
Timbuk

A Tree
Automata

Library
www.irisa.fr/lande/genet/timbuk

Version 2.0

The Timbuk tree automata library now contains three standalone tools:

Timbuk: Copyright c© 2000-2003 Thomas Genet and Valérie Viet Triem Tong

Taml: Copyright c© 2003 Thomas Genet

Tabi: Copyright c© 2003 Thomas Genet and [Boinet Matthieu, Brouard Robert, Cud-
ennec Loic, Durieux David, Gandia Sebastien, Gillet David, Halna Frederic, Le Gall Gilles,
Le Nay Judicael, Le Roux Luka, Mallah Mohamad-Tarek, Marchais Sebastien, Martin Mor-
gane, Minier François, Stute Mathieu] – aavisu project team for french ”maitrise” level (4th
University year) 2002-2003 at IFSIC/Université de Rennes 1.

1

Contents

1 Timbuk library overview 4
1.1 What is Timbuk? . 4
1.2 Availability, License and Installation . 4
1.3 Note on the implementation . 5
1.4 Bug report and information . 5
1.5 Changes from version 1.1 to version 2.0 . 5

2 Tutorial 7
2.1 Timbuk . 7

2.1.1 Exact case . 10
2.1.2 Interactive approximations and prioritary transitions 12
2.1.3 Normalization rules . 15
2.1.4 Bigger example: cryptographic protocol 16
2.1.5 Verifying left-linearity condition . 23
2.1.6 Doing more and going faster . 24
2.1.7 More tricks . 25

2.2 Taml . 27
2.3 Tabi . 32

2.3.1 Basic . 32
2.3.2 Display modes . 33
2.3.3 Using Tabi to approximate in Timbuk 34

3 Specification language reference manual 35
3.1 Comments . 36
3.2 Symbols . 36
3.3 Alphabets . 36
3.4 Variable sets . 36
3.5 Term Rewriting Systems . 36
3.6 Tree Automata . 36

3.6.1 Implicit definitions . 36
3.6.2 Explicit definitions . 36

3.7 Approximations . 37

4 Timbuk reference manual 38
4.1 Running Timbuk . 38
4.2 Timbuk normalization and approximation tools 39

4.2.1 Prioritary transitions . 39
4.2.2 Normalization rules . 40
4.2.3 Merging rules . 40
4.2.4 Approximation equations . 41

4.3 Timbuk commands . 41
4.4 Timbuk modes and command line options 43

4.4.1 Dynamic completion mode . 43

2

4.4.2 Static completion mode . 45

5 Taml reference manual 45
5.1 Running Taml . 45
5.2 Basic Taml functions . 46
5.3 Using all Timbuk library functions through Taml 49

6 Tabi reference manual 49
6.1 Mouse actions . 50
6.2 Buttons . 50
6.3 File menu . 51
6.4 Options menu . 51

7 How to use Ocaml functions of the Timbuk library? 51

3

1 Timbuk library overview

1.1 What is Timbuk?

Timbuk is a collection of tools for achieving proofs of reachability over Term Rewriting
Systems (TRS for short) and for manipulating Tree Automata. The tree automata we use
here are bottom-up non-deterministic finite tree automata (NFTA for short).

The Timbuk library provides three standalone tools and a bunch of Objective Caml [12]
functions for basic manipulation on Tree Automata, alphabets, terms, Term Rewriting Sys-
tems, etc. The three tools are:

• Timbuk: a tree automata completion engine for reachability analysis over Term Rewrit-
ing Systems

• Taml: an Ocaml toplevel with basic functions on NFTA:

– boolean operations: intersection, union, inversion, etc...

– emptiness decision

– cleaning, renaming

– determinisation

– matching over Tree Automata

– parsing, pretty printing

– normalization of transitions

– and some more...

• Tabi: a Tree Automata Browsing Interface for visual automata inspection

See [1] for a survey on Term Rewriting Systems and [3] for a survey on tree automata.
For reachability analysis and tree automata completion details, look at [7].

1.2 Availability, License and Installation

Timbuk is freely available, under the terms of the GNU LIBRARY GENERAL PUBLIC
LICENSE, here:

http://www.irisa.fr/lande/genet/timbuk/

Now, Timbuk is available for download in Ocaml source and windows binary files. To install
and run Timbuk, please refer to the README file of the distribution. For documentation on
the Timbuk, Taml and Tabi tools, see tutorial in section 2 and respective reference manuals
in sections 4, 5 and 6. For documentation on the interface of Ocaml NFTA functions, see
section 7.

4

1.3 Note on the implementation

Most of the functions of the library are implemented straightforwardly without objects and
in a functional style. However, we tried to develop this library in a modular way such that
optimizations could be added afterward. Thus optimizations are welcome and can even be
proposed to us for implementation. Tabi as been developed with Labltk (Ocaml with Tk
functions) in collaboration with a group of students in 4th year of Computer Science of
Rennes University (see README file for credits).

1.4 Bug report and information

Please report comments and bugs to Thomas.Genet@irisa.fr.

See http://www.irisa.fr/lande/genet/timbuk/ for information about Timbuk and re-
lated papers.

1.5 Changes from version 1.1 to version 2.0

Between Timbuk 1.1 and Timbuk 2.0, the following changes have been done:

• Added ’Taml’: a standalone Ocaml toplevel with preloaded Timbuk library functions
over tree automata, terms, term rewriting systems, etc. This replaces the old ”CAL-
CULATOR MODE” Timbuk ’.mlml’ files.

• Added ’Tabi’: the Tree Automata Browsing Interface for automata inspection. Tabi is
a standalone application but can also be called from Timbuk and Taml.

• Made a more robust Makefile

• Made a poor man’s windows Makefile

• Added ----dynamic, ----static, ----fstatic, -f, -o, ----strat options to Tim-
buk, with the following usage:

Options: --dynamic for usual completion algorithm (default)
--static to activate the static compilation of matching and

normalisation (needs a complete set of prior and
norm rules)

--fstatic to activate the static compilation of matching and
normalisation. If the set of prior and norm rules is
not complete, a transition not covered by the rules is
normalised using a single new state #qstatic#

-f file to read Timbuk commands from a file
-o file output Timbuk execution trace in a file

--strat followed by keywords:
exact (exact normalisation with prioritary rules)
prior (normalisation with prioritary rules
norm_rules (normalisation with approximation rules)

5

auto (automatic normalisation with new states)
auto_conf (similar to ’auto’ but asks for confirmation first)
auto_prior (automatic normalisation with new states where

new transitions are stored as prioritary rules)
auto_prior_conf (similar to ’auto_prior’ but asks for confirmation first)
manual_norm (manual addition of normalisation rules)
manual_norm_conf(similar to ’manual_norm’ but asks for confirmation first)
manual (manual normalisation)
manual_conf (similar to ’manual’ but asks for confirmation first)

• Added the ability to define approximation equations (in specifications and at run time)

• Added the ’exact’ strategy which is always terminating and exact on some specific
syntactic classes (see documentation)

• Changed the (w) command so that it writes to disk the TRS, the current completed
automaton, the initial automaton, the current approximation and the list of automaton
used for intersection in a same file

• Added the (p) Timbuk command for searching a pattern containing symbols, variables
and states, in the completed automaton.

• Added the (o) Timbuk command for computing intersection between the completed
automaton and some external automaton read in a file.

• Added the (m) Timbuk command for merging some states in the completed automaton.

• Added the (b) Timbuk command for browsing the current completed automaton with
Tabi. Tabi also gives the ability to construct some merging rules graphically.

• Added the (f) Timbuk command to forget some completion steps.

• Added the (d) Timbuk command for displaying the current TRS used for completion.

• Added the (e) Timbuk command for consulting/adding the current approximation
equations.

• Added the (g) Timbuk command for consulting/adding normalization rules interac-
tively

• Added the (det) Timbuk command for determinizing the current completed automaton.

• Added the completion step number to Timbuk.

• Extended the norm rules syntax to use normalization rules where it is possible to
achieve matching on the state labels. For instance it is now possible to define such a
normalization rule:

[encr(pubkey(q(x)), m) -> qstore] -> [m -> q(secret(x))]

in dynamic mode only, where q is here a state operator of arity 1 (defined using States

q:1 syntax).

6

• Added the ’Import’ keyword in the specification language to import tree automata
state operators in the approximation.

• Added the ’Set’ keyword in the specification language to define automata through
their finite language, i.e. finite set of terms which are compiled into a deterministic
tree automaton.

• Optimised standard completion mode (dynamic) in Timbuk.

• Discarded some bugs.

2 Tutorial

In this tutorial, we assume that the reader is familiar with term rewriting systems [1], tree
automata [3] as well as the notations and definitions of [7]. However, in the first part of this
tutorial, basic notions on term rewriting systems should be enough.

The Timbuk library was initially designed to achieve reachability over Term Rewriting
Systems, i.e. given a TRS R and two terms s and t we try to prove or disprove that s →R? t.

In Timbuk, we consider a more general problem which is reachability over sets of terms
rather than on couple of terms, i.e. are terms of a set F R-reachable from terms of an initial
set E. In that case, we can define the set of R-descendants of a set of terms E denoted
by R?(E) = {t | s ∈ E and s →R? t}. Then given a second set of terms F , it is possible

to prove for instance that all terms R-reachable from E are in F (R?(E) ⊆ F) or that
none of the terms of F can be R-reached from E (R?(E) ∩ F = ∅). This last property
has some applications in verification [10, 7] where TRS are used to model programs, E all
their possible initial configurations and F a set of dangerous configurations not to be reached
when executing the program from the initial configurations.

When the sets E and F are infinite sets of terms it is necessary use a specific representa-
tion in order to model them finitely. This is essentially the role of the tree automata. Then
computing exactly or approximately R?(E) for an infinite set of terms represented by a tree
automaton can be done using a tree automaton completion algorithm. This algorithm is
precisely the core of the Timbuk tool we now present. The aim of this tool is to produce a
tree automaton recognizing R?(E) exactly when it is possible and approximately otherwise,
and then to check if R?(E) ∩ F = ∅ for verification purposes.

2.1 Timbuk

The Timbuk tool performs tree automata completion with regards to a term rewriting system
to compute exactly or approximately R?(E). Tree automata and term rewriting systems are
stored in a Timbuk specification file (see section 3 for details about the syntax). Let us
begin by a simple example where there is no need to cope with tree automata syntax. Start
Timbuk on the basic.txt file containing a first example, i.e. simply type:

timbuk basic.txt

7

in a command window. Depending on the way you obtained Timbuk, you may not be
able to directly use ’timbuk’ as a standalone command and you may need to type ocamlrun

timbuk basic.txt instead. Please refer to the README file of the distribution for details on
how to run the Timbuk library tools.

If launching Timbuk succeeds, then Timbuk reads the following basic.txt specification
file:

(* This is a specification file to be used with the Timbuk tutorial *)

Ops f:1 g:1 a:0

Vars x y z

TRS R

f(x) -> g(f(x))

Set init

f(a)

Set check1

f(g(f(a)))

g(f(g(a)))

Set check2

g(g(g(g(g(g(g(g(f(a)))))))))

and starts completion on the TRS R and the set of terms (here a set containing a single
term) denoted by init. When given a finite set of terms using the Set constructor, Timbuk
transforms it into a tree automaton recognizing exactly this set, i.e. the set {f(a)} in
our case. The other sets (and thus other tree automata) associated with names check1

and check2 will be used later for verification purpose. When launching Timbuk on this
specification, you should obtain the following output:

Completion step: 0
Do you want to:
(c)omplete one step (use Ctrl-C to interrupt if necessary)
complete (a)ll steps (use Ctrl-C to interrupt if necessary)
(m)erge some states
(s)ee current automaton
(b)rowse current automaton with Tabi
(d)isplay the term rewriting system
(i)ntersection with verif automata
intersection with (o)ther verif automata on disk
search for a (p)attern in the automaton
(v)erify linearity condition on current automaton
(w)rite current automaton, TRS and approximation to disk
(f)orget old completion steps
(e)quation approximation in gamma
(g)amma normalisation rules
(det)erminise current automaton
(u)ndo last step

8

(q)uit completion

(c/a/m/s/b/d/i/o/p/v/w/f/e/g/det/u/q)?

meaning that the current completion step number is 0 and that Timbuk expect you to give one
command. For instance, type s to display the current tree automaton being completed. You should
obtain the following output:

States qterm0:0 qterm1:0

Final States qterm0

Transitions
a -> qterm1
f(qterm1) -> qterm0

which is the tree automaton recognizing the set of terms {f(a)}. Now it is possible to search for
reachable terms from {f(a)} by doing some completion steps. Type c to achieve one completion
step. Timbuk finds a new reachable term which corresponds to a new tree automata transition to
add to the current tree automaton:

Adding transition:

g(f(qterm1)) -> qterm0

Adding this transition to the tree automaton will permit to recognize the term g(f(a)) which is
reachable from f(a) when applying rule f(x) → g(f(x)). However the transition g(f(qterm1)) ->
qterm0 has to be normalized first, i.e. be transformed into an equivalent set of normalized transi-
tions. Normalized transitions are of the form f(q1, . . . , qn) → q where q1, . . . , qn are states. In our
case, the subterm f(qterm1) is not a state. Timbuk asks if you want to give specific normalization
rules by hand to normalize this transition. Answer no n and use automatic normalization with new
states instead, by answering y to the second question. This causes Timbuk to create a new state
qnew0 to normalize automatically the transition into a set of two normalized transitions equivalent1

to g(f(qterm1)) -> qterm0:

Adding transition:

g(qnew0) -> qterm0

... already normalised!

