
Enabling Overclocking through
Algorithm-Level Error Detection

Thibaut Marty
Univ Rennes, Inria, CNRS, IRISA

Rennes, France
thibaut.marty@irisa.fr

Tomofumi Yuki
Univ Rennes, Inria, CNRS, IRISA

Rennes, France
tomofumi.yuki@inria.fr

Steven Derrien
Univ Rennes, Inria, CNRS, IRISA

Rennes, France
steven.derrien@irisa.fr

Abstract—In this paper, we propose a technique for improv-
ing the efficiency of hardware accelerators based on timing
speculation (overclocking) and fault tolerance. We augment
the accelerator with a lightweight error detection mechanism
to protect against timing errors, enabling aggressive timing
speculation. We demonstrate the validity of our approach for
the convolution layers in convolutional neural networks. We
present an implementation of a fault-tolerant convolution layer
accelerator combined with the lightweight error detection. The
error detection mechanism we have developed works at the
algorithm-level, utilizing algebraic properties of the computation,
allowing the full implementation to be realized using High-Level
Synthesis tools. Our prototype on ZC706 demonstrated 68%–
77% higher throughput with negligible overhead.

I. INTRODUCTION

Timing speculation, also known as overclocking, is a well
known approach to increase the computational throughput of
programmable processors and hardware accelerators. When
used aggressively, timing speculation can lead to incor-
rect/corrupted results due to timing anomalies that typically
occur within long combinational paths. As reported in the lit-
erature [1]–[3], timing errors can cause large numerical errors
in the computation. Although many applications are robust
to low amplitude errors (e.g., errors due to quantization),
occasional large errors can have devastating effect even for
such applications.

The frequency of such errors depends on a number of
factors, including the intensity of overclocking, operating tem-
perature, voltage drops, variability within and across boards,
input data, and so on. This makes it extremely difficult to
determine a “safe” overclocking speed analytically or empiri-
cally as acknowledged in prior work. This has led to the use
of online monitoring to avoid having excessive slacks based
on static timing analysis [4], [5].

In this work, we propose to combine timing speculation with
algorithm-level error detection to make overclocking a viable
option. Online error detection is necessary to prevent errors
from affecting the final output, and it must be lightweight so
that the gains by overclocking are not nullified. Although many
error detection techniques exist, they are too low-level and are
tied to the exact design at hand [4], [5]. This limits the ease
of design space exploration for a given algorithm, especially
in the context of High-Level Synthesis where these techniques
cannot be directly expressed.

We therefore propose a higher level error detection scheme
by extending earlier results on algorithm-based fault toler-
ance [6]. ABFT is widely used in High Performance Com-
puting as a lightweight protection from both soft and hard
errors [7], [8].

The original ABFT for matrix operations has been used in
the context of FPGAs as well [9], [10]. However, we are not
aware of other work that uses algorithm-level error detection in
combination with frequency scaling. We provide an alternative
way to safely overclock FPGAs that can be expressed at
the algorithm-level, giving additional flexibility to designers
especially in the HLS context.

We use convolutional neural networks as a case study to
demonstrate our approach. CNN is a variant of multi-layered
neural networks that constructs features from local information
through convolutions. CNN models used in state-of-the-art
applications are computation intensive and often need to be
accelerated on GPUs or FPGAs to achieve high performance
and/or obtain better energy efficiency [11], [12]. The core
computations of CNNs have abundant parallelism, both task-
level and fine-grained, that can be efficiently mapped to these
accelerators. Furthermore, CNNs are known to be tolerant to
noise. The reasons above make CNN an interesting class of
computation to target.

Specifically, our contributions are the following:

• A lightweight error detection for convolution layers build-
ing on the classical ABFT. The developed method gives
two-degree savings in complexity with respect to the full
convolution layer, whereas the original ABFT is limited
to one-degree savings in matrix operations.

• A method for dynamic frequency scaling reacting to
monitored errors.

• A prototype implementation of the above, fully imple-
mented with HLS tools.

The remainder of this paper is organized as follows. Section
II provides background on timing speculation techniques and
CNNs. We describe our proposed approach with lightweight
error detection in Section III and IV. We demonstrate the
approach with a prototype implementation in Section V, and
then discuss our results and related work in Section VI. We
conclude and give directions for future work in Section VII.

1

II. BACKGROUND

In this section, we introduce timing speculation and con-
volutional neural networks. We then discuss existing FPGA
designs for CNN accelerators.

A. Timing Speculation through Overclocking in FPGAs

The minimum clock period at which a given FPGA design
is expected to work is obtained from a static timing analysis
(STA). This analysis assumes the worst case scenario, and
hence the design may be operated on higher operating fre-
quencies without observing incorrect behaviors. However, this
technique, widely known as overclocking or timing specula-
tion, also has many pitfalls:

• Variability among chips and operating conditions makes
it difficult to determine how much overclocking can be
tolerated. The fact that errors do not manifest often (or
the inability to observe errors in a given setup) does not
mean that errors do not happen.

