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Abstract—Pipelined execution is one of the most important
optimizations in hardware design to improve hardware utilization
rate, and hence the throughput. Loop pipelining is a transforma-
tion available in High Level Synthesis tools to execute multiple
iterations of a loop in a pipeline.

Nested loop pipelining is a related technique that improves
hardware utilization rate when the iteration count of the inner-
most loop is small. However, it is also known to increase the
complexity of the control, and hence degrading frequency.

In this paper, we present an automatic transformation target-
ing HLS that improves the effectiveness of nested loop pipelining,
by efficient implementations of the control-path.

Specifically, we present (i) an analytical model that captures
the trade-off between gain in cycles and loss in frequency, (ii),
automatic derivation of efficient Finite State Machine from loop
nests, and (iii) an efficient implementation of the derived FSM
that improves the performance of synthesized hardware.

I. INTRODUCTION

Embedded systems have been, and are increasingly so, an

important component of many electrical systems. As the need

for energy efficiency grows, specialized custom hardware is

receiving more and more attention. However, custom hardware

design is an effort intensive procedure, taking many man-

months if not years.

High Level Synthesis (HLS) is a response to the desire for

faster “time-to-market”. HLS tools derive hardware descrip-

tions from behavioral specifications given in higher level lan-

guages (typically C/C++) than previous RTL methodologies.

After decades of research, HLS tools have reached significant

degree of maturity, and are now being adopted by the industry

as part of their production process.

However, naı̈ve application of HLS tools can lead to

significantly inferior hardware design compared to manually

designed counterparts [1]. The output produced by HLS tools

is very sensitive to the control and data structures exposed at

the source level and minor modifications can greatly impact

the synthesized hardware.

The usual design flow using HLS tools includes a design

space exploration step at the source level. This exploration is

done by transforming the specification at the source level and

by interacting with the HLS tool to apply automatic transfor-

mations and provide decisions about the target architecture.

One key transformation provided by HLS tools is the

application of loop pipelining. This transformation improves

the hardware utilization rate and reduces the execution time by

exploiting the parallelism available in the loop nest. Moreover

some tools propose the application of nested loop pipelining

(or outer loop pipelining), namely the pipelining of several

levels of loop. This transformation helps reducing the overhead

due to initiation and flush phases that are predominant when

the innermost loop has a small iteration count [2], [3].

The nested loop pipeline is controlled by a Finite State

Machine (FSM) that is usually built by coalescing (flattening

or collapsing) the loops to pipeline [4]. This coalescing can

lead to an increase in the pipeline control complexity that

may reduce the maximum achievable frequency [5]. The

degradation in frequency due to inefficient controls due to coa-

lescing may cancel the gains coming from increased hardware

utilization. Thus, there is a need for deriving efficient controls

to iterate over coalesced loops.

In this paper, we present the following contributions:

1) We develop an analytical model that capture the ef-

fectiveness of nested loop pipelining, with respect to

the improved hardware utilization, and degradation in

frequency when compared to single loop pipelining. This

model can be used to guide the design space exploration

by designers and/or HLS tools.

2) We propose a method to derive efficient FSMs from

imperfectly nested loops with affine bounds.

3) We present a code generation strategy that takes abstract

representations of the derived FSMs and generates C

codes suitable for HLS.

4) We further improve the performance of the derived

FSMs by looking several steps ahead in order to enable

the pipelining of the FSMs.

5) We have implemented our approach as an automatic

source-to-source transformation for HLS tools. We show

that the state look ahead significantly improves the

maximum achievable frequency when compared to con-

ventional nested loop pipelining.

This paper is organized as follows. We develop a model

for analyzing the effectiveness of nested loop pipelining in

Section II. The derivation of FSM from loop nests is presented

in Section III, followed by the presentation of our code gener-

ation strategy in Section IV. In Section V, we introduce state

look ahead as a means to enable pipelining of the control path.

We evaluate our approach through experimental validation

in Section VI. We discuss related work in Section VII and

conclude in Section VIII.



Fig. 1: Illustration of pipeline overhead for a loop with number

of iterations N = 5, and pipeline latency (number of stages)

δ = 4. The shaded triangular regions are stages of the pipeline

not utilized.

II. PIPELINE OVERHEAD

Loop pipelining is a critical optimization in hardware syn-

thesis that significantly boosts its computational throughput.

In this section, we analyze the overhead of loop pipelining

and the effectiveness of nested loop pipelining.