Adding transition:

f(qterm1) -> qnew0

... already normalised!

1Note that with these two new transitions it is possible to rewrite term g(f(qterm1)) into g(qnew0) and
then rewrite g(qnew0) into qterm0. Hence adding those two transitions permits to rewrite g(f(qterm1))
into qterm0 which corresponds to the transition we initially wanted to add.

9

This ends the first completion step. Using the same normalization methodology (i.e. always
normalize with new states) it is possible to complete step 2, step 3 and so on, but completion
does not terminate with this strategy. This is not really surprising since rule f(x) → g(f(x)) is
not terminating on term f(a) and we are incrementally adding an infinite set of descendants of
f(a). However, since this example belongs to a specific decidable class2, we know that R?({f(a)})
can be exactly computed using a tree automaton (it is regular). In the next section, we achieve
the completion automatically on the same example using the exact strategy dedicated to the
specifications of the decidable class.

2.1.1 Exact case

First, quit Timbuk if it is still running by typing q and launch it again with the exact strategy by
typing

timbuk ----strat exact basic.txt

Then either type repeatedly c or type once a for achieving completion until Timbuk succeeds
at step 3:

Automaton is complete!!

You can see the final completed automaton by typing s, and write this result into a file by typing w.
Then it is possible to check if terms of the sets check1 and check2 are R-reachable from f(a). This
can be done by computing an intersection between the completed automaton recognizing the set of
all R-reachable terms from f(a) (R?(init) = R?({f(a)})) with check1 and check2. Intersections
with finite sets or other automata contained in the same specification file can be done by typing i,
this results in:

Intersection with check1 gives (the empty automaton):

States

Final States

Transitions

for check1, meaning that terms of check1 are not reachable and for check2 this results in:

Intersection with check2 gives (not empty):

States q9:0 q8:0 q7:0 q6:0 q5:0 q4:0 q3:0 q2:0 q1:0 q0:0

Final States q9

Transitions
a -> q0

2See exact strategy in section 4.4.1 for details on the decidable classes.

10

f(q0) -> q1
g(q1) -> q2
g(q2) -> q3
g(q3) -> q4
g(q4) -> q5
g(q5) -> q6
g(q6) -> q7
g(q7) -> q8
g(q8) -> q9

meaning that the term of check2 is reachable from f(a) by rewriting with R. Now, quit Timbuk
and try a new sample file example.txt

timbuk ----strat exact example.txt

where R describes the classical append function on lists (the app symbol in the specification file)
and A0 recognizes an infinite set of terms of the form app(t1, t2) where t1 is any flat list of a and
t2 is any flat list of b. Automaton Problem1 recognizes only the two terms given in the definition,
i.e. terms cons(b, cons(a, nil)) and cons(b, cons(b, cons(a, cons(a, nil)))). Finally,
the automaton Problem2 recognizes the language of lists where there is at least one b followed by
an a. This example is also in one of the decidable classes and can be automatically completed using
a (or c) after 3 completion steps. Like in the previous example, we can verify that the intersection
between the completed automaton and Problem1 is empty meaning that the two recognized terms
are not R-reachable from terms recognized by A0. However, the language corresponding to Problem1
is finite and is a particular case. Thus, to really prove in the general case that the append function
applied to any list of a and any list of b cannot result in any list where there is at least one b before
an a it is necessary to compute the intersection between the completed automaton and Problem2,
which is hopefully empty and thus guarantees the property.

Conjointly to intersections with additional tree automata, Timbuk provide another tool for
proving or disproving reachability: pattern matching over the completed tree automaton. To do
pattern matching, type p. Timbuk first recalls the symbols on which the pattern can be built: the
alphabet, the set of states operators and the set of variables. On our example this results in the
following output:

Alphabet=
cons:2 a:0 b:0 nil:0 app:2 rev:1

States=
qnew0:0 qa:0 qb:0 qla:0 qlb:0 qf:0

Variables=
x y z

Then Timbuk asks for a given pattern. For instance by typing nil for the pattern to be searched,
we obtain:

Type a term and hit Return: nil

11

Solutions:
Occurence in state qla!
solution 1: Empty substitution

Occurence in state qlb!
solution 1: Empty substitution

Occurence in state qf!
solution 1: Empty substitution

Occurence in state qnew0!
solution 1: Empty substitution

which means that the term nil is recognized by four different states in the completed automaton,
namely qla, qlb, qf and qnew0. Note that pattern matching is achieved on every terms recognized
by the automaton as well as on all their subterms, this is why we here have several occurrences of
this pattern. Now let us look for the following pattern:

cons(x, qla)
which produces the following list of solutions:

Solutions:
Occurence in state qla!
solution 1: x <- qa

where this solution means that cons(qa, qla) is uniquely recognized by qla, and there is no
other state q such that cons(q, qla) is recognized by the automaton. Now, if we get back to our
verification problem, we can check that with append on lists of a and lists of b, no b can occur
before an a by looking for this simple pattern: cons(b, cons(a, y)) which results in the following
output:

Pattern not found!

2.1.2 Interactive approximations and prioritary transitions

When the specification used is outside of decidable (regular) classes, completion with the exact
strategy generally does not terminate. It is however possible to build an under-approximation
of the reachable terms by computing n steps of completion for a given natural n. On the other
hand, Timbuk permits to build an over-approximations of the set of reachable terms. In the
next specification example example2.txt, we compute an approximation of the reverse function
(symbol rev defined by TRS R) on the regular language of terms recognized by automaton A0
i.e., rev applied to any flat lists of a and b where all a’s are before b’s in the list. The second
automaton called Problem1 recognizes a regular language of terms that should be unreachable from
A0 by rewriting with R: flat lists where there is at least one ’a’ before a ’b’ in the list. Here is the
complete specification file example2.txt:

12

(* This is a specification file to be used with the Timbuk tutorial *)

Ops cons:2 a:0 b:0 nil:0 app:2 rev:1

Vars x y z

TRS R

app(nil, x) -> x

app(cons(x, y), z) -> cons(x, app(y, z))

rev(nil) -> nil

rev(cons(x, y)) -> app(rev(y), cons(x, nil))

Automaton A0

States qrev qlab qlb qa qb

Description qrev: "rev applied to lists where a are before b"

qlab: "lists where a are before b (possibly empty)"

qlb : "lists of b (poss. empty)"

Final States qrev

Transitions

rev(qlab) -> qrev nil -> qlab cons(qa, qlab) -> qlab

cons(qa, qlb) -> qlab nil -> qlb cons(qb, qlb) -> qlb

a -> qa b -> qb

Automaton Problem1

States qa qb qany qlb qlab qnil

Description

qany: "Any flat list made of a and b"

qlb : "Any flat list made of a and b, beginning with a b"

qlab: "Any flat list with at least an a followed by a b"

Final States qlab

Transitions

a -> qa

b -> qb

cons(qa, qany) -> qany

cons(qb, qany) -> qany

nil -> qany

cons(qb, qany) -> qlb

cons(qa, qlb) -> qlab

cons(qb, qlab) -> qlab

cons(qa, qlab) -> qlab

Let us achieve an interactive manual completion on this example (we will see how to automate this
process in the following): type the command timbuk ----strat prior manual example2.txt
to use Timbuk with a normalization strategy using prioritary transitions first and then manual
introduction of prioritary transition at a second time. The first completion step gives some new
transitions and the following output:

Adding transition:

app(rev(qlb),cons(qa,nil)) -> qrev

Use key word ’States’ followed by the names of the new states ended by a dot ’.’(optional) then give a sequence

of transitions ended by a dot ’.’

Add a star ’*’ before transitions you want to add to the prior set. The prior transitions should be normalized!!

We are proposed a transition which has to be normalized. First, we have to find states to recognize
subterms rev(qlb) and nil. Since qlb recognizes lists of b, rev(qlb) represents the reverse
function applied to lists of b and this should be a list of b. Thus we can recognize rev(qlb) by
qlb. We define a new state qnil to normalize nil, and give the prioritary transitions to apply
using the following syntax:

13

States qnil.

* rev(qlb) -> qlb

* nil -> qnil.

where the * symbol preceding the transitions means that we want to install the following transition
in the set of prioritary transitions. Hence, in the next completion steps, if a new configuration of
the form rev(qlb) appears, it will be automatically normalized into the state qlb. After giving
these prioritary transitions, the transition is still not normalized. Timbuk shows the result of the
normalization process so far:

Normalization simplifies the transition into: app(qlb,cons(qa,qnil)) -> qrev

Adding transition:

app(qlb,cons(qa,qnil)) -> qrev

Once more, we are asked to give some rules for normalizing this transition. Since cons(qa, qnil)
represents a list with one a, we can create a new state qla to normalize it:
States qla.

* cons(qa, qnil) -> qla.

and this terminates the normalization of the first transition. There remains a transition to normal-
ize:

Adding transition:

app(rev(qlab),cons(qa,qnil)) -> qrev

Since the state qlab recognizes a list of a’s followed by some b’s, we intend rev(qlab) to be a list
of b’s followed by some a’s, so let us normalize it by a new state called qlba and introduce the
corresponding prioritary transition.

States qlba.

* rev(qlab) -> qlba.

Then, some other transitions are automatically normalized and added, and this terminates the
first completion step. In the following completion steps no other new states are necessary and
it is enough to successively introduce the following prioritary transitions to normalize the new
transitions we are proposed and thus terminate the completion:

* app(qlb, qla) -> qlba * cons(qb, qnil) -> qlb * app(qnil, qlb) -> qlb

* app(qnil, qla) -> qla * rev(qnil) -> qnil * app(qla, qla) -> qla.

Finally, from the menu it is possible to see the completed automaton which now contains 37
transitions and to compute the intersection with the automaton Problems, which gives an empty
automaton meaning that applying rev to a list of a’s followed by some b’s cannot result into any
list where there is an ’a’ before a ’b’.

Now, save the produced completed automaton in a file named comp.txt by typing w and
then the file name comp.txt. Now you can edit this file and check that the whole specification
(TRS, completed automaton, initial automaton, additional automata used for verification as well
as the constructed approximation) are stored in this file in Timbuk syntax. Note that since the
approximation has been entirely built with prioritary rules and prioritary rules are usually stored
in the completed A0 automaton, the approximation stored in the file is empty.

14

2.1.3 Normalization rules

Normalization rules (or norm rules) are rules of the form:

[s → x] → [l1 → r1 . . . ln → rn]

where s, l1, . . . , ln are terms that may contain symbols, variables and states, and x, r1, . . . ,
rn are either states or variables such that if ri is a variable then it is equal to x. To normalize a
transition of the form t → q′, we match the pattern s on t and x on q′, obtain a given substitution
σ and then we normalize t with the rewrite system {l1σ → r1σ, . . . , lnσ → rnσ} where r1σ, . . . , rnσ
are necessarily states (see section 4.2.2 for details about norm rules).

Let us come back to the previous example and achieve completion with normalization rules.
Start again Timbuk on the example2.txt file with the default Timbuk normalization strategy:

timbuk example2.txt

The default normalization strategy corresponds to the strategy operator sequence: prior norm rules
manual norm conf auto conf, meaning that any transition is first normalized using prioritary
transitions, then using normalization rules and if it is still not normalized, the used is asked for
normalization rules, finally he can leave the automatic normalization finish the normalization if
necessary. Doing a first step of completion, we are proposed a first transition to normalize and
since there is still no prioritary transitions nor normalization rules, the strategy now consider the
manual norm operator:

Adding transition:

app(rev(qlb),cons(qa,nil)) -> qrev

Do you want to give by hand some NORMALIZATION rules? (y/n)?