• The impact of timing errors on the circuit output is
difficult to evaluate a priori. Unlike errors arising from
truncation/quantization, the impact is not limited to least
significant bits. Thus, it may result in large numerical
errors, compromising the design functionality.

These challenges have led to circuit-level techniques for dy-
namically checking for incorrect behaviors [4], [5], [13]. Our
work also aims at enabling aggressive overclocking through
algorithm-level error detection.

B. Convolutional Neural Networks

In this paper, we are interested in the forward pass of CNNs,
i.e., when a trained network is applied to new inputs. In a
typical configuration, a forward pass of CNNs processes three-
dimensional matrices in a pipelined manner through multiple
layers. The input is usually an image (with color depth),
and the final output is a vector of length M indicating the
likelihood of each category, which can be viewed as a 1×1×M
matrix.

We are interested in the convolution layer of CNNs, which
is known to be the main bottleneck. Convolution layers act as
local feature extractors. Given a P × Q × N input matrix
x, it computes a R × C × M output y. Each of the M
two-dimensional outputs are computed as a three-dimensional
convolution over x with a kernel (weights) of size K×K×N .
The convolution may be strided by some factor S. The R and
C dimensions of the output matrix may become smaller than
the input for a non-unit stride, or depending on the padding
of the boundaries. Different layers take different values of the
parameters described - the output R×C ×M , called feature
maps, can be viewed as an “image” where the depth is the
extracted features.

Given a P ×Q×N input matrix x and K ×K ×N ×M
matrix holding the weights w, a convolution layer outputs a
R× C ×M matrix y through the following equation:

yr,c,m =

N−1∑
n=0

K−1∑
i=0

K−1∑
j=0

xSr+i,Sc+j,n · wi,j,n,m (1)

Main
Memory

Convolution
Accelerator

CPU

(a) Single Computation Engine

Layer 1
Accelerator

Layer 2
Accelerator

Layer 3
Accelerator

(b) Streaming Accelerator

Fig. 1: System-level architectures.

In this paper, we describe the approach for convolution
layers with stride factor S = 1. How our approach can be
extended to more general cases and how others layers may be
handled are discussed in Section VI-C.

C. Accelerating CNNs with FPGA

There has been numerous work on accelerating CNNs on
FPGAs and other platforms. We describe the system-level
architectures that are typically used, and then describe the
accelerator for the convolution layer.

The system-level architectures are largely distinguished into
two types as illustrated in Figure 1 [14]. Single computation
engine (SCE) architecture offloads the main kernel to the
accelerator, processing the layers in a sequential manner.
Architecture of this type typically employ a form of decoupled
access/execute model through macro-pipelining to process
blocks of computation that fit on-chip memory. Streaming
accelerator (SA) uses multiple accelerator instances, typically
one for each layer, that are pipelined to provide high through-
put.

Our approach can fit both types of architectures described
above. Our only requirement is that the inputs/outputs of
the convolution accelerator is streamed through asynchronous
FIFOs. This enables the accelerators to operate in a separate
clock domain. For our prototype implementation, we used the
SCE architecture.

Our accelerator kernel follows an implementation strategy
proposed by Zhang et al. [11], which is described in Figure 2.
One important notion in their work that we also use is the tiles.
The CNN computations are largely data parallel, and can be
decomposed into smaller chunks to reduce on-chip memory
cost. The granularity of these chunks is usually selected such
that the accelerator fits on the target board. We use the word
tile to refer to the unit of computation performed by the
accelerator.

III. PROPOSED APPROACH

In this section, we first motivate the need for online error
detection as an overclocking enabler by empirical observation
of the impact of overclocking on application-level accuracy.
We then describe our modified accelerator that allows the error
rate to be monitored online to avoid excessive degradation in
the final output.

2

× × × ×

+ +

+

+

out

× × × ×

+ +

+

+

out

convolution by different weights

unrolling

inputs FIFO weights FIFO

...

...

pipelined
datapath

Fig. 2: The convolution kernel based on the design by Zhang
et al. [11]. The convolution kernel has three sources of
parallelism. The main convolution has ample parallelism,
which is used as the fine-grained parallelism (unrolling in
HLS). This datapath is also aggressively pipelined to process
different inputs. Furthermore, this datapath itself is replicated
for convolutions by different weights to the same input. The
factor of unrolling and/or replication controls the throughput
of the accelerator.

A. Impact of Overclocking on Classification Accuracy

We performed a series of experiments to asses the impact
of overclocking on final output. In this section, we report
some of the results obtained from classifying 5000 images
(the first 10% of ILSVRC 2012 validation dataset) using
AlexNet. We used our accelerator prototype to execute the
last convolutional layer. The last convolutional layer is selected
for these experiments because the last layers are known to be
more sensitive to errors than the first couple of layers. We
used 16-bit fixed-point data. We obtained the input data for
the accelerator by quantizing the previous layer’s error-free
floating-point output in order to isolate effect on accuracy.
Using low precision fixed-point requires special attention to
training and quantization to avoid accuracy drop, which is
beyond the scope of this work.

