyhedral Equational Model
Extended Abstract

Tomofumi Yuki, Sanjay Rajopadhye and Gautam Gupta

1 Introduction

The Bird-Meertens formalism [1, 2] is one of many
well known techniques for systematic program deriva-
tion. The primary focus of such formalisms is to
provide a framework for validating the transforma-
tions used. They usually are not intended to help de-
cide what transformations to apply. The framework
may allow concise validation/proof of each step in the
transformation, but human intuition is still involved
in the transformation process.

On the other hand, optimizing compilers focus
on automatically transforming programs to improve
performance, while preserving the original seman-
tics. Algorithmic improvement in complexity is rarely
achieved in the compiler. One rare case where it is
achieved in the compiler was proposed by Gupta and
Rajopadhye [3]. They developed a technique that
analyzes program expressions that use reductions as
high level operators. The analysis finds values that
are reused across multiple instances of a reduction,
and exploits the reuse to obtain an equivalent pro-
gram with lower asymptotic complexity.

The polyhedral model, is a mathematical frame-
work for analysis and transformation of compute-
and data-intensive kernels in programs where the
iteration space is modeled as unions of polyhedra.
We use an equational language based on the poly-
hedral model. The original motivation for this lan-
guage was to let the scientists specify the computa-
tion as equations, without worrying about the perfor-
mance, and then let the compiler optimize and gen-
erate executable code. This closely resembles one of
the motivations of program derivation: start simple
and successively transform the program for efficiency.
However, the precise representation of the shape and
size of the computation as polyhedral objects enables
powerful and automated analyses, including complex-
ity reduction.

We illustrate how equational reasoning in the poly-
hedral model can also be used for automatic program
derivation. Although the model is applicable to only
a limited class of programs, it provides automatic

derivation and provide optimality guarantees. Specif-
ically, we extend the simplification algorithm pro-
posed by Gupta and Rajopadhye to deal with nested
reductions. The extended algorithm simplifies nested
reduction with reuse across different operators using
the distributive property of a semi-ring.

2 Simplifying Reductions

The key idea behind simplifying reductions is to de-
tect hidden reuse among different instances of reduc-
tions. An example of such reuse can be seen in prefix
sum computation. Prefix sum can be naively spec-

ified as X[p] =

p∑
i=0

A[i] where {p | 0 ≤ p < N},

with O(N2) complexity, since there are N different
instances of summations, each for a different prefix.

Of course, we all know that this computation is not
really quadratic, but let us see how a compiler that
can do polyhedral (a.k.a. geometric) analysis would
discover this information automatically. It is clear
that x[p] accumulates the same set of values as x[p−1]
except for the value A[p]. The simplifying reductions
presented in [3] is a method for systematic detection
and exploitation of such reuse for a single reduction.

Figure 1 visualizes the iteration space of prefix sum
for N=8. The body of the reduction have a triangu-
lar domain {i, j|0 ≤ j ≤ i < N}, and there are 7
independent reductions along the vertical axis. Be-
cause A[j] is accessed within a 2D domain, it can be
observed that all points along the horizontal access
that have the same j but different i all share the
same value.

Simplifying Reduction is a program transformation
that takes as input, constant vector rE in the reuse
space, and rewrites the equation so that an instance
of reduction at z reuses the result of another instance
at z − rE . Unless the values used at different in-
stances of reductions are identical, reusing the re-
sult of another instance by itself is not enough. The
“residual” computation required can be computed
from the polyhedral representation of the iteration

1



(a) Iteration Space and Re-
ductions

(b) Reuse of A

Figure 1: Geometric view of the iteration space and
reductions involved in prefix sum computation for
N=8. The iteration space has a triangular domain
where all integer points represent a computation. The
reduction is along the vertical axis so that all points
with the same i contribute to the same answer. Be-
cause A is indexed only with j, all points with the
same j share the same value.

space. Figure 2 illustrates the reuse space and how
the required computation in addition to the reuse is
computed. Domains of residual computations are de-
rived from the original domain DE (filled domain)
and its translation by the reuse vector DE′ (unfilled
domain). Domain with diagonal stripes is the inter-
section Dint = DE

⋂
DE′ . Dint is where the result of

two reductions rE apart overlap and can be reused.
Thus, the diagonal strip of filled domain that does
not have the stripe, Dadd = DE − DE′ is the domain
that needs to be computed in addition to the reuse.

Depending on the shape of the domain and the di-
rection of reuse being exploited, it is possible that
a column in the translated domain has more points
than the original one. In this case, some computation
must be “undone” in order to exploit the reuse. In
such cases, the reduction operator must have a cor-
responding inverse operator in order to undo parts
of the computation. For example, if the vector[-1,0]
was used instead in the above example, P (x) is com-
puted from P (x + 1) by subtracting A[x + 1]. Such a
domain, called subtract domain, can be computed as
well, and it must be empty if the operator does not
have an inverse.

This transformation can be used to systematically
reduce the complexity of RNA secondary structure
prediction algorithm [4].

3 Maximum Segment Sum

The Maximum Segment Sum (MSS) problem and
its linear time algorithm became well known after
its presentation as a Programming Pearl [5]. The

(a) When reuse vector (1, 0)
is used

(b) When reuse vector
(−1, 0) is used

Figure 2: Visualization of the reuse and simplifi-
cation. DE′ is the domain translated by the reuse
vector. The intersection of the two domains (striped
and filled) is the value being reused. In Figure (a),
the diagonal strip of filled domain that does not have
the stripe, Dadd = DE − DE′ is the domain that
needs to be computed in addition to the reuse. In
Figure (b), the diagonal strip of unfilled domain,
Dsub = DE′ − DE is the domain of values that needs
to be undone from the reused value.

problem is to find a consecutive sub-array, of a one-
dimensional array that has the largest sum. The orig-
inal problem was on two-dimensional arrays in the
context of pattern recognition [5]. The problem is
often used to show that a program derivation tech-
nique can successfully prove the equivalence of the
cubic time algorithm and linear time algorithm. An
extension to the Simplifying Reductions to simplify
nested reductions with different reduction operators,
in one transformation, enables the compiler to auto-
matically deduce linear-time algorithm for MSS.

References

[1] Bird, R.: A calculus of functions for program
derivation. (1990) 287–307

[2] Gibbons, J.: An introduction to the Bird-
Meertens formalism. In: New Zealand For-
mal Program Development Colloquium Seminar,
Hamilton. (1994)

[3] G., G., S., R.: Simplifying reductions. In: Pro-
ceedings of the 33rd ACM SIGPLAN-SIGACT
symposium on Principles of programming lan-
guages. POPL ’06 (2006) 30–41

[4] Yuki, T., Gupta, G., Pathan, T., Rajopadhye, S.:
Systematic implementation of fast-i-loop in UN-
Afold using AlphaZ. Technical report, CS-12-102,
Colorado State University (2012)

[5] Bentley, J.: Programming pearls. (1986)

2