Answer y to this question. First, Timbuk recalls the current normalization rules (here no one is
already defined), alphabet, variables and state operators on which new rules can be built:

Do you want to give by hand some NORMALIZATION rules? (y/n)? y
Current normalisation rules are:

Alphabet=cons:2 a:0 b:0 nil:0 app:2 rev:1
and Variables= x y z
and States= qrev:0 qlab:0 qlb:0 qa:0 qb:0

Type additionnal normalization rules using the ’States’ and ’Rules’ keyword and end
by a dot ’.’:

(use keyword ’Top’ to place a rule at the beginning of the rule list)

For this example, let us use a naive approximation strategy: for every term of the form app(t1,
t2) let us normalize the two parameters of app by two distinct states, i.e. normalize term t1 by
a common state qapp1 and t2 by qapp2 for every possible terms t1 and t2. This can be done by
typing interactively the following text:

15

States qapp1 qapp2
Rules
[app(x, y) -> z] -> [x -> qapp1 y -> qapp2].

where States (optional) is used to define a sequence of new states (if necessary) and Rules (manda-
tory) defines a sequence of norm rules ended by a dot symbol. Completion continues and proposes
a new transition to normalize: cons(qa,nil) -> qapp2. Let us give some new normalization rules
using the same naive strategy: we define two dedicated states qcons1 and qcons2 recognizing
respectively the first and second subterm of every term of the form cons(t1, t2).

States qcons1 qcons2
Rules
[cons(x, y) -> z] -> [x -> qcons1 y -> qcons2].

This is enough to terminate this completion step. Remaining steps are automatic and does not
need any new approximation rule construction. Finally, we obtain a tree automaton with only 24
transitions but that does not fulfill the property we wanted to prove with automaton Problem1
(type i to check that intersection is not empty) because approximation has been too drastic.
However, some weaker properties can be verified on this automaton, for instance that the term
cons(a, rev(cons(a, nil))) is not reachable from A0 (by pattern matching). With regards to
the property we wanted to prove initially with automaton Problem1, the approximation we gave
in section 2.1.2 is one of the simplest we could build. All we can do with normalization rules here
is to give the set of prioritary rules of section 2.1.2 as a normalization rule:

States qnil qla qlba
Rules [x -> y] -> [rev(qlb) -> qlb

nil -> qnil
rev(qlab) -> qlba
app(qlb, qla) -> qlba
cons(qb, qnil) -> qlb
app(qnil, qlb) -> qlb
app(qnil, qla) -> qla
rev(qnil) -> qnil
app(qla, qla) -> qla]

where the pattern [x -> y] of the left-hand side of the normalization rule matches every transition,
hence the right hand side will be applied on every transitions (like prioritary transitions). In the next
section, we give an example where normalization rules shows their efficiency when approximation
has to be precise on some parts and can be more drastic on the remaining ones.

2.1.4 Bigger example: cryptographic protocol

Now let us introduce a bigger example coming from the cryptographic protocol verification domain.
This example is the corrected version of the Needham-Schroder Public Key (NSPK for short)
cryptographic protocol [13]. The NSPK protocol aims at mutual authentication of two agents, an
initiator A and a responder B, separated by an insecure network. Mutual authentication means
that, when a protocol session is completed between two agents, they should be assured of each
other’s identity. This protocol is based on an exchange of nonces (usually fresh random numbers

16

or time stamps) and on asymmetric encryption of messages: every agent has a public key (for
encryption) and a private key (for decryption). Every public key is supposed to be known by any
agent whereas, the private key of agent X is supposed to be only known by X. Thus, in this setting,
we suppose that messages encrypted with the public key of X can only be decrypted and read by
X. This is in fact a common hypothesis of the Dolev-Yao model [6]. Here is a description of the
three steps of the fixed version of protocol, borrowed from [13]:

1. A ↪→ B : {NA, A}KB

2. B ↪→ A : {NA, NB , B}KA

3. A ↪→ B : {NB}KB

In the first step, A tries to initiate a communication with B: A creates a nonce NA and sends to B
a message, containing NA as well as his identity, encrypted with the public key of B: KB . Then, in
the second step, B sends back to A a message encrypted with the public key of A, containing the
nonce NA that B received, a new nonce NB , and B’s identity. Finally, in the last step, A returns
the nonce NB he received from B. If the protocol is completed, mutual authentication of the two
agents is ensured:

• as soon as A receives the message containing the nonce NA, sent back by B at step 2., A
believes that this message was really built and sent by B. Indeed, NA was encrypted with
the public key of B and, thus, B is the only agent that is able to send back NA,

• similarly, when B receives the message containing the nonce NB, sent back by A at step 3.,
B believes that this message was really built and sent by A.

Another property that may be expected for this kind of protocol is confidentiality of nonces. In
particular, if nonces remain confidential, they can be used later as keys for symmetric encryption of
communications between A and B. Thus, confidentiality of nonces is also of interest. In this part we
are going to focus on this last aspect: for agents respecting the protocol and whatever the intruder
may do, we expect that nonces remain confidential. The corrected version of the Needham-Schroder
public key protocol is encoded in the example nspk.txt file of the distribution.

In this specification file, each agent is labeled by a unique identifier. Let Lagt = {A,B, o, s(o),
s(s(o)), . . .} be the set of agent labels, where A and B are some agents we observe which are
supposed to be honest and {o, s(o), . . .} is an infinite set of dishonest agents. For any agent label
l ∈ Lagt, the term ident(l) will denote the agent whose label is l. The term pubkey(a) denotes
the public key of agent a and encr(k, a, c) denotes the result of encryption of content c by key k.
In this last term, a is a flag recording who has performed the encryption. This field is not used
by the protocol rules but is used for verification. The term N(x, y) represents a nonce generated
by agent x for identifying a communication with y. We also use an AC binary symbol store in
order to represents sets. For example the term store(x, store(y, z)) (equivalent modulo AC to
store(store(x, y), z) and to store(y, store(z, x)), etc.) will represent the set {x, y, z}. With regards
to this set interpretation of terms, the store represent a set union. Like in many other approaches
based on the Dolev-Yao, the intruder is considered as being the network itself, i.e. every message
can be read, erased, replayed, etc. In our setting the intruder/network is thus a set of messages
represented using the store symbol.

Starting from a set of initial requests, our aim is to compute a tree automaton recognizing an
over-approximation of all possible sent messages with any number of running protocol sessions and

17

an active intruder. The approximation also contains some terms signaling either communication
requests or established communications. For example, a term of the form goal(x, y) means that x
expect to open a communication with y. A term of the form connect(x, y, z) means that x believes
to have initiated a communication with y, but, in reality x communicates with z. The encoding into
the TRS is straightforward: each step of the protocol is described thanks to a rewrite rule whose
left-hand side is a precondition on the current state (set of received messages and communication
requests), and the right-hand side represents the message to be sent (and sometimes established
communication) if the precondition is met. This encoding is very similar to the one detailed in [10].

The tree automaton A0 recognizes the initial configurations (state qnet), i.e. any term of the
set E defined inductively as follows

E = {null, ident(A), ident(B), ident(o), ident(s(o)), . . . , pubkey(A), pubkey(B), pubkey(o),
pubkey(s(o)), . . . , privkey(o), privkey(s(o)), . . . , goal(A,A), goal(A,B), goal(B,A), goal(B,B),

goal(A, o), goal(o,A), goal(o, B), goal(B, o), goal(A, s(o)), . . . , store(t1, t2) | t1, t2 ∈ E}

Hence, initially the intruder/network knows identity of all the agents, all the public keys, the private
keys of the dishonest agents. Terms of the form goal(...) cannot be exploited by the intruder but
are needed to initialize the protocol between each pair of agents. Note that connection requests of A
(resp. B) with himself are taken into account but can easily be discarded of initial configurations of
the protocol analysis if they are not relevant. For this case study, we assumed that such a behavior
may occur.

In the first part of the automaton some prioritary transitions are defined in order to force some
of the terms to be recognized deterministically by a unique (prioritary) state. This is used for
verification purpose or for ensuring left-linearity condition (see section 2.1.5). For left-linearity
condition, for instance, since terms matched by non left-linear variables of the rewrite rules of
the protocol are agent labels, it is important that agent labels are recognized deterministically.
This is why the set of prioritary transitions contains transitions to force terms o, s(o), s(s(o)), . . .
to be deterministically recognized by state Ilabel, A to be deterministically recognized by Alabel
and B label by state Blabel. It is similar for nonces which all have some dedicated (prioritary)
deterministic states.

First, let us try to complete the automaton A0 without the approximation contained in the file
example nspk.txt. This can be done by typing:

timbuk ----noapprox example nspk.txt
The first step of completion produces some transitions which are already covered by the current

automaton and partially normalize another one, which is finally proposed to the user to finish the
normalization.

Adding transition:

store(store(qnet,qnet),qnet) -> qnet

... covered by current automaton.

Adding transition:

store(qnet,store(qnet,qnet)) -> qnet

18

... covered by current automaton.

Adding transition:

store(qnet,qnet) -> qnet

... already normalised!

Adding transition:

store(encr(privkey(Ilabel),o,qnet),privkey(Ilabel)) -> qnet

Prior normalisation simplifies the transition into:

store(encr(privkey(Ilabel),Ilabel,qnet),privkey(Ilabel)) -> qnet

Adding transition:

store(encr(privkey(Ilabel),Ilabel,qnet),privkey(Ilabel)) -> qnet

To normalize this transition, we can give some new normalization rules. The transition we here
have to normalize is of the form store(t1, t2) -> qnet where qnet is the state recognizing the
set of every message of the intruder/network. To normalize this transition, it is enough to remark
that if the intruder has the union of stores (or message elements) t1 and t2 in its knowledge then
he reasonably has also t1 and t2 independently. Hence we can normalize t1 by qnet and t2
by qnet for every possible t1 and t2. This can be done by adding the following normalization
rule: [store(x, y) -> qnet] -> [x -> qnet y -> qnet] meaning that for normalizing every
transition of the form store(x, y) -> qnet, subterm x and subterm y will be normalized by the
state qnet. This rule can be added during the completion using the following syntax (first, Timbuk
recalls the alphabets and variables on which rules can be built):

Do you want to give by hand some NORMALIZATION rules? (y/n)? y
Current normalisation rules are:

Alphabet=goal:2 store:2 null:0 encr:3 pubkey:1 privkey:1 N:2 cons:2 ident:1 o:0
s:1 A:0 B:0 connect:3

and Variables= x y z u v w m
and States= Ilabel:0 qnet:0 Alabel:0 Blabel:0 Aident:0 Bident:0 Iident:0 NAB:0
NAA:0 NBB:0 NBA:0 NI:0

Type additionnal normalization rules using the ’States’ and ’Rules’ keyword and end
by a dot ’.’:

19

(use keyword ’Top’ to place a rule at the beginning of the rule list)

Rules
[store(x, y) -> qnet] -> [x -> qnet y -> qnet].

This lead to the automatic normalization of many new transitions produced by the completion.
The next new transition the user is proposed is the following:

Adding transition:

encr(pubkey(Alabel),Ilabel,cons(NI,Iident)) -> qnet

This means that the intruder has received in its knowledge (qnet) a new term which is of the form
encr(pubkey(Alabel), x, m) i.e. a message m encrypted with the public key of A. In this case,
it is a bad idea to normalize m with the state qnet since it would directly give the secret message
m to the intruder though it is encrypted with the public key of A (and should remain secret, if the
protocol is correct). Normalizing m with qnet would thus build a too big over-approximation where
this secret is given to the intruder. On the opposite, it is possible to define a particular state (say
qAcontent) for recognizing every secret belonging to A. It is also necessary to define a new specific
state qAkey for recognizing pubkey(Alabel). Defining those new states and the new normalisation
rules can be done interactively using the following syntax:

States qAcontent qAkey
Rules
[encr(pubkey(Alabel),x,y) -> z] ->

[y -> qAcontent
pubkey(Alabel) -> qAkey].

where every subterm y under an encryption with the public key of A will be normalized using
the qAcontent state. The following transition to normalize is similar to the previous one but for
B: encr(pubkey(Blabel),Ilabel,cons(NI,Iident)) -> qnet. The normalization rule to add
is thus of the same form:

States qBcontent qBkey
Rules
[encr(pubkey(Blabel),x,y) -> z] ->

[y -> qBcontent
pubkey(Blabel) -> qBkey].

Next transition is also concerned with the public encryption of a message but this time with the
public key of dishonest agents all recognized by state Ilabel. Like in the previous cases, we could
add a specific state for recognizing the encrypted message, however, since the intruder knows the
private key of those agents it is likely to obtain the content of the encrypted message anyway.
Hence, it is not erroneous to normalize the encrypted message with qnet (and put the content of
the message directly in the intruder’s knowledge). Here, using state qnet instead of a new dedicated
state permits to produce a more compact approximation that is still correct with regards to secrecy
properties for A and B. It is possible to do the same with the subterm pubkey(Ilabel). Here is
the corresponding normalization rule to add interactively:

20

Rules
[encr(pubkey(Ilabel), x, y) -> z] ->

[y -> qnet
pubkey(Ilabel) -> qnet].