We used a set of Zybo boards to empirically observe
variability. We used Zybo for this experiment because we
had access to a number of them, which was important to
capture inter-board variability. Figure 3 depicts the impact
of overclocking on classification accuracy showing that there
are significant variation when the accuracy degradation starts
to happen. We have also performed the same experiment
on a larger board (ZC706), and observed similar impact on
accuracy.

Figure 4 reports the bit-wise error rate observed on our
ZC706. There are several interesting observations:

• Although it is less likely than the lower bits, the most
significant bits are also affected.

• We observed that MSB flips are dominant when we force
the use of LUT-based multipliers, but that LSB flips
dominate when using DSP48 based multipliers.

• The relative probabilities between bit flips seem constant
across frequency — overclocking increases the total num-
ber of errors without influencing the ratios.

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●
●●

●

●●●●
●

●●

●
●●●

●
●

●

●

●

●
●

●
●

●
●

●●

●
●●

●
●

●●
●

●
●●

●
●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●0

5

10

15

20

195 200 205 210 215

Frequency (MHz)

C
la

ss
ifi

ca
tio

n
E

rr
or

 (
%

)

Influence of Overclocking AlexNet Layer5 on Classification

Fig. 3: Impact of overclocking on classification; classification
error is when the output class differs from that of error-
free execution, regardless of the ground-truth class. The data
points are the highest/lowest error rate observed for the given
frequency, and the shaded regions show the range of possible
error rate influenced by various sources of variability.

●

●

●
●

●

●

● ●

●

● ●

●
●

●
● ●

●
●

● ● ●
● ● ● ● ●

● ●
● ● ● ● ● ● ● ● ● ● ●

●
●

●
●

●

●

● ●

●

● ●

●
●

●
● ●

●
●

● ● ●
● ● ● ● ●

● ●
● ● ● ● ● ● ● ● ● ● ●

●

●

●
●

●

●

● ●

●

● ●

●
●

●
● ●

●
●

● ● ●
● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

●
●

●
●

●

●

● ●

●

● ●

●
●

●
● ●

●
●

● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●
●

●

●

●
●

●

● ●

●
●

●
● ●

●
●

● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●
●

●

●

●
●

●

● ●

●
●

●
● ●

●
●

● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

● ●

●

●

● ●

●

● ●

●
●

●
● ●

●
●

● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●
●

●

●

●
●

●

● ●

●
●

●
● ●

●
● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

● ●

●

●

●
●

●

● ●

●
●

●
● ●

●
● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●
●

●

●

●
●

●

● ●

●
●

●
● ●

●
● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●
●

●
●

●

●

● ●

●

● ●

●
●

●
● ●

●
● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

● ●

●

●

● ●

●

● ●

●
●

●

● ●
●

●
● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ●

●

●

●

● ●

●

● ●

●
●

●

● ●
●

●
● ● ●

● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ●

●

●
●

●

● ●

●

● ●

●
●

●

● ●
●

●
● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●
●

●

● ●

●

● ●

●
●

●

● ●
●

●
● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●
●

●

● ●

●

● ●

●
●

●

● ●
●

●
● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

1e−05

1e−03

1e−01

1e+01

236 238 240 242 244 246

Frequency (MHz)

B
it

E
rr

or
 R

at
e

(%
)

0

5

10

15
bit

Bit−wise Error Rate with Overclocking

Fig. 4: Observed bit-wise error rate in the outputs.

• A 10MHz frequency range covers 6 orders of magnitude
error rate difference. We believe that this is due to the
paths being balanced by the synthesis and P&R tools,
resulting in many paths with similar length. This explains
the large number of errors manifesting within a narrow
range of frequencies.

It is acknowledged by prior work that a “safe” frequency is
impossible to determine statically due to multiple sources of
variability [5]. For example, when considering only a subset of
variability (inter-board variability), there is as wide as 10MHz
gap in the frequency where accuracy starts to drop. In other
words, it is difficult to ensure that the overclocked accelerators
do not significantly alter the application output.

B. Online Error Detection

Our approach builds on a lightweight mechanism for de-
tecting errors based on algorithmic properties, similar to
algorithm-based fault tolerance known for matrix opera-
tions [6]. However, we emphasize that the error detection we
use is not the same as the one for matrix operations; see
Section VI-A for further discussion.

This error detection mechanism uses two checksums, one
computed from the output, and another computed directly

3

Convolution
Accelerator

≠

FIFO FIFO

Async
FIFO

Async
FIFO

error

Input
Checksum

Output
Checksum

Clock Domain

Fig. 5: Accelerator with Error Detection.

from inputs, which we refer to as output-checksum and input-
checksum, respectively. We flag the computation as erroneous
whenever the checksums do not match. We detail how the
checksum calculation can be made lightweight in Section IV.
The key intuition is that the computation of input-checksum
can be simplified taking advantage of algebraic properties.
Instead of redundantly computing the output with another
instance of the accelerator (i.e., double modular redundancy),
the checksum is directly computed from the inputs, with lower
complexity, using algebraic properties.