A. Nested Loop Pipelining

Loop pipelining comes with the usual overhead for any

pipelining; pipeline fill and flush. Given a δ-stage pipeline, it

takes δ−1 cycles before all stages in the pipeline are activated,

assuming initiation interval of 1. Similarly, towards the end of

the pipelined loop, there are no more iterations to issue, and

thus some of the pipeline stages become inactive before the

others. These pipeline overheads are illustrated in Figure 1.

With small values of N, the pipeline overheads dominate,

resulting in low hardware utilization rate. Pipelined execution

of a single loop with N iteration takes N+δ−1 cycles. If the

pipelined loop is surrounded by another set of loops with M

iterations, it takes M(N+δ−1) cycles, excluding loop control

overhead. In other words, additional M(δ−1) cycles are spent

when only the innermost loop is pipelined.

This has led to what are called nested loop pipelining,

where loop nests are pipelined instead of the innermost loop

itself. Then the fill and flush overhead are only present at

the start/end of the full loop nest, significantly reducing the

overhead. This can be seen as converting loop nests into while

loops, and letting the HLS tool pipeline the while loops when

implemented as a source-to-source transformation.

Using the above example loop nest with M and N iterations,

the total number of cycles are reduced to MN+δ−1, which is

(M−1)(δ−1) cycles less than only pipelining the innermost

loop. This eliminates most of the wasted cycles, except for the

unavoidable δ−1 cycles at the end of the pipelined execution.

B. Effectiveness of Nested Loop Pipelining

However, it is not always beneficial to apply nested loop

pipelining. When compared to the design with only the in-

nermost loop is pipelined, the control becomes much more

complex, since the pipeline spans across multiple loops. This

drawback is reflected in elongation of the critical path, i.e.,

decrease in achievable frequency of the clocks. Thus, it is

important to distinguish when to apply nested loop pipelining.

If nested loop pipelining is beneficial can be analytically

reasoned. The important parameters are:

• N: The number of iterations in the innermost loop that is

pipelined in both cases.

• M: The number of iterations in the outer loops that are

pipelined only when nested loop pipelining is used.

• δ: Number of pipeline stages.

• f ∗: Frequency with nested loop pipelining, normalized to

that of single loop pipelining.

Let C∗ be the number of cycles with nested loop pipelining,

normalized to the number of cycles with single loop pipelining.

Using the analysis developed in Section II-A, we obtain the

following:

C∗ =
MN + δ− 1

M(N + δ− 1)

=1−
(M− 1)(δ− 1)

M(N + δ− 1)

=1−
M−1

M
(δ− 1)

N + δ− 1

Let the ratio of pipeline stages with respect to the inner most

loop trip count be denoted as α = δ−1
N

. Substituting δ−1 with

αN yields:

C∗ =1−
M−1

M
αN

αN +N

=1−
M−1

M
α

α+ 1

With large values of M, C∗ asymptotically approaches the

following:

C∗ ≈ 1−
α

α+ 1

=
1

α+ 1

Thus, the execution time with nested loop pipelining, nor-

malized to that of single loop pipelining, can be approximated

by the following:

T ∗ =
C∗

f ∗
≈

1

f ∗(α+ 1)
(1)

Figure 2 illustrates the trade-off between reduction in cycles

due to nested loop pipelining, and degradation in frequency.

Our aim is to improve the design of the control-path such that

the effectiveness of nested loop pipelining is strengthened.

III. FSM DERIVATION

In a custom hardware design flow, the mapping of loops to

hardware is an important step to achieve efficient accelerators.

Parallelism and locality are two factors to optimize in order to

achieve good performance. However the control logic of the

loops has to be efficient enough to avoid hindering these two

factors. FSM is one way to efficiently map loops to harware

as FSMs are straightforward to implement in hardware.

The basic technique to derive an FSM from a hierarchical

loop nest is to syntactically coalesce (flatten or collapse) the
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Fig. 2: Illustration of the effectiveness of nested loop pipelin-

ing according to Equation 1. The dashed line shows the break-

even point where nested loop pipelining does not do any better

due to excessive degradation in frequency. The plot show

multiple curves corresponding to different values of α. With

high values of α, i.e., with small inner most loop trip counts,

nested loop pipelining is likely to have greater benefits.

for (i = 0; i < 100; i++)

  for (j = 0; j < 2; j++)

    S(i,j);

(a) Original sample loop.

i = 0, j = 0;

while (i < 100)

  if (j < 2) {

    S(i,j);

    j++;

  } else

    j = 0, i++;

(b) AST-coalescing.

i = 0, j = 0;

while (i < 100)

  S(i,j);

  if (j < 1)

    j++;

  else

    j = 0, i++;

(c) 0-overhead coalescing.