Note that in previous transitions, normalizing pubkey(Alabel) and pubkey(Blabel) would have
built a too big approximation loosing secrecy properties associated to A and B. Indeed normalizing
pubkey(Alabel) by qnet in a transition of the form encr(pubkey(Alabel),x, m) -> qnet would
produce two new transitions, namely: pubkey(Alabel) -> qnet and encr(qnet,x, m) -> qnet.
The problem does not come from the first one (since the intruder already has the public key of A)
but from the second since with this last transition and the transition pubkey(Ilabel) -> qnet
that is already in the automaton, the intruder can build the term encr(pubkey(Ilabel),x, m)
-> qnet. Then, since privkey(Ilabel) is also in qnet, the intruder can apply decryption on the
last term and obtain m in clear.

Adding the last normalization rule permits to end the first completion step. In the next com-
pletion step, we are successively proposed the following new transitions to normalize:

cons(NI,cons(NI,Bident)) -> qnet
cons(NAA,cons(NAA,Aident)) -> qAcontent
cons(NBA,cons(NAB,Aident)) -> qBcontent

All those transitions represent structured messages respectively stored in the intruders knowledge,
A secret message content, and B secret message content. One could now define some new secret
states for recognizing the (secret) subterms of those messages. However, we can also do a more
drastic approximation by using the three same states to normalize the subterms, i.e. collapse the
message structure:

Rules
[cons(x,y) -> qnet] -> [y -> qnet]
[cons(x, y) -> qAcontent] -> [y -> qAcontent]
[cons(x, y) -> qBcontent] -> [y -> qBcontent] .

This approximation does not invalidate the secrecy property of the protocol and make the approx-
imation more compact. Note that those three rules can be equivalently replaced by the following
normalization rule: [cons(x, y) -> z] -> [y -> z]. This is the last approximation rules to
give and the remaining completion steps are performed automatically within some minutes. Fi-
nally the automaton is complete. Now to prove the secrecy properties, two steps are necessary.
First, since the TRS used for completion is non left-linear, to guarantee that this automaton is
really an over-approximation of R?(E), it is necessary to verify the left-linearity condition. This
condition can be automatically verified on the completed automaton (see section 2.1.5 for details).
The second step, necessary to prove that secrecy of honest nonces is guaranteed consists in com-
puting the intersection between the completed automaton and an automaton describing all the
possible cases where an honest nonce has been captured by the intruder. This last automaton is
the automaton Problems of the example nspk.txt file. This automaton recognizes any term of
the form store(N, t) where t is any term built on the alphabet and N is any term in the set
N(A,B), N(A,A), N(B,B), N(B,A), i.e. every possible nonces produced by an honest agent for
an other honest agent. Typing i in the menu make Timbuk compute an intersection between the

21

completed automaton and the automaton problems and results into an empty intersection, meaning
that those nonces cannot be grabbed by the intruder.

Note that this can also be checked using the pattern matching. Type p and then the pattern
store(N(A,B), x) for instance. This pattern has no solution meaning that this term is not reach-
able. For a more general verification, now type p and pattern store(N(x, y), z). This results in
the following output:

Solutions:
Occurence in state qnet!
solution 1: x <- Alabel, y <- Ilabel, z <- NI
solution 2: x <- Ilabel, y <- Ilabel, z <- NI
solution 3: x <- Ilabel, y <- Blabel, z <- NI
solution 4: x <- Ilabel, y <- Alabel, z <- NI
solution 5: x <- Blabel, y <- Ilabel, z <- NI
solution 6: x <- Alabel, y <- Ilabel, z <- Iident
solution 7: x <- Ilabel, y <- Ilabel, z <- Iident
solution 8: x <- Ilabel, y <- Blabel, z <- Iident
solution 9: x <- Ilabel, y <- Alabel, z <- Iident
solution 10: x <- Blabel, y <- Ilabel, z <- Iident
solution 11: x <- Alabel, y <- Ilabel, z <- Aident
solution 12: x <- Ilabel, y <- Ilabel, z <- Aident
solution 13: x <- Ilabel, y <- Blabel, z <- Aident
solution 14: x <- Ilabel, y <- Alabel, z <- Aident
solution 15: x <- Blabel, y <- Ilabel, z <- Aident
solution 16: x <- Alabel, y <- Ilabel, z <- Bident
solution 17: x <- Ilabel, y <- Ilabel, z <- Bident
solution 18: x <- Ilabel, y <- Blabel, z <- Bident
solution 19: x <- Ilabel, y <- Alabel, z <- Bident
solution 20: x <- Blabel, y <- Ilabel, z <- Bident
solution 21: x <- Alabel, y <- Ilabel, z <- qnet
solution 22: x <- Ilabel, y <- Ilabel, z <- qnet
solution 23: x <- Ilabel, y <- Blabel, z <- qnet
solution 24: x <- Ilabel, y <- Alabel, z <- qnet
solution 25: x <- Blabel, y <- Ilabel, z <- qnet

meaning that nonces produced by or produced for a dishonest agent (x or y is associated to Ilabel)
have been captured but none of the fully honest ones (where x and y have been associated to A or
B).

Now, let us try to check the authentication property. Recall that a term of the form connect(x,y,z)
means that x believes to have initiated a communication with y but in reality x is communicating
with z. Type p and search for the pattern connect(x, y, z) in the completed automaton. This
produces the following output:

Solutions:
Occurence in state qnet!
solution 1: x <- Blabel, y <- Ilabel, z <- Ilabel
solution 2: x <- Alabel, y <- Alabel, z <- Ilabel
solution 3: x <- Alabel, y <- Blabel, z <- Ilabel

22

solution 4: x <- Blabel, y <- Ilabel, z <- Blabel
solution 5: x <- Ilabel, y <- Ilabel, z <- Blabel
solution 6: x <- Ilabel, y <- Blabel, z <- Blabel
solution 7: x <- Ilabel, y <- Ilabel, z <- Ilabel
solution 8: x <- Ilabel, y <- Alabel, z <- Ilabel
solution 9: x <- Ilabel, y <- Ilabel, z <- Alabel
solution 10: x <- Ilabel, y <- Blabel, z <- Alabel
solution 11: x <- Alabel, y <- Alabel, z <- Alabel
solution 12: x <- Alabel, y <- Alabel, z <- Blabel
solution 13: x <- Blabel, y <- Blabel, z <- Alabel
solution 14: x <- Blabel, y <- Alabel, z <- Alabel
solution 15: x <- Alabel, y <- Blabel, z <- Blabel
solution 16: x <- Alabel, y <- Blabel, z <- Alabel
solution 17: x <- Ilabel, y <- Alabel, z <- Alabel
solution 18: x <- Alabel, y <- Ilabel, z <- Alabel
solution 19: x <- Blabel, y <- Ilabel, z <- Alabel
solution 20: x <- Ilabel, y <- Blabel, z <- Ilabel
solution 21: x <- Ilabel, y <- Alabel, z <- Blabel
solution 22: x <- Alabel, y <- Ilabel, z <- Blabel
solution 23: x <- Blabel, y <- Alabel, z <- Blabel
solution 24: x <- Blabel, y <- Blabel, z <- Blabel
solution 25: x <- Alabel, y <- Ilabel, z <- Ilabel
solution 26: x <- Blabel, y <- Alabel, z <- Ilabel
solution 27: x <- Blabel, y <- Blabel, z <- Ilabel

where some solutions are not satisfactory with regards to authentication. For instance, solution 3
says that A thinks that he is talking to B whereas it is talking to I (any dishonest agent). In fact
this is not an error of the protocol but it is due to an approximation function which is to drastic
to prove the authentication (see section 2.1.6 for a more precise approximation function and the
proof of the authentication property).

2.1.5 Verifying left-linearity condition

At the end of the previous successful completion, by typing v in the Timbuk menu, one can verify
the left-linearity condition (see [7] for details) on the non left-linear TRSs used for modeling the
protocol to guarantee that the completed automaton recognizes an over-approximation of R?(E).
On this example, after the full completion, by typing v we obtain within a few seconds:

Checking intersection: Ilabel ^ Alabel ... done.
Checking intersection: Alabel ^ Blabel ... done.
Checking intersection: Ilabel ^ Blabel ... done.
No linearity problem!

meaning that left-linearity condition is fulfilled. What Timbuk does is that it searches for every
possible state matched by non left-linear variables and proves that if the states matched by non
linear variables are different then the languages recognized by those states are disjoint. This is here
the case for states Ilabel, Alabel and Blabel. When it is not the case, it is necessary to modify
the normalization rules or the prioritary rules so that those states recognize disjoint languages.

23

2.1.6 Doing more and going faster

Once your approximation are established, it is possible to store it directly in the specification file,
see approximation Secret in file example nspk.txt for instance. Then it is possible to directly
start a completion process with the first approximation by typing:

timbuk example nspk.txt

In this file, there is a second approximation called SecAndAuth that permits to prove both the
secrecy and the authentication property which can be used instead of the first one thanks to the
Timbuk option ----approx SecAndAuth. However, since this completion takes some time, and
since this set of approximation rules is known to be complete w.r.t. the completion to perform
(i.e. no manual interaction is needed) it is also possible to use the experimental static completion
algorithm (see section 4.4.2) with the ----static Timbuk option:

timbuk ----approx SecAndAuth ----static example nspk.txt

Type a to achieve the full completion at once. Type v to verify the left-linearity condition
(note that it is also faster in static mode), then type i and check that honest nonces are still not
captured by the intruder. Then type p and search for pattern connect(x, y, z). This results in
the following output:

Solutions:
Occurence in state qnet!
solution 1: x <- Alabel, y <- Ilabel, z <- Ilabel
solution 2: x <- Blabel, y <- Ilabel, z <- Blabel
solution 3: x <- Blabel, y <- Ilabel, z <- Alabel
solution 4: x <- Ilabel, y <- Ilabel, z <- Ilabel
solution 5: x <- Ilabel, y <- Blabel, z <- Alabel
solution 6: x <- Ilabel, y <- Blabel, z <- Blabel
solution 7: x <- Ilabel, y <- Alabel, z <- Ilabel
solution 8: x <- Alabel, y <- Blabel, z <- Blabel
solution 9: x <- Blabel, y <- Alabel, z <- Alabel
solution 10: x <- Alabel, y <- Alabel, z <- Alabel
solution 11: x <- Blabel, y <- Blabel, z <- Blabel
solution 12: x <- Ilabel, y <- Alabel, z <- Blabel
solution 13: x <- Ilabel, y <- Alabel, z <- Alabel
solution 14: x <- Ilabel, y <- Blabel, z <- Ilabel
solution 15: x <- Ilabel, y <- Ilabel, z <- Blabel
solution 16: x <- Ilabel, y <- Ilabel, z <- Alabel
solution 17: x <- Blabel, y <- Ilabel, z <- Ilabel
solution 18: x <- Alabel, y <- Ilabel, z <- Alabel
solution 19: x <- Alabel, y <- Ilabel, z <- Blabel

This results shows that whenever a dishonest agent is concerned by a communication, authentication
is not guaranteed: lines 2, 3, 5, 7, 12, 14, 15, 16, 18, 19 shows each time that x is connect to someone
else that he expects. On the opposite, each time that x and y range over honest agents, values
for y and z coincide (lines 8, 9, 10, 11). Hence, for honest agents, this protocol guarantees the
authentication.

Remark on approximation definition in static mode: When defining approximation rules
to be used in the static mode, note that Timbuk may consider that your set of approximation rule

24

is not complete though you know it is. This is the case for the file example nspk.txt: if you
have a careful look to the approximation Secret it contains the rules established in section 2.1.4
as well as an additional at the end of the rule set: [x -> y] -> [z -> qnet] ensuring that every
subterm that has not already been normalized by the previous rule is to be normalized by state
qnet. This is a trick to help Timbuk static completion algorithm to admit that this approximation
is complete. Note that instead of completing by hand the approximation rule set it is also possible
to use the ----fstatic option that automatically adds a default rule of the same kind and thus
never complains about incomplete normalization rule sets.

2.1.7 More tricks

Syntax of normalization rules is in fact a bit less restrictive that what is said in the previous section.
Let us retry to complete the basic.txt file:

timbuk basic.txt

During the first completion step we are proposed to give some normalization rules. Let us define
a state operator (see section 3.6.2 for details about state operators) and write interactively some
normalization rules in extended syntax:

States q:1
Rules [g(x) -> y] -> [x -> q(x)].