Our modified architecture is depicted in Figure 5. Two
additional modules are added between the convolution kernel
and the FIFOs that computes the checksums. The important
property is that the checksums are computed in a streaming
fashion such that the latency of the accelerator is unaffected.
The entire accelerator is in its own clock domain managed by
software through dynamic reconfiguration of the mixed-mode
clock manager (MMCM) module.

C. Frequency Scaling

Given an accelerator with the capability to detect errors
online, there are many possible ways to react to the errors.
We use a simple algorithm to dynamically scale the frequency
at runtime. The algorithm has two parameters:

• G: granularity of frequency adjusted at a time;
• I: interval; number of successful tiles before attempting

to increasing frequency.
The algorithm initially increases the frequency by G after

each tile until an error is observed. Then the algorithm
repeatedly takes one of the following actions:

• decrease by G if an error is observed;
• increase by G after I successful tiles.
In our empirical study, we found that a few errors do not

significantly influence the classification accuracy. Hence, it is
possible to allow for a limited number of errors. If occasional
miss-classification is not a problem, then short intervals can
be used to aggressively attempt to overclock. If no error is
tolerated, the interval can be made long to minimize error rate
and recompute the erroneous tiles.

D. Failure Recovery Cost

When a small number of errors are tolerated, the errors
detected do not have to be corrected. Hence, there is no
additional latency overhead with our approach. If error-free

output is desired, the erroneous tiles must be recomputed,
adding some overhead. This overhead depends on the system-
level architecture discussed in Section II-C.

For a single compute engine, the erroneous tile is simply
fed back to the accelerator at a later time. Since the tiles are
parallel, they can be executed in any order, the macro-pipeline
does not have to be stalled.

For a streaming accelerator, the overhead depends on the
details of the architecture. If there are buffers between layers,
e.g., for crossing FPGA boundaries, then full pipeline stall
can be avoided. In the worst case, the full pipeline must
be restarted from the first layer, discarding all intermediate
results.

As a simplistic model, consider the following:
• each tile takes 1 unit of time with baseline frequency;
• failed tiles are executed at the baseline frequency;
• N : total number of tiles;
• O: mean overclocked frequency, normalized to the base-

line;
• E: error Rate, probability of a tile to fail;
• S: number of stages in SA.

Note that the time it takes to switch the frequency is negligi-
ble — less than 1% of a tile computation in our prototype.

Then the total time T can be modeled as: T = N
O +S.N.E

where the SCE is a special case when S = 1.
The gain by overclocking is N− N

O , which should be lower
than the overhead S.N.E for overclocking to be profitable.
Clearly, the error rate plays an important role, and we may
derive the break-even point (overhead = gain) as: E = O−1

S
In other words, even for a small gain in frequency, com-

pletely negating its gain takes a high error rate. For instance,
with 25% overclocking on average with 5-stage SA archi-
tecture, it requires 5% error rate to negate the gain. With a
strict dynamic scaling policy that only attempts to increase
frequency in long intervals once an error is detected, the error
rate is extremely low (< 0.1%), rendering the recovery cost
negligible. In addition, we expect that the error-free execution
is not necessary in most use cases.

IV. ALGORITHM-LEVEL ERROR DETECTION

This section describes our checksum computation technique.
We start with a simpler case for 2D convolution kernel, and
then generalize to convolution layers in CNNs.

A. Intuition with 2D Convolution

The 2D case is missing the depth dimension in the processed
matrices, but the main ideas carry over to the 3D case. Given
the 2D output y, the output-checksum is:

σ =

R∑
r=0

C∑
c=0

yr,c

Substituting the definition of y (Eq. 1 without m,n and S = 1)
gives the direct computation from the inputs:

ρ =

R∑
r=0

C∑
c=0

K−1∑
i=0

K−1∑
j=0

(xr+i,c+j · wi,j)

4

K C

K

R

(a) 2D convolution without zero-padding

K C

K

R

w2,2 w2,1 w2,0

w1,2 w1,0

w0,2 w0,1 w0,0

(b) Contribution of an input by weights

w1,1
w0,0

w2,2

K C

K

R

(c) Input data groups by weights

Fig. 6: Illustration of the factorization for 2D case. As depicted in Figure 6a, 2D convolution can be viewed as a dot product
between the weights and the neighboring inputs with a sliding window. An alternative view shown in Figure 6b is that an input
value is used to compute K2 output values, contributing to each of them through multiplication by different weights. We can
thus group the input data into (overlapping) subsets based on the weights, which is what is shown for three weight values in
Figure 6c. Since sum of convolution outputs is completely linear, the multiplication can be factorized to save work.

w0,1w0,0

K C

K

R

(a) Two neighboring groups

K C

K

R
reuse

subtract add

(b) Reuse pattern

Fig. 7: The reuse between two input groups corresponding to
weights w0,0 and w0,1. The sum of all elements in group w0,1

can be computed by addition/subtraction of columns from that
of w0,0, instead of repeating R× C additions.

The goal is to simplify the computation of ρ so that the
checksum comparison can be performed with reduced cost.