Fig. 3: Difference between (b) AST rewriting and (c) zero-

overhead loop coalescing. Using AST rewriting, whenever j

reaches 2, that is 1/3 of the iterations, time is spent on control

only. Using zero-overhead loop coalescing, j never reaches the

value 2.

loop nest using AST rewriting [4]. Figure 3b illustrates such

loop coalescing on a simple example. This example shows that

this syntactic coalescing can lead to inefficient implementation

as 30% of the iterations (when j = 2) are dedicated to control.

More advanced techniques can derive an FSM where the

control visits only values of the iterators where memory

operations are computed. This is known as deriving a zero-

overhead loop. Figure 3c illustrates an FSM where j never

reaches 2. Previous approaches for deriving such FSM are

very limited as they can only handle perfect rectangular loop

nests with constant bounds [6], [7].

In this work we borrow a technique from automatic par-

allelization targeting general purpose machines. Loop trans-

formations are often applied in automatic parallelization to

expose parallelism, improve locality, and so on. The state-

of-the-art automatic parallelizers abstract loop nests in a

specialized intermediate representation to ease analyses and

transformations.

One of such intermediate representation, called the poly-

hedral model, represents statements executed in loop nests

as mathematical objects. These mathematical objects are con-

verted back to loop programs after performing analyses and

transformations. In automatic parallelization, the mathematical

objects are usually converted back to loop nests [8], [9], [10].

However, a method for enumerating the same sequence

of operations using automata has been proposed by Boulet

and Feautrier [11]. Although their initial motivation was to

generate low level code for programmable processors, this

technique is well suited for hardware synthesis. The automaton

generated using their approach actually happens to be a zero-

overhead loop that can be implemented in the form of an FSM.

Their approach consists in generating a next function that,

given the current value of the iterators, computes the value of

the immediate successor following the loop execution order.

This function is then used as the transition for the FSM.

This method is applicable to a subset of loop nests where

the loop bounds are affine expressions of the surrounding loop

iterators and program parameters. In addition, if statements

can also be handled provided that the conditions are also affine.

Within the polyhedral model, one does not represent loops,

but statements. For each statement within a loop nest is

associated its iteration domain. The iteration domain of a

statement S is denoted as DS, and is a set of integer points

in a multidimensional space. This set of points represents

the values that the iterators of the loops surrounding S, the

iteration vector, can take, and is defined by a set of m affine

constraints representing a polyhedron:

DS(~n) = {~x | AS.~x+BS.~n+ ~cS ≥ 0}

where AS ∈ Z
m ×Z

q, BS ∈ Z
m ×Z

p and ~cS ∈ Z
m, q represents

the number of dimensions of the iteration domain and p the

number of parameters. The particular instance of statement S

for iteration vector (~n,~x) is the operation S(~n,~x).
Figure 4 illustrates a loop nest and its polyhedral represen-

tation. The same idea carries over to programs with multiple

statements and with imperfectly nested loops as shown in

Figure 5. The mathematical formalism is applicable to unions

of polyhedra, making handling of imperfectly nested loops no

different from perfect loop nests.

From the polyhedral representation, the goal is to construct

a function next that, given an iteration vector ~x, gives its

immediate successor in the iteration domain following the

lexicographic order [11]. The technique consists in building a

relation that associates an iteration vector to all its successor,

and selecting the smallest one (the immediate successor) by

computing the lexicographic minimum of this relation:



/* original source code */

for(int i=0;i<=N;i++) {

  for(int j=N-i;j<=N;j++){

    S0(N,i,j);

  }

}
i

j

DS0(N) = {i, j | 0 ≤ i ≤ N,N − i ≤ j ≤ N}

Fig. 4: Example loop nest and its corresponding polyhedral

representation.

for (i=0;i<=N;i++) {

  for (j=0;j<N-i;j++)

    S(i,j);

  for (j=N-i+1;j<=N;j++)

    T(i,j);

}

i

j
N

0 N

T

S

DS(N) = {i, j | 0 ≤ i < N ∧0 ≤ j < N − i}
DT (N) = {i, j | 0 < i ≤ N ∧N − i < j ≤ N}

Fig. 5: Imperfect loop nests are represented as an union of

polyhedra. The same theory applies on this union.

succ(~n,~x) = {~y | ~y ≻~x,~y ∈ DS(~n}
next(~n,~x) = lexmin(succ(~n,~x))

We use the Integer Set Library [12] to find the lexicographic

minimum. The result is a piece-wise affine function represent-

ing the next function. The representation of the next function

for the example in Figure 4 is shown in Figure 6.