The effect of this rule is to normalize every subterm t of a transition g(t) → q′ by a state
labeled by q(t). This single normalization rule permits to achieve the completion automatically
till the end. Here is a more practical example. Using this extended syntax, the normalization
rules given in section 2.1.4 for proving the secrecy on the NSPK cryptographic protocol, can be
abbreviated as follows (approximation called Secret2 in example nspk.txt file):

Approximation Secret2
States q:1 secret:1 qnet key:1 Alabel Ilabel Blabel
Rules

[store(x, y) -> z] -> [x -> qnet y -> qnet]

[encr(pubkey(Ilabel), x, y) -> z] ->
[y -> qnet

pubkey(Ilabel) -> qnet]

(* Every message component encrypted by someone else than the intruder goes in a
dedicated state *)

[encr(pubkey(u), x, y) -> z] ->
[y -> q(secret(u))

pubkey(u) -> q(key(u))]

(* In the storage states, everything is collapsed (structure of the message is
not important) *)

[cons(x, y) -> z] -> [y -> z]

25

Recall that approximation rules are used in the order. Hence, every message encrypted by a
dishonest agent will be normalized using the second rule and every message encrypted by an (honest)
agent X matched by variable u will be normalized using the third rule and states q(secret(X)) and
q(key(X)). It is possible to reachieve completion using this new approximation. However, since
this extended syntax cannot be used in static mode, we need to achieve completion in dynamic
(default) mode:

timbuk ----approx Secret2 example nspk.txt

Some other tricks for building approximation are still under development but are already integrated
in Timbuk for testing: merging rules, approximation equations and interactive merging with Tabi.
Merging rules (see section 4.2.3) are rules of the form q1 -> q2 for merging two states in an
automaton. Such rules can be given to Timbuk explicitly using the m command, or they can be
built interactively using Tabi (see section 2.3.3). Approximation equations are a third way to merge
some states of the automaton by giving some equivalence between some terms (patterns in fact).

Here is a simple example done on the processes.txt file. This example consists of a TRS
modeling the behavior of two parallel processes counting elements on a shared counter that should
not be accessed by the two processes at the same time (see [7] for details on this example). If we
start a completion with an exact normalization strategy:

timbuk ----strat exact processes.txt

Then completion diverges. This comes from the fact in the initial language the number of
elements to be counted by processes is not bounded. Hence, the counter (built on the usual
Peano operators for naturals: o and s()) counts an infinite number of elements. Divergence of
completion, can easily be pruned adding interactively an approximation equation. In our case, we
achieved completion until the 6th completion step then add the following approximation equation
merging together all the naturals greater to 0:

Current equations are:

Alphabet=S:4 Proc:2 cons:2 null:0 busy:0 free:0 s:1 o:0
and Variables= x y z u

Type additionnal equations and end by a dot ’.’:
s(s(x))=s(x).

This equation permits to merge some of the states of the automaton:

State merging using approximation equations!

qnew8 -> qnew9
qnew6 -> qnew9

Then, doing another completion step permits to end the completion process. It is possible to check
that both processes have never accessed the counter at the same time by verifying that the pattern
S(Proc(busy, x), Proc(busy, y), z, u) has no solution in the automaton:

26

Alphabet=
S:4 Proc:2 cons:2 null:0 busy:0 free:0 s:1 o:0

States=
qnew9:0 qnew8:0 qnew7:0 qnew6:0 qnew5:0 qnew4:0 qnew3:0 qnew2:0 qnew1:0 qnew0:0 q0:0
q1:0 q2:0 q3:0 q4:0

Variables=
x y z u

Type a term and hit Return: S(Proc(busy, x), Proc(busy, y), z, u)

Pattern not found!

2.2 Taml

Start Taml by typing: taml in a command line window. Taml is an Ocaml interpreter extended
with Timbuk library functionalities (see section 5 for reference manual of Taml and see [12] for
details about Ocaml syntax). The following tutorial is a step by step construction of TRS and
automata. However, if necessary, the whole tutorial file can be executed at once by loading the file
in Taml, using the following Ocaml directive #use "tutorial.ml".

First, let us define an alphabet f by typing the following Taml commands (commands are
prefixed by the # symbol which represents the usual Ocaml prompt, this of course has not to be
typed by the user):

let f= alphabet "app:2 cons:2 nil:0 a:0 b:0";;

Taml gives the following output, meaning that f has been accepted as a valid alphabet.

val f : Taml.Alphabet.t = app:2 cons:2 nil:0 a:0 b:0

Similarly one can define a variable set v:

let v= varset "x y z u";;
val v : Taml.Variable_set.t = x y z u

Now, let us define a term t over the alphabet f and the variable set v as follows:

let t= term f v "cons(a, cons(b, nil))";;
val t : Taml.Term.t = cons(a,cons(b,nil))

Since Taml embeds a complete Ocaml interpreter, it is thus possible to use usual Ocaml syntax
facilities and also to combine Taml functions with usual Ocaml functions. For instance, it is possible
to define a specific term function specialized for alphabet f and variable set v in the following way:

let fvterm= term f v;;
val fvterm : string -> Taml.Term.t = <fun>

27

Now it is possible to construct a list of terms built on alphabet f and variable set v using the
specialized function fvterm as well as Ocaml List.map function (mapping a function to every
element of a list) in the following way:

let l= List.map fvterm ["app(cons(a, nil),cons(b, cons(b, nil)))"; "a"; "cons(a,nil)"];;
val l : Taml.Term.t list = [app(cons(a,nil),cons(b,cons(b,nil)))
;
a
;
cons(a,nil)
]

Similarly we can construct term rewriting systems and tree automata directly in the interpreter:

let tt= trs f v "app(nil, x) -> x app(cons(x, y), z) -> cons(x, app(y, z))";;
val tt : Taml.Rewrite.t =
app(nil,x) -> x

app(cons(x,y),z) -> cons(x,app(y,z))

let aut= automaton f "
States qa qb qla qlb qf
Final States qf
Transitions

a -> qa
b -> qb
cons(qa, qla) -> qla
nil -> qla
cons(qb, qlb) -> qlb
nil -> qlb
app(qla,qlb) -> qf";;

val aut : Taml.Automaton.t =
States qa:0 qb:0 qla:0 qlb:0 qf:0

Final States qf

Transitions
a -> qa
b -> qb
cons(qa,qla) -> qla
nil -> qla
cons(qb,qlb) -> qlb
nil -> qlb
app(qla,qlb) -> qf

Now let us show that a given term is recognized by a given state in a tree automaton

28

let t1= List.hd l;;
val t1 : Taml.Term.t = app(cons(a,nil),cons(b,cons(b,nil)))

let s= state "qf";;
val s : Taml.Automaton.state = qf

run t1 s aut;;
- : bool = true

One can also rewrite terms using the term rewriting system tt and the Rewrite.left inner norm
function of the Timbuk library (see section 5.3 for details on use of Timbuk functions outside of
Taml interface):

let t2= Rewrite.left_inner_norm tt t1;;
val t2 : Taml.Term.t = cons(a,cons(b,cons(b,nil)))

It is also possible to read automaton and TRS from a Timbuk specification file. For instance,
let us read the automata completed A0 and the TRS current TRS in the file comp.txt which
corresponds to the completion done in section 2.1.2.

let tt= read_trs "current_TRS" "comp.txt";;
val tt : Taml.Specification.trs =
app(nil,x) -> x

app(cons(x,y),z) -> cons(x,app(y,z))
rev(nil) -> nil
rev(cons(x,y)) -> app(rev(y),cons(x,nil))

let aut= read_automaton "completed_A0" "comp.txt";;
val aut : Taml.Specification.automaton =
States qlba:0 qla:0 qnil:0 qrev:0 qlab:0 qlb:0 qa:0 qb:0

Description
qrev: "rev applied to lists where a are before b"
qlab: "lists where a are before b (possibly empty)"
qlb: "lists of b (poss. empty)"

Final States qrev

Prior
app(qla,qla) -> qla
rev(qnil) -> qnil
app(qnil,qla) -> qla
app(qnil,qlb) -> qlb
cons(qb,qnil) -> qlb
app(qlb,qla) -> qlba
rev(qlab) -> qlba
cons(qa,qnil) -> qla

29

nil -> qnil
rev(qlb) -> qlb

Transitions
rev(qlab) -> qrev
nil -> qlab
cons(qa,qlab) -> qlab
cons(qa,qlb) -> qlab
nil -> qlb
cons(qb,qlb) -> qlb
a -> qa
b -> qb
nil -> qrev
rev(qlab) -> qlba
app(qlba,qla) -> qrev
rev(qlb) -> qlb
nil -> qnil
cons(qa,qnil) -> qla
app(qlb,qla) -> qrev
cons(qa,qnil) -> qrev
cons(qb,qlba) -> qrev
nil -> qlba
app(qlba,qla) -> qlba
app(qlb,qla) -> qlba
cons(qb,qnil) -> qlb
app(qnil,qlb) -> qlb
app(qnil,qla) -> qla
rev(qnil) -> qnil
app(qla,qla) -> qla
app(qlb,qlb) -> qlb
cons(qa,qnil) -> qlba
app(qnil,qla) -> qlba
app(qla,qla) -> qlba
cons(qb,qlba) -> qlba
cons(qb,qla) -> qlba
cons(qa,qla) -> qla
app(qnil,qla) -> qrev
app(qla,qla) -> qrev
cons(qb,qla) -> qrev
cons(qa,qla) -> qlba
cons(qa,qla) -> qrev

Now we can compute the automaton recognizing the set of terms irreducible by TRS current TRS
by typing the following command:

let aut_iff= irr f tt;;
val aut_iff : Taml.Automaton.t =
States q2:0 q1:0 q0:0

30

Final States q0 q1 q2

Transitions
b -> q2
a -> q2
nil -> q1
app(q2,q2) -> q2
app(q2,q1) -> q2
cons(q1,q1) -> q0
cons(q2,q2) -> q0
cons(q2,q1) -> q0
cons(q1,q2) -> q0
cons(q0,q0) -> q0
cons(q2,q0) -> q0
cons(q1,q0) -> q0
cons(q0,q2) -> q0
cons(q0,q1) -> q0
app(q2,q0) -> q2

Now, recall that in section 2.1.2 the automaton completed A0 (stored in the Ocaml variable aut)
of the file comp.txt recognizes an over-approximation of R?(L(A0)) where A0 and R are respectively
the automaton and the TRS defined in file example2.txt (and such that R = current TRS). We
can thus construct the automaton recognizing an over approximation of the set of normal forms
R!(L(A0)) as follows:

let norm= inter aut aut_iff;;

However, the intersection automaton is very big and not cleaned (it may have some unnecessary
states). Furthermore, for efficiency reasons, our implementation of intersection does not build
explicitly the set of states of the intersection automaton. To obtain a finalized automaton, it is
necessary to use cleaning functions such as simplify:

let norm2= simplify norm;;
val norm2 : Taml.Automaton.t =
States q7:0 q6:0 q5:0 q4:0 q3:0 q2:0 q1:0 q0:0

Final States q6 q7

Transitions
nil -> q1
nil -> q0
nil -> q7
b -> q3
a -> q4
cons(q4,q0) -> q5
cons(q4,q0) -> q6
cons(q3,q1) -> q6

31

cons(q4,q0) -> q2
cons(q3,q1) -> q2
cons(q4,q5) -> q2
cons(q3,q5) -> q2
cons(q3,q2) -> q2
cons(q3,q2) -> q6
cons(q4,q5) -> q5
cons(q3,q5) -> q6
cons(q4,q5) -> q6

This automaton represents an over-approximation of R!(L(A0)). To have a more precise idea of the
recognized language, one can browse it using Tabi:

browse norm2;;

Then click on the Start symbol and then on the button choose random to build some randomized
representatives of the language. The representatives are all lists where b’s are always before a’s
which corresponds to the definition of the reverse function applied on lists of a’s followed by some
b’s. Details on Tabi use will be given in the next section. For the moment, just quit random and
quit Tabi. Note that in the automaton, there remains only constructor symbols (functional symbols
app and rev have disappeared). This proves that definition of reverse is complete w.r.t. the lists we
have considered (see [9] for details). To conclude on this tutorial for Taml, note that Taml provides
a small online help on the most used functions by typing:

help();;

2.3 Tabi

2.3.1 Basic

To start Tabi, simply type tabi in a command line window. Then open the automaton A03 of the
example3.txt Timbuk specification file using the file browser: choose the Open File item of the File
menu and browse the directories to open the file example3.txt. After a while the Start symbol
is displayed in the Tabi window. Click on it and choose in the list the final state to start from.
For instance, click on final state qf1. Now we are going to browse the automaton to build some
representatives of the language recognized by this final state. Click with the left mouse button on
the state qf1. A window opens. It contains a list of configurations (or terms) leading to this state.
Choose configuration times(q0,q0). The state qf1 is replaced by the selected configuration. This is
what we call unfolding of a state.