The additional two-dimensional summation provides two
sources for simplification. The combination of the two simpli-
fications described below reduces the cost of computing the
checksum for 2D case from O(RCK2) to K2 multiplications
and O(RC) additions.

1) Factorization: Multiplications can be factored out to
eliminate RC multiplications. This may be viewed as a
reordering of the summations followed by factorization:

ρ =

K−1∑
i=0

K−1∑
j=0

wi,j

(
R∑

r=0

C∑
c=0

xr+i,c+j

)
A graphical illustration is given in Figure 6. This reduces the
number of multiplications from K2RC to K2.

2) Reuse in Summations: The groups of summations after
factorization have significant overlaps, which can be used to
reduce the number of additions. This simplification concerns
the computation of the inner two summations:

Xi,j =

R∑
r=0

C∑
c=0

xr+i,c+j

Note that each value of X is a summation over slightly
different regions of x due to the offsets by i and j. These

values of X takes K2RC additions when computed naı̈vely.
However, once a value of X for a specific instance of i, j is
computed, the remaining instances can be computed by only
O(C) or O(R) additions as explained in Figure 7.

There are multiple ways to rewrite the definition of X to
take advantage of this reuse. One example is as follows:

Xi,j =

R∑
r=0

C∑
c=0

xr,c :
i = 0
j = 0

Xi−1,j +

C∑
c=0

xR−1+i,c+j −
C∑

c=0

xi−1,c+j : i > 0

Xi,j−1 +

R∑
r=0

xr+i,C−1+j −
R∑

r=0

xr+i,j−1 :
i = 0
j > 0

In the above, the R×C summation for X0,0 is performed first.
Then the remaining instances of Xi,j is computed by addition
and subtraction of one row/column. The R×C summation is
not repeated for all each Xi,j (K×K instances) reducing the
complexity by O(K2) in exchange for 2R or 2C additions.

B. Lightweight Checksum for 3D Convolution Layers

For the 3D case, the output y has the third dimension
corresponding to the different kernels applied to the input.
The checksum is over all three dimensions of the output:

σ =

M−1∑
m=0

R−1∑
r=0

C−1∑
c=0

ym,r,c (2)

Substituting Eq. 1 (again, assuming unit stride) gives the
direct checksum computation from the inputs:

ρ =

M−1∑
m=0

R−1∑
r=0

C−1∑
c=0

N−1∑
n=0

K−1∑
i=0

K−1∑
j=0

xn,r+i,c+j · wm,n,i,j

Reordering of the summations permits the factorization of

the multiplication by weights:

ρ =

N−1∑
n=0

K−1∑
i=0

K−1∑
j=0

((
R−1∑
r=0

C−1∑
c=0

xn,r+i,c+j

)
·
M−1∑
m=0

wm,n,i,j

)

5

Note that in the 3D case, the different convolution kernels
applied to the same input (the m dimension) can be first added
together, since m is invariant to the expression involving x.

ρ =

N−1∑
n=0

K−1∑
i=0

K−1∑
j=0

(
Xn,i,j ·

M−1∑
m=0

wm,n,i,j

)
(3)

where X takes the same form as the 2D case, except for the
additional n dimension, which does not have any reuse.

C. Implementation of Checksum Calculations

The output-checksum is implemented as a simple accumu-
lator over convolution outputs, with a small area overhead
compared to the rest of the datapath. The hardware component
responsible for computing the input-checksum (Eq. 3) is more
costly, as it involves a multiplier, storage for partial sums, and
non-trivial control logic.

Both of these components are significantly less complex
compared to the main kernel. The main performance constraint
is to ensure that the data processing rate matches that of the
convolution kernel. The checksum calculations need sufficient
parallelism to keep up with the rate of input consumption as
well as output production. The parallelism in these calculations
are realized as aggressive pipelining (II=1) to minimize area
cost.

The output-checksum has a trivial parallelism to process
the outputs. Since the output-checksum is an accumulation,
the computation is independent except for the aggregation at
the end.

The input-checksum computes the input groups and the
summation of weights over M as the data is streamed through.
Then, the rest of the computation is overlapped with the
convolution kernel: the computation of X using the input
groups, multiplication by the summed weights, and the final
accumulation. Note that the inputs memory transfer (and
summations) for next tile is overlapped with the kernel, the rest
of the input-checksum calculation, and the outputs memory
transfer for the previous tile. This ensures that the input-
checksum calculation does not impact the overall latency of
the accelerator.

D. Correctness of Error Detection

The algebraic property guarantees that there is no possibility
to have false negatives provided that there is only one error.
If multiple errors happen, there is a chance that the errors
cancel each other such that the checksum remains the same.
If the wordlength is b, this chance is 1

2b
assuming all bits have

the same probability to flip. In practice, the chances may be
higher due to the probability of bit flips not being uniform,
and having higher concentration on a subset of the bits.

It is possible to have false positives if an error happens at
the checksum calculations that are also overclocked. However,
these modules are much simpler than the convolution kernel,
and we have empirically observed that the errors start to
occur at much higher frequencies compared to the convolution
kernel. We have never seen false positives in our experiments.