IV. FSM CODE GENERATION

The next function is an abstract representation of the

transition required to generate an FSM. In this section, we

i

j

if (j ≥ N && i < N)

next(N,i,j) = (i+1,N-i)

if (j < N)

next(N,i,j) = (i,j+1)

if (j ≥ N && i ≥ N)

next(N,i,j) = ⏊

if (N ≥ 0)

init(N) = (0,N)

P1

P2

P3

Fig. 6: Illustration of the init and next functions for the

example in Figure 4. P1 through P3 are the different pieces

of the next function.

// (1) Initialize

done = 0;

x = init(n);

while (!done) {

  // (2) Compute Controls

  bool ctrl_1 = f1(n,x);

  bool ctrl_2 = f2(n,x);

  ...

  // (3) Commands

  if (ctrl_1) S0(n,x);

  ...   

  // (4) Compute Next

  if (ctrl_2) x_next=next_1(n,x);

  if (ctrl_3) x_next=next_2(n,x);

  ...

  if (ctrl_4) done = 1;

  // (5) Fire

  x = x_next;

}

Fig. 7: Template used when generating code from the polyhe-

dral representation of the FSM.

describe how to generate code out of this function while

targeting hardware synthesis.

A. Code Template

We use the code template illustrated in Figure 7 in order

to maximize the Common Sub-expression Elimination (CSE)

opportunities and to enable the parallel evaluation of the

guards. The five steps are described in the following.

1) The FSM initialization consists in assigning values to

the iterators according to the parameters values. The init

function is built by computing the lexicographic minimum of

the iteration domain. Figure 6 illustrates the init function for

the example in Figure 4.

2) All the affine constraints to be evaluated for the transi-

tions are gathered before the guards. The aim is to make the

application of CSE easier.

3) The FSM commands execute the operations from the

original loop body. Since the FSM iterates over the whole

iteration domain, without distinguishing statements, we insert

guards to execute the appropriate statements.

4) As illustrated on the Figure 6, the next function is

a piece-wise affine function. Each piece represents a differ-

ent transition with a different expression for the immediate

successor. Using the last transition means the iteration has

been completed. In comparison with the method of Boulet

and Feautrier, we do not use the else construct. Because of

the complexity of the guards, the HLS tools are not always

able to determine that the pieces are guarded by mutually

exclusive domains. Therefore the else construct would insert

a dependency chain, lengthening the critical path. By avoiding

such construct, all the guards can be evaluated in parallel.

5) Finally, the FSM transition is fired by updating the values

of the iterators.



//Initialize

done = 0;

if (N >= 0) { i = 0; j = N; }

else done = 1;

while (!done) {

  //Compute Controls

  bool ctrl_a0 = ((j == N) && (N >= i+1));

  bool ctrl_a1 = (N >= j+1);

  bool ctrl_a2 = !(ctrl_a0 || ctrl_a1);

  //Commands

  S0(N,i,j);

  //Compute Next

  if (ctrl_a0) { i_n1 = i+1; j_n1 = -i+j-1;}

  if (ctrl_a1) { i_n1 = i; j_n1 = j+1;}

  if (ctrl_a2) done = 1;

  //Fire

  i = i_n1; j = j_n1;

}

Fig. 8: The final code for the example in Figure 4.

B. Merging of Pieces

One important optimization when implementing FSMs in

hardware is to minimize the number of branches in transitions

and the number of conditions to evaluate. The next function

found by the library often contains pieces that can be merged,

but are not found by the simplification implemented in the

library.

As an example, the original next function found by ISL

have two pieces that together express the piece P1 in Figure 6:

(1) next(N, i, j) = (i, j+ 1) if i < N & j < N

(2) next(N, i, j) = (N, j+ 1) if i = N & j < N

Although it is not difficult to identify that the two pieces can

be merged into one, in the eyes of a human, more complicated

variations of such cases can be difficult to find.