Now click on a state q0, replace it by the unique possible configuration: O. Then do the same
for the other occurrence of state q0. We have obtained a ground term recognized by state qf1 in the
tree automaton A0. Note that moving the mouse pointer over the term and its subterms displays
in red the state recognizing the selected subterm.

Instead of building terms by hand, it is also possible to produce random representatives. Use a
middle click over term times(O,O) to fold it back to the state qf1. Now use left click on qf1 again to
open the configuration list window. Then instead of choosing a particular configuration, click on
button choose random. A new window opens containing a list of randomly generated representatives

3Tabi always reads the first automaton of the specification file

32

for state qf1. In our case, this list should contain exactly 3 representatives which is in fact exactly
the language recognized by qf1. Click on one of them to use it to replace state qf1.

Now assume, that you want to restart browsing from a different final state, say qnew23. This
can be done by clicking on button Restart which reinitializes the browsing from the Start symbol
seen at the beginning. Click on Start symbol and select the final state qnew23. Produce a random
representative for qnew23 as seen before. This state does not recognize a finite language and the
randomly generated terms are bigger and more numerous. Now change the values for random upper
bound for term depth, random upper bound for time and random upper bound for random term
number using respectively the items Random max depth, Random max time and Random max term
number of the Options menu and see the effect on randomized term generation. For instance, refold
state qnew23 with a right click on the top of the term and set Random max depth and Random max
term number to 10. Then produce random terms for state qnew23. Produced terms are lesser and
smaller.

Now assume that you want to browse state qnew20 which is not final. Click on the Browsing
style item of the Options menu, and click on the All states button. Then click on the Restart button.
Now, by clicking on the start symbol, it is possible to browse any state of the automaton such as
qnew20.

2.3.2 Display modes

The default displaying mode you are using is autozoom (at that moment autozoom should be
selected in the Tabi windows) meaning that Tabi tends to display the whole browsed term as big
as possible in the window. When the term size is getting bigger and bigger, the font is reduced so
that it can still be displayed in the window. When the font is getting too tiny, Tabi automatically
switches to zoom mode where only a part of the term is displayed and one can move from a part
to another using the scrolling bars.

To show the different display modes we are going to browse some big terms. Let us first
construct big terms. Set the values of Random max depth, Random max time and Random max term
number respectively to 10000, 20 and 10000. Note that, to produce bigger random terms, it is not
enough to increase the Random max depth value since it is only an upper bound for term depth. For
instance, if Random max time is set to 10000 and Random max term number is set to 2, then random
generation will stop when 2 random terms have been produced. Since this generation starts from
the smaller terms that can be produced, the set of randomly generated terms is likely to contain
the smallest possible terms. Similarly, it is necessary to increase the Random max time value in
order to give Tabi the time necessary to consider deeper terms.

Now, produce randomly generated representatives for the state qnew20 and choose the deepest
one. This term is displayed and the font is reduced so that it fits in the window. If the term is
too big (or the window too small) then Tabi switches to the zoom mode. The term is displayed
in linear mode. Now hold the CTRL key pressed and do a left click on the whole term (the term
should be entirely selected). Now the whole term is displayed in tree mode. It is also possible to
mix both modes by switching from a mode to another on subterms. For instance, your term is
likely to contain a tall subtree built on s symbols. Hold the SHIFT key pressed and do a left click
on the top of this subtree to switch back its representation into linear mode. You should obtain
something close to Figure 1. There are some other ways to switch from a mode to another (see
Tabi’s reference manual in section 6 for details).

The default displaying mode is the linear mode i.e. unfoldings are presented in linear mode.
The user may switch from this mode to the tree mode by clicking on the corresponding button.

33

Figure 1: An example of automata browsing with Tabi

However, the mode only affects the future unfoldings.

2.3.3 Using Tabi to approximate in Timbuk

Tabi can also be used from Taml with the browse function and from Timbuk with the b command.
Using Tabi from Timbuk permits to figure out what is the language recognized by the automaton
run under completion. Furthermore, using Tabi from Timbuk permits to define some merging rules
graphically on the term structure. This can be of great help for building approximations as well
for defining tree automata easily when you are not used to cope with the tree automata syntax.

For instance, starts Timbuk on the basic2.txt specification file with the exact strategy.

timbuk ----strat exact basic2.txt

Initially, the init automaton to be completed recognizes exactly the set {f(f(f(a)))} and is
declared in the following way in the basic2.txt file:

Set init
f(f(f(a)))

From this simple language, to build a tree automaton recognizing the language f(f?(a)), one can
proceed in the following way. From Timbuk type b to browse the init language with Tabi. Produce
a random representative for the unique final state qterm0. The random representative should also
be unique: f(f(f(a))). Now select the subterm f(a) (that should be recognized by state qterm2),
hold the ALT key pressed and do a left click on this subterm. This should draw a blue rectangle
around this subterm. Proceed similarly with the subterm f(f(a)) that should be recognized by
qterm1. This should draw a second rectangle over this subterm. Then press on the button Merge to
build a merging rule and on the button Apply merge to apply the merging to the init automaton.
Applying the merging quits Tabi. Then, back in Timbuk browse again the modified automaton by
typing b and produce some random representatives for qterm0: the language now recognized by
this state and automaton is now f(f?(a)).

34

3 Specification language reference manual

In a Timbuk specification file, it is possible to define one alphabet (mandatory) and a set of vari-
able. Those elements are followed by any number of Term Rewriting Systems, Tree Automata and
Approximations all of them associated with a distinct name. Have a look to Figure 2 for a sample
Timbuk specification file.
Ops

f:2 g:1 a:0 b:0

Vars x y z u

TRS R1

f(x, y) -> g(f(x, y))

g(a) -> f(a, a)

g(x) -> f(x, x)

Set A0

f(a, a)

f(b, b)

f(g(a), g(a))

Automaton A1

States qa q[1--4]

Description qa : "exactly a"

q1 : "g*(a)"

q2 : "g(g*(a))"

q3 : "any term built on a and f"

Final States q4

Transitions

a -> qa

a -> q1

g(q1) -> q1

g(q1) -> q2

a -> q3

f(q3, q3) -> q3

f(q2, q3) -> q4

Approximation first

Import A1

States qg

Rules

[x -> y] -> [a -> qa]

[g(x)-> q2] -> [x -> q2]

[g(x)-> y] -> [x -> qg]

Equations

f(f(x, y), z)= f(x, y)

Figure 2: A sample Timbuk specification

35

3.1 Comments

The comments in Timbuk specification files respect the Ocaml syntax, i.e. should be opened with
(* and closed with *).

3.2 Symbols

The symbols used in Timbuk are sequences of characters that should not contain the following
characters: ’(’, ’)’, ’*’, ’-’, ’=’, ’:’, ’[’, ’]’ nor contain a comma, a space or one of
the reserved keyword defined in the following.

3.3 Alphabets

Alphabets are sequences of pairs of symbols associated with an arity (a natural number). Symbols
are associated to their arity using the ’:’ character. In specification files, alphabets should be
prefixed by the Ops keyword.

3.4 Variable sets

Variable sets are sequences of symbols that should be all distinct from the symbols of the alphabet.
In specification files, alphabets should be prefixed by the Var keyword.

3.5 Term Rewriting Systems

Term rewriting systems are sequences of rewrite rules, where a rule is a pair of terms, built on the
alphabet and the variable set of the specification, separated by ->. Terms should be written in
prefix notation. In specification files, every term rewriting systems declaration should begin with
the TRS keyword followed by a name (following the symbol syntax defined above).

3.6 Tree Automata

There are two different manners to define tree automata in a Timbuk specification file: implicitly
by giving the (finite) set of terms to be recognized or explicitly by giving the set of states, the set
of final states and the set of transitions.

3.6.1 Implicit definitions

It is now possible to define a tree automaton by giving the finite set of terms it should recognize,
i.e. its finite language. In specification files, an implicit definition of an automaton consists in
the keyword Set followed by a name (following the symbol syntax defined above) and by a finite
sequence of terms built on the alphabet of the specification.

3.6.2 Explicit definitions

Tree Automata are defined explicitly using the five keywords States, Description, Final States,
Prior and Transitions in that order, where Prior and Description are optional:

36

States is followed by a sequence of state operators. Unlike in usual tree automata the state
operators we used are not necessarily constant symbols. One may define constant states
symbols: q1:0 q2:0 ... but also some “state operators” which transform any term into
a state: q:1 prod:2 With such definitions, constants q1, q2 will denote states but
assuming that f(a) is a term defined on the specification alphabet q(f(a)), prod(f(a),
q(f(a))), prod(q1, q2) will also be some valid states. Note that for convenience, when
constant state operators are defined the notation q1:0, q2:0 can be abbreviated into q1
q2. Similarly, the notation q1, q2, q3, q4, q6 can be abbreviated into q[1----6].

Description is followed by a sequence of state description, where a state description is a pair
composed with a state and a string separated by the : symbol. A description is any string
delimited by two " symbols (See Figure 2 for an example).

Final States is followed by a sequence of states. A state is in fact a term rooted by a state
operator. For instance, if the declared state operators are: q1:0 q2:0 q:1 prod:2 and
f(a) is a term defined on the specification alphabet, a valid sequence of states can be q1 q2
q(q1) prod(f(a), q1) prod(q1, q2).

Prior is an optional keyword followed by a sequence of automata transitions. Those transition
will represent some prioritary transitions for approximation construction, see section 4.2.1.
Note that prioritary transitions are supposed to be a subset of the transitions. As a con-
sequence, prioritary transitions are always added to the set of declared transitions of the
automaton. Hence, if a transition is declared as prioritary it is not necessary to repeat it in
the Transitions section since it will automatically be added. Syntax of transition sequences
is detailed in the next item.

Transitions is followed by a sequence of transitions. A transition is a pair composed with a term
(also called a configuration) and a state separated by ->. Timbuk only accept normalized
transitions so the term on the left-hand side of the pair should be of the form f(q1, . . . , qn)
where f is a symbol of the alphabet declared with arity n and q1, . . . , qn are states.

In specification files, every explicit tree automata declaration should begin with the Automaton
keyword followed by a name (following the symbol syntax defined above).

3.7 Approximations

Approximations are defined using the three keywords Import, States, Equations and Rules. They
are all optional. However, if Import and States are present, Import should always be placed before
States.

Import is followed by a sequence of tree automaton names that should be defined above in the
specification file. State operators of tree automata corresponding to the names are imported
in the current approximation and do not need to be redefined.

States is followed by a sequence of state operators as for the States keyword of the tree automata
description, see section 3.6.2 for details.

Equations is followed by a sequence of equations where an equation is a pair of terms separated by
the character =. The terms on both sides of the equation can be built over the alphabet and
the variables of the specification and the state operators, i.e. terms may contain symbols,
variables and states.

37

Rules is followed by a sequence of normalization rules. The general form of a normalization rule
is:

[s -> x] -> [l1 -> r1 ... ln -> rn]

where s, l1 , . . . , ln are terms that may contain symbols, variables and states, and x, r1,
. . . , rn are either states or variables. If ri is a variable then it is equal to x. If ri is a state
built with a state operator of arity greater to zero then any variable y of ri occurs in s or is
equal to x. See section 4.2.2 for use of those rules.

4 Timbuk reference manual

In this part, we assume that the reader is familiar with term rewriting systems [1], tree automata [3]
and the tree automata completion process described in [7]. Given a term rewriting system R, s →R t

will denote that s can be rewritten by R in one step into t. Similarly, s →R? t will denote that s

can be rewritten by R in zero or more steps into t. The set of R-descendants of a set of ground
terms E ⊆ T (F) is R?(E) = {t ∈ T (F) | ∃s ∈ E s.t. s →?

R t}.
Given a tree automaton A, the rewriting relation induced by the transitions of A is denoted

by →A. The tree language recognized by A denoted by L(A) is L(A) = {t ∈ T (F) | t →?
A

q s.t. q is a final state}.