We have observed that the false negative rate was around
0.33% for our design with 8 bits wordlength. This is 0.33% of
the erroneous tiles that contains more than one error, which is
an extremely small fraction of all the tiles executed. Combined
with the fact that a small number of errors are not expected
to affect the final output, we believe that the false negatives
are not an issue.

V. PROOF OF CONCEPT

We present our empirical study in this section. The study
consist of two parts: (i) the area overhead, and (ii) frequency
scaling on AlexNet image classification.

A. Experimental Platform

The whole accelerator was designed using SDSoC (2018.2),
demonstrating the suitability of our approach to modern FPGA
tools that operate at higher level of abstractions. We use the
ZC706 board (XC7Z045) from the Xilinx Zynq-7000 family
as our target platform.

The hardware designs used in this section targets the fifth
convolutional layer in the AlexNet CNN architecture [12] with
the following standard configuration: N = 192, M = 128,
R = C = 13, K = 3, and S = 1. Preliminary experiences
showed that this layer was the one that most impact classifica-
tion rate when impacted by timing errors. Note that the third
and fourth layers of AlexNet also have similar configurations
with larger N and/or M .

We report the results for various wordlengths used in the
convolution kernel. Other design parameters (tile sizes and un-
roll factors) were selected to achieve highest throughput on the
target board with 16 bits, and the same parameters were used
for lower wordlength designs. All designs were synthesized
with several target frequencies in order to get the maximum
STA frequency. All reported numbers are after P&R. We
encountered an issue in SDSoC that made the synthesis to fail
because of the use of the dynamic frequency reconfiguration
(clocking wizard) when using a target frequency different than
100MHz. Thus, the experiments were run with the 100MHz
synthesised designs, while area numbers come from designs
without dynamic reconfiguration ability. As our best effort to
make a fair baseline, we use the maximum STA frequency as
the baseline frequency.

B. Area Overhead

The following can be observed from results in Table I:

• DSP and BRAM cost, which are the limiting resource
on this board, does not increase by adding online error
detection.

• Only slice usage changes showing effective overhead
after P&R.

This clearly shows that the overhead is negligible. Enabling
overclocking with online error detection gives more than 50%
boost in throughput for “free” as shown in the next section.

6

TABLE I: ZC706 area results, maximum STA frequency (in
MHz) and GOPS for different wordlengths. Designs with
algorithm-level error detection (ALED) include the cost for all
components: the convolution kernel, input-checksum, output-
checksum. The frequency and GOPS are not relevant for
ALED equipped ones, as the frequency will be scaled at
runtime.

WL Type BRAM DSP SLICE Fmax GOPS

16 base 13.2% 57.0% 36.7% 134.8 43.2
ALED 13.2% 57.0% 37.4% - -

8 base 10.3% 58.7% 24.4% 134.4 43.0
ALED 10.3% 58.7% 25.8% - -

4 base 4.4% 58.8% 20.8% 141.5 45.3
ALED 4.4% 58.8% 20.6% - -

2 base 4.4% 1.0% 14.3% 229.9 73.6
ALED 4.4% 1.0% 14.7% - -

1 base 2.9% 0.1% 14.3% 231.7 74.2
ALED 2.9% 0.1% 14.5% - -

Available 1090 900 54 650

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●

●●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●

100

150

200

250

0 250 500 750 1000

Tiles

F
re

qu
en

cy
 (

M
H

z)

Wordlength ● ●8 16

Frequency Scaling Behavior with AlexNet Classification (Layer5)

Fig. 8: Frequency scaling applied to AlexNet.

C. Dynamic Frequency Scaling

We show the result of applying frequency scaling on a
classification task of 1000 images using AlexNet with 8
and 16 bits designs in Figure 8. Note that 16 bits data come
from Alexnet’s fifth layer output data while 8 bits data was
uniformly generated data. The algorithm in Section III-C was
configured to G = 1MHz and I = 100. The frequency scales
up to around 230 and then stabilizes with occasional bumps.
The mean frequency over the 1000 images was 226.5MHz for
16 bits and 238.7MHz for 8 bits. Compared to the baseline
frequency, this is about 68%–77% increase in throughput.
Note that this result is from a single board, single setup. The
gains are expected to vary under different operating conditions.

VI. DISCUSSION AND RELATED WORK

In this section, we place our work in context with related
work. We then discuss extensions to more general CNN layers.

A. Comparison with Existing ABFT Techniques

Our approach builds on the ABFT technique for matrix
operations [6]. The convolution layer and the fully-connected
layer can be viewed as a collection of matrix products, making
the classical ABFT directly applicable. Some ABFT exten-
sions employ a variant of the original method by identifying
pieces of computations that can be viewed as matrix opera-
tions [15], [16]. However, ABFT is a more general concept
that can be applied to other computations, e.g., FFT [17].