These simplification opportunities can be characterized as

when the two expressions are equivalent in context. In the

above example, (i, j + 1) and (N, j + 1) is not equivalent in

general, but given the context i = N, they are equivalent. This

is the key reason why the two pieces can be merged.

We use this notion of equivalence to find pieces that can

be merged. Although this does not necessarily minimize the

number of transitions and/or conditions to evaluate, we found

this optimization to be highly effective in reducing the number

of transitions.

C. Final Output

The FSM code generated for the example in Figure 4 is

shown in Figure 8. Since the loop nest contains only one

statement, there is no need for guards in the command part.

V. STATE LOOK AHEAD

The two important factors that impact the effectiveness of

nested loop pipelining are the ratio of pipeline latency against

innermost loop trip count (α), and degradation in frequency

( f ∗). If we manage to limit the degradation in frequency, then

nested loop pipelining becomes beneficial to smaller α, not

to mention that its general performance is improved. In this

section, we propose to look ahead multiple states rather than

(a) Basic (b) Power of next

Fig. 9: Illustration of lookahead using power of the next

function. In the basic implementation, the next function is

used to compute the immediate following iteration. Using

next
2 allows two iterations ahead to be computed, with a

two stage pipeline.

the immediately following state to improve the achievable

frequency of FSM implementations.

A. Pipelining the Computation of Next Iterations

When the data-path is pipelined, the control-path, which is

the computation of next state, may become the bottle neck,

since each stage of the pipeline can be shorter than the

computation of the next iteration. Thus, we seek to enable

pipelining of the control-path to improve the overall critical

path length. It is necessary to compute multiple iterations

ahead in order to pipeline the control-path.

The key is to compute the n-th power of the next function

so that n iterations ahead are directly computed. We expect

computing next
n to be less expensive than applying next n

times. If this is the case, pipelining the computation of nextn

using n stages reduces the critical path length.

B. Implementation of Look Ahead

The high-level structure of the control-path implementing

look ahead is depicted in Figure 9. Additional registers are

introduced to hold the value of future iterations (and hence

becoming a shift register). The transformed C code is nearly

identical to the one without lookahead, except for copying of

values corresponding to the additional registers.

With the optimizations described in Section IV-B, the

number of transitions as well as constraints to evaluate are

kept small. Thus, evaluating next
n involves less work than

applying next n times. For instance, the next function for a

2-dimensional rectangular domain has 2 transitions with total

of 3 unique constraints to evaluate. The next
2 function has 3

transitions with 4 unique constraints, rather than 4 transitions

with 6 constraints, which would be the case if the next

function was composed.

C. Final Output with Look Ahead

The final code for the example in Figure 4 with 2-state

look ahead is shown in Figure 10. The overall structures of

the code stays the same, but now the HLS tools can pipeline

the computation of the next function.

For this example, the merging of pieces works particularly

well. Notice that there are only three transitions with 2-state



//Initialize

done = 0;

if (N >= 1)

{i = 0; j = N; i_n1 = 1; j_n1 = N-1;}

else done = 1;

while (!done) {

  //Compute Controls (look ahead: 2)

  bool ctrl_a0 = ((j >= N-1) && (N >= i+1));

  bool ctrl_a1 = (N >= j+2);

  bool ctrl_a2 = !(ctrl_a0 || ctrl_a1);

  //Shift done flag

  done = done_1;

  //Commands

  S0(N,i,j);

  //Compute Next (look ahead: 2)

  if (ctrl_a0) {i_n2 = i+1; j_n2 = -i+j;}

  if (ctrl_a1) {i_n2 = i; j_n2 = j+2;}

  if (ctrl_a2) done_1 = 1;

  //Fire

  i = i_n1; j = j_n1;

  i_n1 = i_n2; j_n1 = j_n2;

}

Fig. 10: The final code for the example in Figure 4 with 2-

state look ahead. Note that there is an additional set of loop

iterators, i_n2 and j_n2. The computation of next now give

two states ahead. (Notice the j+ 2 in the second piece.)

look ahead, even though 1-state look ahead already had three

transitions.