4.1 Running Timbuk

To start a completion process and launch the Timbuk tool over a Timbuk specification file called
example.txt, simply type:

Timbuk example.txt

in a command window. The specification file should at least contain one tree automaton and
one term rewriting system. Depending on the way you obtained Timbuk, you may not be able
to directly use ’timbuk’ as a standalone command and you may need to type ocamlrun timbuk
example.txt instead. Please refer to the README file of the distribution for details on how to run
the Timbuk library tools. If launching Timbuk succeeds, then Timbuk reads the given specification
file and starts a tree automata completion with

• the first term rewriting of the specification (let us denote it by R in the following)

• the first tree automaton of the specification (let us denote it by A in the following)

• the first approximation (if it exists) of the specification

The remaining tree automata of the specification file are also read and stored by Timbuk for
(later) verification purpose. The general completion process [7] works by incremental completion
of automaton A into A1, A2, . . . Each step from Ai to Ai+1 is called the i + 1-th completion step.
For obtaining Ai+1 from Ai, one searches for every term s ∈ L(Ai) such that s →R t and t 6∈ L(Ai).
Then Ai+1 is built from Ai by adding transitions to Ai such that L(Ai+1) ⊇ L(Ai) and t ∈ L(Ai+1)
for every term t such that s ∈ L(Ai), s →R t and t 6∈ L(Ai).

When completion converges, completion reaches a fixpoint Ak such that for every term s ∈
L(Ak) such that s →R t then t ∈ L(Ak). Hence, L(Ak) is an over-approximation of R-descendants
of L(A), i.e. L(Ak) ⊇ R?(L(A)). In other words, Ak recognizes a superset of terms reachable by

38

R from terms of L(A). In the next section, we present a collection of approximation techniques
provided by Timbuk to make completion converge. For non left-linear TRS (i.e. TRS having at
least two occurrences of the same variable in the left-hand side), for Ak to be an over-approximation
of R?(L(A)) it is also necessary to check the left-linearity condition.

Note that for some particular cases of TRS and initial automaton A the fixpoint is not only an
over-approximation but it is exactly the set R?(L(A)). Those exact classes and associated specific
completion strategy will be detailed in section 4.4.1.

4.2 Timbuk normalization and approximation tools

In this section, we present various techniques implemented in Timbuk to force completion to con-
verge, i.e. to build an over-approximation of R?(L(A)) (the set of reachable terms) when it cannot
be computed exactly. In a typical i-th completion step, recall that each rule l → r of R is used
to build critical pairs, i.e. find a Q-substitution σ and a state q of Ai such that lσ →?

Ai
q and

rσ 6→?
Ai

q. Then, the transition rσ → q is added to A to build Ai+1. But, the transition rσ → q may
not be normalized, i.e. rσ is a state (hence rσ → q is an epsilon transition) or rσ = f(t1, . . . , tn)
and there exists at least one j ∈ {1, . . . , n} such that tj is not a state. If the transition is not
normalized then it has to be normalized before being added to the tree automaton. Normalizing
epsilon transitions is easy and does not make completion diverge: for a transition of the form
q1 → q2 it is enough to add the set of transitions {c → q2 | c → q1 ∈ Ai} to Ai. For normalizing
a transition f(t1, . . . , tn) → q where tj is not a state, it is necessary to introduce a state, say qj

and replace the transition f(t1, . . . , tn) → q by the two transitions: f(t1, . . . , qj, . . . , tn) → q and
tj → qj. This process has to be continued until every transition is normalized. Depending on the
choice of states used for normalization (for instance state qj, . . .) the addition of the new transition
will be exact or approximated. For instance, if the state qj is a new state (i.e. not occurring in
Ai), then adding f(t1, . . . , tn) → q or the two transitions: f(t1, . . . , qj , . . . , tn) → q and tj → qj

is similar. On the opposite, if we choose qj = q then f(t1, . . . , q, . . . , tn) → q and tj → q over-
approximate f(t1, . . . , tn) → q. Indeed, with the pair of transitions f(t1, . . . , q, . . . , tn) → q and
tj → q, one can build the transition f(t1, . . . , tn) → q but also an infinite set of transition of the
form f(t1, . . . , f(t1, . . . , tn), . . . , tn) → q and so on.

Since, approximations are determined by normalization choices, the central tools used in Timbuk
for building approximations are techniques for guiding the choice of states used in the normalization
process.

4.2.1 Prioritary transitions

The prioritary transitions are a set of deterministic tree automata transitions used to simplify a
new transition to be added by bottom-up rewriting. Let f(g(a)) → q be the new transition to
add and normalize. If the set of prioritary transitions contains a → q1 then f(g(a)) → q will be
normalized into f(g(q1)) → q and a → q1. If the set of prioritary transitions does not contain a
transition for simplifying g(q1) then normalizing cannot go further with prioritary transitions.

Prioritary transitions can either be defined in the specification files (see ’Prior’ field of tree
automata explicit definition in section 3.6.2), interactively during completion (see manual and
manual conf strategy operators in section 4.4.1) or automatically with the ’auto prior’ normaliza-
tion strategy (see ’auto prior’ strategy operator in section 4.4.1).

Any set of prioritary transitions can be expressed using normalization rules (defined in the
next section) but prioritary transitions remain a syntactic facility avoiding the repetition of some

39

transitions that are already part of the automaton. Indeed, since prioritary transitions are generally
transitions of the initial automaton, the ’Prior’ field of the tree automaton permits to define them
once as tree automata transitions and transitions for approximation.

4.2.2 Normalization rules

Normalization rules (or norm rules) are a sequence of rules of the form:

[s → x] → [l1 → r1 . . . ln → rn]

where s, l1, . . . , ln are terms that may contain symbols, variables and states, and x, r1, . . . , rn

are either states or variables. If ri is a variable then it is equal to x. If ri is a state built with a state
operator of arity greater to zero then any variable y of ri occurs in s or is equal to x. To normalize a
transition of the form t → q′, we match the pattern s on t and x on q′, obtain a given substitution σ
and then we normalize t with the rewrite system {l1σ → r1σ, . . . , lnσ → rnσ} where r1σ, . . . , rnσ are
necessarily states. For example, normalizing a transition f(h(q1), g(q2)) → q3 with approximation
rule [f(x, g(y)) → z] → [g(u) → z] will give a substitution σ = {x 7→ h(q1), y 7→ q2, z 7→ q3}, an
instantiated set of rewrite rules [g(u) → q3]. Thus, f(h(q1), g(q2)) → q3 will be normalized into a
normalized transition g(q2) → q3 and a partially normalized transition f(h(q1), q3) → q3.

Normalization rules are used in the order of the sequence: if a normalization rule does not apply
then the following rule is used and so on. When a normalization rule succeeds in normalizing a
transition (even partially) then the sequence is taken back from the beginning and the normalization
process continues on partially normalized transitions.

Note that in dynamic mode (see section 4.4 for details about Timbuk completion modes) the
syntax for normalization rules has been extended so that it is also possible to achieve the pattern
matching under state operators. For instance, it is now possible to define a normalization rule of
the form:

[encr(pubkey(q(x)),m) → qstore] → [m → q(secret(x))]

where x and m are variables, q is here a state operator of arity 1 and secret is either a symbol or a
state operator of arity 1. This rule will thus normalize transitions encr(pubkey(q(A)), cons(q1, q2)) →
q and encr(pubkey(q(B)), cons(q3, q4)) → q respectively in encr(pubkey(q(A)), q(secret(A))) → q
cons(q1, q2) → q(secret(A)) and encr(pubkey(q(B)), q(secret(B))) → q cons(q3, q4) → q(secret(B)).
The only syntactic constraint on those normalization rules is the following: for every rule of the
form

[s → x] → [l1 → r1 . . . ln → rn]

either ri is a state constant, either it is equal to x, or it is a term of the form q(t1, . . . , tn) where
q is a state operator and variables of t1, . . . , tn are either equal to x or contained in s.

Normalisation rules can be defined both in the specification file (see section 3.7) or during
completion in dynamic mode using the manual norm strategy operator (see section 4.4.1) or the
(g) Timbuk command (see section 4.3).

4.2.3 Merging rules

Merging rules are a sequence of epsilon transitions of the form q1 → q2 between states q1 and q2.
The meaning of such a rule is that states (and thus corresponding recognized languages) q1 and q2

40

should be merged together. Applying a merging rule q1 → q2 on an automaton A′ simply consists
in rewriting all the state labels of the tree automaton such that q1 is replaced everywhere by q2.
The resulting automaton A′ is always such that L(A) ⊆ L(A′).

Unlike preceding tools, merging rules can only be given interactively and are applied after that
transitions have been normalized. A typical use of merging rules is to normalize automatically new
transitions by new states (see strategy operator ’auto’ in section 4.4.1 for details) and then give
interactively the merging rules for achieving the approximation. Note that merging rules can also
be built graphically using Tabi see section 2.3.3.

4.2.4 Approximation equations

Approximation equations are a sequence of equations of the form s = t where s and t are terms
built on symbols, states and variables. The meaning of such a rule is that every terms matching this
equation should be merged together. In practice, terms s and t are matched over the automaton
Ai of the current completion step and for every Q-substitution σ and for every states q1, q2 such
that sσ →?

Ai
q1 and tσ →?

Ai
q2, a merging rule q1 → q2 is produced and applied.

Like merging rules, equations are applied after that transitions have been normalized. Approxi-
mation equations can be defined both in the specification file (see section 3.7) or during completion
in dynamic mode (see section 2.1.7).

4.3 Timbuk commands

When starting Timbuk on a valid specification file, the user is proposed the following menu:

Completion step: 0

Do you want to:

(c)omplete one step (use Ctrl-C to interrupt if necessary)
complete (a)ll steps (use Ctrl-C to interrupt if necessary)
(m)erge some states
(s)ee current automaton
(b)rowse current automaton with Tabi
(d)isplay the term rewriting system
(i)ntersection with verif automata
intersection with (o)ther verif automata on disk
search for a (p)attern in the automaton
(v)erify linearity condition on current automaton
(w)rite current automaton, TRS and approximation to disk
(f)orget old completion steps
(e)quation approximation in gamma
(g)amma normalisation rules
(det)erminise current automaton
(u)ndo last step
(q)uit completion

The first line gives the current completion step. Initially the completion step number is 0. Then
the user have to type one of the following command:

41

c performs one completion step. The completion can be stopped using a CTRL-C key combination.

a performs all possible completion steps. If completion converges then this command is going to
stop. Otherwise, the user may interrupt it using a CTRL-C key combination.

m ask for a sequence of merging rules over states of the tree automaton. A merging rule is a pair
of states separated by ->. The sequence has to be terminated by a dot ’.’ symbol. A
merging rule of the form q1 -> q2 will rename ever occurrence of the state q1 by the state
q2. The language recognized by the renamed automaton is always an over-approximation of
the language recognized by the initial one.

s displays the completed automaton at the current completion step.

b browse the completed automaton at the current completion step using Tabi, if it has been in-
stalled. During browsing, merging rules can also be defined in a more graphical an more
intuitive way (see section 2.3.3 for an example). If such rules are defined and applied under
Tabi, then merging is performed when leaving Tabi (see Tabi documentation in section 6).

d displays the term rewriting system used for completion.

i computes intersection between the completed automaton at the current completion step and
automata that were in the same specification file.

o computes intersection between the completed automaton at the current completion step and
some other tree automata stored in an other file.

p searches for a given pattern in the completed automaton (say Aj) at the j-th completion step.
A pattern p is a term built over symbols of the alphabet, variables and states of the current
automaton. The result for pattern matching over the tree automaton is a sequence of solu-
tions. Each solution consists of a state q and a set of Q-substitutions σ1, . . . , σn ∈ Σ(Q,X)
such that for all i = 1, . . . n : pσi →Aj q.

v verify the left-linearity condition. For non left-linear TRS, the final completed automaton is an
over approximation only if left-linearity condition is satisfied (see section 2.1.5 for an example
and see [7] for theoretical details about left-linearity condition).

w writes the current automaton, TRS, approximation and automaton list used for intersection to
disk in Timbuk specification file syntax. This command also writes the initial automaton in
the specification.

f forgets the previous completion step. This is useful, when completion steps are getting bigger
and bigger.

e is used to consult and add approximation equations to the gamma approximation function. See
section 3.7 for details about the syntax.

g is used to consult and add normalization rules to the gamma approximation function. See
section 3.7 for details about the syntax.

det determinizes the current completed automaton.

u undoes the last completion step.

q quit completion

42

4.4 Timbuk modes and command line options

When executing Timbuk the user can use several command line options which depend on the
major running mode of Timbuk. The two major modes for running Timbuk are dynamic and
static modes. There is also a variant of the static mode which is called forced static or fstatic for
short. The dynamic mode is the default completion mode of Timbuk. It can easily be parametrized
by approximation functions, equations and strategies. The static mode is more constrained but
permits to achieve a pre-compilation of the completion and is thus more efficient.

Some options do not depend on the Timbuk running mode:

-o followed by a file name prints all Timbuk output to that file.

-f followed by a file name reads all Timbuk commands input in that file.

----noapprox don’t care of the approximations defined in the specification file.

----approx followed by an approximation name, starts the Timbuk completion process with the
approximation denoted by the given name rather than the first of the specification.

All the other command line options depend on the used timbuk running mode.