The lightweight checksum calculation proposed in this
paper is not a direct application of the ABFT for matrix
operations. We use algorithmic invariants in collections of
convolutions to further reduce the cost of checksums. This is
evident in the fact that we reduce the algorithmic complexity
by twofold, exploiting reuse in two dimensions, whereas the
original ABFT brings one-degree savings.

Some of the ABFT techniques employ two or more check-
sums to enable error correction. It is possible to use a similar
method for the convolution layer by giving up one-degree of
complexity savings. However, this is not attractive because:

• Error correction based on checksums would not work
if there are two or more errors (or at the cost of less
complexity reduction), which is frequently the case with
overclocking.

• Recovery by recomputing erroneous outputs does not add
significant cost as discussed in Section III-D.

• Adding the error recovery logic in hardware can be costly
in terms of area.

B. Other Techniques for Timing Error Detection

Some error detection techniques have been designed specif-
ically to detect timing errors. Both Razor [4] and online
slack measurement [5] use shadow registers to detect timing
violation or to measure timing slacks. These approaches adjust
the frequency/voltage using the measured errors or timing
slack, which is similar to our work.

The main difference between our approach and those based
on shadow registers is that we provide error detection at
the algorithm-level in contrast to register/circuit level. This
makes our approach more flexible, as it can be reused without
additional design effort over a large design space (tile size,
unrolling, data wordlength, etc.) of CNN accelerators. In
contrast, circuit-level protections must be redesigned for every
new design. Although some proof of concept toolchains have
been proposed [18] to automate such approach, they are not
publicly available, and it is difficult to assess how robust they
are in practice.

Existing circuit-level techniques trade coverage with area
overhead. One of the main difficulty is to properly select the
smallest subset of the registers to protect/measure to keep the
overhead low. This process is complicated as the addition of
the shadow registers may impact the timing, and is also limited
by the static timing analysis to determine the (near-)critical
paths (not even mentioning LUT-level variability as reported
by Gojman et al. [19]).

Lastly, many key FPGA components such as BRAM and
DSP blocks include internal (e.g., pipelining) registers that
cannot be protected due to the lack of adequate routing
resources. This severely limits the error coverage that can
actually be obtained. Our error detection scheme does not
suffer from such limitations, while providing excellent error
coverage for low hardware overhead.

The main limitation of our work is that we require the com-
putation to have algorithmic properties to enable lightweight
error detection. Although convolutions is not the only kernel

7

where ABFT is available, our technique is not applicable to
arbitrary computations unlike those based on shadow registers.
An interesting direction of future work is to automatically
identify the necessary properties to improve the applicability
of our technique.

C. More General CNN Layers

We have assumed unit stride to simplify the presentation.
We do not give the full detail due to space reasons, but the
same principles apply to non-unit strides as well. The main
difference is in the simplification of the summations. With
non-unit strides, the input groups (Figure 6c) also becomes
strided. This reduces the reuse across the input groups, but
this is natural since non-unit stride essentially corresponds to
subsampling, i.e., the number of uses of each input for com-
puting the output is reduced. For a stride factor S, there are S2

independent input groups. This reduces the complexity savings
to O

(
RC
S2

)
for additions and O

(
K2

S2

)
for multiplications.

However, we note that layers with non-unit strides typically
have larger values of R,C, and K increasing the reuse. For
AlexNet, the first layer uses S = 4, R = C = 55, and K = 11,
which corresponds to a factor of 189 savings on additions and
a factor of 8 savings on multiplications. These savings are
similar to those for the last layers with S = 1, R = C = 13,
and K = 11, which corresponds to savings on additions and
multiplications with a factor of 169 and 9, respectively. Thus,
we expect similar levels of overhead even for strided layers.

Other layers such as pooling or rectified linear unit are
not compute-intensive. These layers may simply be executed
without overclocking to ensure that no errors are introduced.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we propose timing speculation coupled with
lightweight error detection as an approach to further improve
the performance of hardware accelerators for CNNs. We have
demonstrated the efficacy of our approach with a prototype
implementation and an extensive empirical study. In addition,
our approach is well suited for implementation in high-level
design tools such as Vivado HLS/SDSoC, which is becoming
more and more attractive for productivity reasons.

We believe that similar techniques can be applied to many
other application domains (bioinformatics, iterative solvers,
etc.) by taking advantage of existing ABFT techniques or by
devising new algorithms tailored for this task. This is part of
our ongoing work.

ACKNOWLEDGEMENTS

This work receives financial support from the Brittany
Region. The authors would like to thank the anonymous
reviewers for their insightful comments.

REFERENCES

[1] S. Chaudhuri, J. S. J. Wong, and P. Y. K. Cheung, “Timing speculation in
FPGAs: Probabilistic inference of data dependent failure rates,” in Pro-
ceedings of the 2011 International Conference on Field-Programmable
Technology, ser. FPT ’11, 2011, pp. 1–8.

[2] G. Li, S. K. S. Hari, M. Sullivan, T. Tsai, K. Pattabiraman, J. Emer,
and S. W. Keckler, “Understanding Error Propagation in Deep Learning
Neural Network (DNN) Accelerators and Applications,” in Proceedings
of the International Conference for High Performance Computing,
Networking, Storage and Analysis, ser. SC ’17, 2017, pp. 8:1–8:12.