Since now we the next function computes two states ahead,

the are two cases at the boundary of j:

• (i+ 1,N− i) if j = N

• (i+ 1,N− i− 1) if j = N − 1

The former case is when j is exactly on the boundary, so

that the iteration two steps ahead is the second iteration in the

next column. The latter case reaches the first iteration in the

next column, since the current iteration is still one step away

from the boundary. However, substituting N with j for the first

case, and N − 1 with j for the second case gives (i+ 1, j− i)
as the common expression to compute the next state. Our

implementation is able to find such cases and simplify the

state transitions using the equivalence in context check.

VI. EXPERIMENTAL VALIDATION

In this section, we present the results of our experiments

to show that the combination of FSM with state look ahead

leads to improved frequency.

A. Benchmark Kernels

We used four simple kernels that capture commonly seen

loop structures, with trivial data-path to focus on the control-

path synthesis. All kernels access an array of integers and

simply increment each element by one. Each iteration of the

loop access distinct elements in the array, and thus there is no

dependence between loop iterations. The four loop structures

we model are:

• rect 2d: 2-dimensional loop nest with loops bounded

from above by N and M forming a rectangle.

• rect 3d: 3-dimensional version of the above, forming a

cuboid.

• triangular 2d: 2-dimensional loop nest with the inner

loop bounded by the outer loop indices (i.e., j ≤ i),

forming a triangle.

• triangular 3d: 3-dimensional version of the above,

forming a tetrahedron.

These loop structures are by no means comprehensive, but

many kernels for embedded applications, such as image pro-

cessing, matrix multiplication, QR decomposition, and so on,

fall under one of these loop structures.

B. Experimental Setup

The kernels described above were processed through our

prototype implementation of the flow that automatically gener-

ates C code that implements FSM-based controls. The original

code and the generated codes were given to a HLS tool1

that produce VHDL code. The HLS tool we used is the only

tool that we are aware of that can perform automated nested

loop pipelining. We have selected this tool to compare the

performance of our approach with the nested loop pipelining

currently offered by tools.

The four versions we obtain are:

• SLP: Single Loop Pipelining. The original code with the

inner-most loop pipelined by the HLS tool.

• NLP: Nested Loop Pipelining. The original code with the

entire loop nest (2D or 3D) flattened and pipelined by the

HLS tool.

• FSM-LA1: FSM-based control by our tool with state look

ahead of 1, that is, to computes the immediate next

iteration. The while loop in the generated code was

pipelined by the HLS tool.

• FSM-LA2: FSM-based control by our tool with state look

ahead of 2. The while loop in the generated code was

pipelined by the HLS tool.

The HLS tool was configured to target Altera Stratix IV FPGA

with effort put on latency. We run the HLS process a number

of times with different target frequency to find the highest

target frequencies (in 10MHz intervals) where the HLS tool

finds a feasible schedule. Then the generated VHDLs with the

top few target frequencies were synthesized using Quartus.

C. Highest Target Frequency

Figure 11 show the highest target frequencies that the

HLS tool managed to schedule. The version with single loop

pipelining, SLP, reaches the maximum frequency reachable by

the target FPGA (450MHz). The nested loop pipelining by the

HLS tool is comparable to the FSM-based control with state

look ahead of 1.

With look ahead of 2, there is a noticeable improvement

in the target frequency. This supports our hypothesis that the

computation of two iterations ahead is faster than computing

the next iteration two times.

1We cannot disclose the name of the HLS tool we used due to its licensing.
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Fig. 11: Highest design frequency where the HLS tool was

able to find a schedule for different implementations of the

control path and pipelining. The results show that using look

ahead improves the achievable frequency as we expect.

D. Synthesized Hardware

Table I gives a summary of the hardware synthesized by

Quartus. Using FSM-based control with 2-state look ahead, we

see 40% to 50% improvement in design frequency compared to

nested loop pipelining performed by the HLS tool. Frequency

improvement by 40-50% translates to around 30% reduction

in total execution time.

This is with the exception of triangular 3d, where Quar-

tus reported 324MHz whereas the target frequency by the HLS

tool is only 210MHz. The frequency generally match the trend

in seen in the highest target frequency for other kernels.

The area cost is comparable for those that only compute

the immediate next iteration. FSM-LA2 that computes two

iterations ahead use around twice as much area compared to

the other versions. The increase in area is a combination of

the cost of adding pipeline stage to the control-path and the

increased complexity of the control due to look ahead.

Note that since there is very little data-path for the kernels

we used, and thus most of the area comes from the control-

path. With designs with more complicated data-path, the

impact of area overhead in the control-path decreases.

