
Memory Allocations for Tiled
Uniform Dependence Programs

Tomofumi Yuki and Sanjay Rajopadhye

Parametric Tiling

n  Series of advances
n  Perfect loop nests [Renganarayanan2007]
n  Imperfectly nested loops [Hartono2009, Kim2009]
n  Parallelization [Hartono2010, Kim2010]

n Key idea:
n  Step out of the polyhedral model

n  Parametric tiling is not affine

n  Use syntactic manipulations

1/21/13 IMPACT 2013

2

Memory Allocations

n  Series of polyhedral approaches
n  Affine Projections [Wilde & Rajopadhye 1996]
n  Pseudo-Projections [Lefebvre & Feautrier 1998]
n  Dimension-wise “optimal” [Quilleré & Rajopadhye 2000]
n  Lattice-based [Darte et al. 2005]

n Cannot be used for parametric tiles
n  Can be used to allocate per tile [Guelton et al. 2011]

n Difficult to combine parametric tiling with
memory-reallocation

1/21/13 IMPACT 2013

3

This paper

n  Find allocations valid for a set of schedules
n  Tiled execution by any tile size
n  Based on Occupancy Vectors [Strout et al. 1998]

n  Restrict the universe to tiled execution
n  Quasi-Universal Occupancy Vectors
n  More compact allocations than UOV

n Analytically find the shortest Quasi-UOV
n UOV-guided index-set splitting

n  Separate boundaries to reduce memory usage

1/21/13 IMPACT 2013

4

Outline

n  Introduction
n Universal Occupancy Vectors (review)
n  Lengths of UOVs
n Overview of the proposed flow
n  Finding the shortest QUOV
n UOV-guided Index-set Splitting
n Related Work
n Conclusions

1/21/13 IMPACT 2013

5

Universal Occupancy Vectors

n  Find a valid allocation for any legal schedules
n Occupancy vector: ov!

n  Value produced at z is dead by z+ov!

n Assumptions
n  Same dependence pattern
n  Single statement
n  Legal schedule can even be���

from run-time scheduler

1/21/13 IMPACT 2013

6

Live until these 4 iterations are executed.

Find an iteration that depends on all the uses.

Lengths of UOVs

n  Shorter ≠ Better
n  The shape of iteration space has influence

n A good “rule of thumb” when shape is not
known

n  Increase in ���
Manhattan distance���
usually leads increase in���
memory usage���

1/21/13 IMPACT 2013 7

Proposed Flow

n  Input: Polyhedral representation of a program
n  no memory-based dependences

n Make scheduling choices
n  The result should be (partially) tilable

n Apply schedules as affine transforms
n  Lex. scan of the space now reflects schedule

n Apply UOV-based index-set splitting
n Apply QUOV-based allocation

1/21/13 IMPACT 2013

8

UOV for Tilable Space

n We know that the iteration space will be tiled
n  Dependences are always in the first orthant
n  Certain order is always imposed
è Implicit dependences

1/21/13 IMPACT 2013

9

Finding the shortest QUOV

n  1. Create a bounding hyper-rectangle
n  Smallest that contains all dependences

n  2. The diagonal is the shortest UOV
n  Intuition

n  No dependence goes���
“backwards”

n  Property of tilable space

1/21/13 IMPACT 2013

10

Outline

n  Introduction
n Universal Occupancy Vectors (review)
n  Lengths of UOVs
n Overview of the proposed flow
n  Finding the shortest QUOV
n UOV-guided Index-set Splitting
n Related Work
n Conclusions

1/21/13 IMPACT 2013

11

Dependences at Boundaries

n Many boundary conditions in polyhedral
representation of programs
n  e.g., Gauss Seidel 2D (from polybench)

n  Single C statement, 10+ boundary cases

n  May negatively influence storage mapping
n  With per-statement projective allocations

n  Different life-times at boundaries
n  May be longer than the main body

n Allocating separately may also be inefficient

1/21/13 IMPACT 2013

12

UOV-Based Index-Set Splitting

n  “Smart” choice of boundaries to separate out
n  Those that influence the shortest QUOV

n  Example:
n  Dashed dependences���

= boundary dependences
n  Removing one has no effect
n  Removing the other shrinks���

the bounding hyper-rect.

1/21/13 IMPACT 2013

13

Related Work

n Affine Occupancy Vectors [Thies et al. 2001]
n  Restrict the universe to affine schedules

n Comparison with schedule-dependent methods
n  Schedule-dependent methods are at least as

good as UOV or QUOV based approaches
n  UOV based methods may not be as inefficient

as one might think
n  Provided O(d-1) data is required for d dimensional

space
n  UOV-based methods are single projection

1/21/13 IMPACT 2013

14

Example

n  Smith-Waterman (-like) dependences

1/21/13 IMPACT 2013

15

Summary and Conclusion

n We “expand” the concept of UOV to a smaller
universe: tiled execution

n We use properties in such universe to find:
n  More compact allocations
n  Shortest QUOVs
n  Profitable index-set splitting

n  Possible approach for parametrically tiled
programs

1/21/13 IMPACT 2013

16

Acknowledgements

n Michelle Strout
n  For discussion and feedback

n  IMPACT PC and Chairs
n  Our paper is in a much better shape after

revisions

1/21/13 IMPACT 2013

17

Extensions to Multi-Statement

n  Schedule-Independent mapping is for
programs with single statement
n  We reduce the universality to tiled execution
n  Multi-statement programs can be handled

n  Intuition:
n  When tiling a loop nest, the same affine

transform (schedule) is applied to all statements
n  Dependences remain the same

1/21/13 IMPACT 2013

18

Dependence Subsumption

n  Some dependences may be excluded when
considering UOVs and QUOVs

n A dependence f subsumes a set of
dependences I if f can be expressed
transitively by dependences in I

1/21/13 IMPACT 2013

19

Valid UOV for the left is
also valid for the right.