[3] K. Shi, D. Boland, and G. A. Constantinides, “Accuracy-Performance
Tradeoffs on an FPGA through Overclocking,” in Proceedings of the
IEEE 21st Annual International Symposium on Field-Programmable
Custom Computing Machines, ser. FCCM ’13, 2013, pp. 29–36.

[4] D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rao, T. Pham, C. Ziesler,
D. Blaauw, T. Austin, K. Flautner, and T. Mudge, “Razor: A Low-Power
Pipeline Based on Circuit-Level Timing Speculation,” in Proceedings of
the 36th IEEE/ACM International Symposium on Microarchitecture, ser.
MICRO 36, 2003, pp. 7–.

[5] J. M. Levine, E. Stott, and P. Y. Cheung, “Dynamic Voltage & Frequency
Scaling with Online Slack Measurement,” in Proceedings of the 2014
ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, ser. FPGA ’14, 2014, pp. 65–74.

[6] K.-H. Huang and J. A. Abraham, “Algorithm-Based Fault Tolerance for
Matrix Operations,” IEEE Transactions on Computers, vol. C-33, no. 6,
pp. 518–528, 1984.

[7] Z. Chen, “Online-ABFT: An Online Algorithm Based Fault Tolerance
Scheme for Soft Error Detection in Iterative Methods,” in Proceedings
of the 18th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, ser. PPoPP ’13, 2013, pp. 167–176.

[8] P. Du, A. Bouteiller, G. Bosilca, T. Herault, and J. Dongarra, “Algorithm-
based Fault Tolerance for Dense Matrix Factorizations,” in Proceedings
of the 17th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, ser. PPoPP ’12, 2012, pp. 225–234.

[9] A. Jacobs, G. Cieslewski, and A. D. George, “Overhead and reliability
analysis of algorithm-based fault tolerance in FPGA systems,” in Pro-
ceedings of the 22nd International Conference on Field Programmable
Logic and Applications, ser. FPL ’12, 2012, pp. 300–306.

[10] J. J. Davis and P. Y. K. Cheung, “Achieving low-overhead fault tolerance
for parallel accelerators with dynamic partial reconfiguration,” in Pro-
ceedings of the 24th International Conference on Field Programmable
Logic and Applications, ser. FPL ’14, 2014, pp. 1–6.

[11] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimiz-
ing FPGA-based Accelerator Design for Deep Convolutional Neural
Networks,” in Proceedings of the 2015 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, ser. FPGA ’15, 2015,
pp. 161–170.

[12] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification
with Deep Convolutional Neural Networks,” in Advances in Neural In-
formation Processing Systems 25, F. Pereira, C. J. C. Burges, L. Bottou,
and K. Q. Weinberger, Eds. Curran Associates, Inc., 2012, pp. 1097–
1105.

[13] M. Fojtik, D. Fick, Y. Kim, N. Pinckney, D. M. Harris, D. Blaauw,
and D. Sylvester, “Bubble Razor: Eliminating Timing Margins in an
ARM Cortex-M3 Processor in 45 nm CMOS Using Architecturally
Independent Error Detection and Correction,” IEEE Journal of Solid-
State Circuits, vol. 48, no. 1, pp. 66–81, 2013.

[14] S. I. Venieris, A. Kouris, and C.-S. Bouganis, “Toolflows for Mapping
Convolutional Neural Networks on FPGAs: A Survey and Future Di-
rections,” ACM Comput. Surv., vol. 51, no. 3, pp. 56:1–56:39, 2018.

[15] A. Roy-Chowdhury, N. Bellas, and P. Banerjee, “Algorithm-based error-
detection schemes for iterative solution of partial differential equations,”
IEEE Transactions on Computers, vol. 45, no. 4, pp. 394–407, 1996.

[16] G. Bosilca, A. Bouteiller, T. Herault, Y. Robert, and J. Dongarra,
“Composing resilience techniques: ABFT, periodic and incremental
checkpointing,” International Journal of Networking and Computing,
vol. 5, no. 1, pp. 2–25, 2015.

[17] S.-J. Wang and N. K. Jha, “Algorithm-based fault tolerance for fft
networks,” IEEE Transactions on Computers, vol. 43, no. 7, pp. 849–
854, 1994.

[18] J. M. Levine, E. Stott, G. A. Constantinides, and P. Y. K. Cheung,
“SMI: Slack Measurement Insertion for online timing monitoring in
FPGAs,” in Proceedings of the 23rd International Conference on Field
Programmable Logic and Applications, ser. FPL ’13, 2013, pp. 1–4.

[19] B. Gojman, S. Nalmela, N. Mehta, N. Howarth, and A. Dehon, “GROK-
LAB: Generating real on-chip knowledge for intra-cluster delays using
timing extraction,” ACM Trans. Reconfigurable Technol. Syst., vol. 7,
no. 4, pp. 32:1–32:23, 2014.

8