E. Impact on Effectiveness of Nested Loop Pipelining

The performance of nested loop pipelining can be signifi-

cantly improved by using FSM-based control with pipelined

control-path. However, this is not the end of the story. Recall

the analytical model developed in Section II. The performance

of nested loop pipelining should be compared with single loop

pipelining, since nested loop pipelining is only beneficial with

relatively small trip counts.

As illustrated in Figure 2, both the ratio between the pipeline

latency and inner most loop trip count (α) and the design

frequency influence if nested loop pipelining is beneficial. For

example, if the frequency degrades by 50%, α must be 1,

TABLE I: Hardware characteristics of different implementa-

tions. FSM with 2 state look ahead is faster than others that

perform nested loop pipelining, but uses close to twice as much

area due to pipelining of the control-path.

Kernel Version ALUT
Logical Frequency

Register (MHz)

rect 2d

SLP 98 91 525

NLP 116 93 322

FSM-LA1 106 62 349

FSM-LA2 201 182 454

rect 3d

SLP 160 145 500

NLP 158 115 260

FSM-LA1 199 94 334

FSM-LA2 348 215 387

SLP 94 83 532

triangular NLP 82 65 286

2d FSM-LA1 89 90 460

FSM-LA2 131 111 433

SLP 163 137 524

triangular NLP 154 113 324

3d FSM-LA1 187 71 259

FSM-LA2 384 290 346

i.e., the trip count must be comparable to pipeline latency,

for nested loop pipelining to be no slower than single loop

pipelining. We limit the degradation to around 20% for most

cases, which in turn means that the break-even point is when

α = 0.2, or when the trip count is 5 times larger than the

pipeline latency.

In practice, the data-path is much more complicated than the

kernels we used to focus on control-path. The HLS tools now

have to aggressively pipeline the data-path to achieve higher

frequency, or have to operate on lower frequency. In both

cases, this favors nested loop pipelining, by further reducing

the degradation in frequency, or by increasing the pipeline

latency.

Indeed, even with simple computations such as matrix

product, or morphology (image processing), the frequency for

single loop pipelining and 2-state look ahead becomes the

same. In this case, nested loop pipelining is at least as good

as single loop pipelining even with large innermost loop trip

count, and significantly faster with small trip counts.

VII. RELATED WORK

In this section, we relate our work with previous research,

and highlight the novelty of our approach.

A. Nested Loop Pipelining

The benefits of nested loop pipelining have been repeatedly

demonstrated for programmable processors [2], [3], and for

hardware synthesis [4], [13]. These work also try to limit the

degradation in performance by proposing dedicated facilities,

and by proposing designs for efficient execution of coalesced

loop nests.



However, the class of loop nests are limited to rectangular

bounds, and some of the earlier work is further limited to

constant bounds and/or perfectly nested loops. In contrast, we

can handle any loop nest with affine bounds, and imperfect

loop nests are not an issue.

Morvan et al. [14] use a similar method for loop coalescing.

However, their paper primarily focus on the legality of nested

loop pipelining, and its correction. They also do not perform

any state look ahead, which was shown to be an important

optimization of the control-path.

B. Zero-overhead Looping

A related concept is zero-overhead loops, where the aim

is to improve the performance of loops by eliminating the

bound checks. In programmable processors, this is achieved

by using a specialized architecture for zero-overhead loops

that are configured at run-time before entering loop nests [6],

[7]. However, such architecture is also limited to rectangular

loop nests.

VIII. CONCLUSION

In this paper we have presented a method for improving the

effectiveness of nested loop pipelining. We borrow a technique

from automatic parallelization to derive efficient FSM-based

controls for imperfect loop nests with affine bounds; a much

wider class of loops than most previously proposed techniques.

The performance of derived control is further improved by

pipelining of the control-path, enabled by state look ahead.

Our approach increases the applicability of nested loop

pipelining in two ways. The increase in achievable frequency

widen the range of input data sizes where nested loop pipelin-

ing is beneficial. We also handle more general class of loop

nests enlarging the design space.

As the HLS tools gain maturity, source-to-source transfor-

mations originally developed for general purpose processors

are now being applied to HLS [14], [15], [16]. Although

direct application of loop transformations for general purpose

processors may also be beneficial for hardware design, we

believe that there is a need to adopt such techniques for

HLS context. The derivation of FSM is one such example, as

FSM-based implementation is usually considered inefficient

for general purpose processors.
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