4.4.1 Dynamic completion mode

In dynamic mode (default mode), the prioritary transitions, the normalization rules and the ap-
proximation equations can be given initially through a specification file or can be added during
completion process. Approximation strategy can also be parametrized. Here are the dynamic
mode command line options:

----dynamic used to toggle the dynamic mode on (default mode)

----strat followed by a sequence of normalization strategy operators (see below).

The ----strat option permits to give explicitly the strategy to use for normalizing the new
transition. Then, each new transition produced by the completion is normalized successively using
the normalization strategy operators given in the strategy until every transition is normalized. If
the end of the strategy operator sequence is reached and there remain some transitions to nor-
malize then the normalization process continues and the strategy sequence is reinitialized from the
beginning. The default Timbuk strategy in dynamic mode corresponds to the strategy operators
sequence prior norm rules manual norm conf auto conf. Here are the definitions of the basic
normalization strategy operators. Some of these operators always succeed (they always manage to
normalize any set of transitions) and thus should be placed at the end of the sequence.

exact for exact normalization. This normalization strategy operator always succeeds. The au-
tomata A1,A2, . . . produced by completion steps recognize only terms R-reachable from
L(A), i.e. the automaton Ai obtained after the i-th completion step is not an over-approximation
(but an under-approximation) if:

• R is linear, or

• R is right-linear and R and Ai satisfy the left-linearity condition, or

• every state of A recognizes at most one term4 and R is left-linear, or
4Note that this is trivially the case if A is defined using the ’Set’ keyword, see section 3.6.1.

43

• every state of A recognizes at most one term and Ai and R satisfy the left-linearity
condition.

Hence, for those classes, if completion converges on a fixpoint Ak then L(Ak) = R?(L(A)).
Furthermore, completion is guaranteed to converge on some known decidable classes:

• R is either a ground TRS [5, 2].

• a right-linear and monadic TRS [15], i.e. right-hand sides of the rules are either variables
or terms of the form f(x1, . . . , xn) where f ∈ F and x1, . . . , xn are variables.

• a linear and semi-monadic TRS [4], i.e. rules are linear and their right-hand sides are of
the form f(t1, . . . , tn) where f ∈ F and ∀i = 1, . . . , n, ti is either a variable or a ground
term.

• a “decreasing” TRS [11], where “decreasing” means that every right-hand side is either
a variable, or a term f(t1, . . . , tn) where f ∈ F , ar(f) = n, and ∀i = 1, . . . , n, ti is a
variable, a ground term, or a term whose variables do not occur in the left-hand side.

• constructor-based rewrite systems [14] where the alphabet F is separated into a set
of defined symbols D = {f | ∃l → r ∈ R s.t. Root(l) = f} and constructor symbols
C = F \ D. The restriction on L(A) is the following: L(A) is the set of ground
constructor instances of a linear term t, i.e. L(A) = {tσ} where t ∈ T (F ,X) is linear
and σ : X 7→ T (C). The restrictions on R are the following: for each rule l → r

1. r is linear
2. for each position p ∈ PosF (r) such that r|p = f(t1, . . . , tn) and f ∈ D we have that

for all i = 1 . . . n, ti is a variable or a ground term
3. there is no nested function symbols in r

prior for normalization with prioritary transitions. See section 4.2.1 for details.

norm rules for normalization with normalization rules. See section 4.2.2 for details.

auto automatically normalizes transitions with new states. This operator always succeeds.

auto conf same as auto but asks for confirmation first.

auto prior automatically normalizes transitions with new states and stores the new transitions
as prioritary transitions. This operator always succeeds. Note however that if prior is not
placed before auto prior in the strategy then the benefit of adding new prioritary transitions
will be lost and auto prior will normalize every transitions with new states and thus will
behave as auto.

auto prior conf same as auto prior but asks for confirmation first.

manual norm ask the user to give explicitly some normalization rules. Note that if norm rules
is not placed before manual norm in the strategy then manual norm has no effect since
normalization rules may be added but never triggered.

manual norm conf same as manual but asks for confirmation first.

manual ask the user to give explicitly some transitions to normalize the transitions. The user may
also give some (normalized) prioritary transitions.

manual conf same as manual but asks for confirmation first.

44

4.4.2 Static completion mode

In static mode (and in its variant called fstatic for forced static), only prioritary transitions and
normalization rules given in the specification file are used. In fact, the normalization strategy
in static mode is fixed and corresponds to the sequence prior norm rules. Moreover, in static
mode, prioritary transitions and normalization rules should define an approximation function that
is complete with regards to the right-hand sides of the rewrite rules. In other words, every possible
new transition produced during completion by the instanciation of the right-hand side of a rewrite
rule must be normalized using the prior transitions and the normalization rules given by the user
in the specification file. If this is not the case then Timbuk fails and returns the transition that
cannot be normalized using the user’s approximation function. Note however that when Timbuk’s
static completeness is too restrictive (your approximation is complete but Timbuk has not detected
it) it is possible to simply extend it by some additional rules (see section 2.1.6). Furthermore, in
fstatic mode, if the approximation is not complete then it is automatically expanded for normalizing
remaining transitions (not normalized using user’s rules) with a specific state labeled by #qstatic#.

Apart from the common command line options described at the beginning of this section, the
only static mode options are:

----static to activate the static compilation of matching and normalization (needs a complete
set of prior and norm rules).

----fstatic to activate the static compilation of matching and normalization. If the set of prior
and norm rules is not complete, a transition not covered by the rules is normalized using a
single new state #qstatic#.

Note that merging rules and approximation equations may be applied on every completed au-
tomaton in static mode, but approximation equations are not taken into account for approximation
pre-compilation.

5 Taml reference manual

Taml is an Ocaml toplevel equipped with Timbuk functions over terms, term rewriting systems and
tree automata.

5.1 Running Taml

To start Taml, simply type:

taml

in a command window. Depending on the way you obtained Taml, you may not be able to directly
use ’taml’ as a standalone command and you may need to type ocamlrun taml instead. Please
refer to the README file of the distribution for details on how to run the Timbuk library tools. Note
that all the directives of Ocaml toplevel can be used in this particular one as #use. For instance,
it is possible to load the tutorial file called tutorial.ml by typing the following directive in Taml
toplevel:

#use "tutorial.ml";;

IMPORTANT: Taml has to be run in the same directory as the .cmo files and the .ocamlinit file
of the Timbuk library.

45

5.2 Basic Taml functions

First, here are all the defined functions. A more precise description is given in the following. Note
that Ocaml labels are only used here for clarity of the documentation and cannot be used at Ocaml
level. For all the functions building objects (like alphabets, terms, term rewriting systems, tree
automata, etc) from a string, the input syntax of the string should respect the timbuk syntax
for any of this object which is described in section 3. The file tutorial.ml also contains several
examples of this syntax. See section 2.2 for the Taml tutorial.

val browse : Automaton.t → unit
val alphabet : string → Alphabet .t
val varset : string → Variable set .t
val term : Alphabet .t → Variable set .t → string → Term.t
val state : string → Automaton.state
val tree state : Alphabet .t → Alphabet .t → string → Term.t
val trs : Rewrite.alphabet → Rewrite.variable set → string → Rewrite.t
val automaton : Automaton.alphabet → string → Automaton.t
val finite set : Automaton.alphabet → string → Automaton.t
val inter : Automaton.t → Automaton.t → Automaton.t
val union : Automaton.t → Automaton.t → Automaton.t
val inverse : Automaton.t → Automaton.t
val subtract : Automaton.t → Automaton.t → Automaton.t
val is included : Automaton.t → Automaton.t → bool
val is language empty : Automaton.t → bool
val is finite : Automaton.t → bool
val run : t : Automaton.term → q : Automaton.state → a : Automaton.t → bool
val determinise : Automaton.t → Automaton.t
val irr : a : Automaton.alphabet → r : Automaton.transition table → Automaton.t
val clean : Automaton.t → Automaton.t
val simplify : Automaton.t → Automaton.t
val save : Automaton.t → aut name :string → file name :string → unit
val read alphabet : string → Alphabet .t
val read spec : string → Specification.spec
val read automaton : string → string → Automaton.t
val read automaton list : string → Automaton.t list
val read trs : string → string → TRS .t
val read trs list : string → TRS .t list
val help : unit → unit

Here is for each of these functions a more detailed description.

1. Alphabets
To build an alphabet from a string
val alphabet : (s : string) → Alphabet .t

To read an alphabet in a Timbuk specification file.
val read alphabet : (s : string) → Alphabet .t

46

2. Variable sets
To build a variable set from a string.
val varset : (s : string) → Variable set .t

3. Terms
To build a term on alphabet a and variable set v from a string s .
val term : (a : Alphabet .t) (v : Variable set .t) (s : string) → Term.t

4. Term rewriting systems
To build a TRS on alphabet a, variable set v and from a string s.
val trs : (a : Alphabet .t) (v : Variable set .t) (s : string) → Rewrite.t

To read a TRS of name n in a specification file f .
val read trs : (n : string) → (f : string) → Rewrite.t

To read all the TRS in specification file f .
val read trs list : (f : string) → Rewrite.t list

5. Tree automata
To build a state from string.
val state : (s : string) → Automaton.state

To build a (tree) state on alphabet a, state operators sop and from a string s . A tree state is a
state built on state operators of arity greater than 0. For instance, if p is a state operator of arity
2 and q is a state operator of arity 0, then p(q , q) is a tree state.
val tree state : (a : Alphabet .t) (sop : Alphabet .t) (s : string) → Automaton.state

To build an automaton on alphabet a from a string s .
val automaton : (a : Alphabet .t) (s : string) → Automaton.t

To build an automaton on alphabet a from a string s representing the finite of terms to be recognized
by the automaton.
val finite set : (a : Alphabet .t) (s : string) → Automaton.t

To read an automaton of name n in a specification file f
val read automaton : (n : string) → (f : string) → Automaton.t

To read all the automaton in specification file named f
val read automaton list : (f : string) → Automaton.t list

To browse automaton a (if Tabi is installed).

47

val browse : (a : Automaton.t) → unit

To build the intersection automaton between a1 and a2 . Sets of states are not explicitely built.
To obtain them explicitely use cleaning afterwards.
val inter : (a1 : Automaton.t) → (a2 : Automaton.t) → Automaton.t

To build the union automaton for a1 and a2.
val union : (a1 : Automaton.t) → (a2 : Automaton.t) → Automaton.t

The complement operation.
val inverse : Automaton.t → Automaton.t

To build an automaton recognizing L(a1) - L(a2).
val subtract : (a1 : Automaton.t) → (a2 : Automaton.t) → Automaton.t

Is L(a1) included in L(a2)?
val is included : (a1 : Automaton.t) → (a2 : Automaton.t) → bool

Is L(a) empty?
val is language empty : (a : Automaton.t) → bool

Is L(a) finite?
val is finite : (a : Automaton.t) → bool

Is t recognized into state q in a?
val run : (t : Term.t) → (q : State.t) → (a : Automaton.t) → bool

Determinisation of a tree automaton.
val determinise : Automaton.t → Automaton.t

To build a tree automaton recognising the set of terms irreducible by TRS t.
val irr : (a : Alphabet .t) → (t : Rewrite.t) → Automaton.t

Accessibility cleaning followed by utility cleaning for a tree automaton.
val clean : Automaton.t → Automaton.t

Accessibility cleaning followed by utility cleaning and renumbering.
val simplify : Automaton.t → Automaton.t

To save automaton a with name n in file named f .
val save : (a : Automaton.t) → (n : string) → (f : string) → unit

6. Specifications
To read a full Timbuk specification in file of name s
val read spec : (s : string) → Specification.t

48

5.3 Using all Timbuk library functions through Taml

The functions proposed by Taml at toplevel are only a part of all the Timbuk library functions. To
have an access to the other functions dispatched in the Timbuk modules, you can call them directly
(if the module has been opened first, using the open Ocaml keyword) or use the usual prefixed
notation. For instance, to call the left inner norm function of the Rewrite module, used for
normalizing a term with a term rewriting system using leftmost innermost strategy, one can access
this function with the function name prefixed by the module name:

Rewrite.left inner norm

For details on the modules and offered functions, have a look to section 7

6 Tabi reference manual

The aim of Tabi is to ease tree automata understanding. When tree automata are getting bigger and
bigger, Tabi helps in figuring out what is the recognized language. Tabi stands for Tree Automata
Browsing Interface: Starting from any state q of an automaton, Tabi provides an interactive and
graphical way to build some of the terms recognized by q in the automaton. Tabi can represent terms
in the usual linear way (with parenthesis and comas) way as well as trees, or even in a mixture of
both representations (See Figure 3). Recognized terms can be built interactively by state expansion
and transition selection or automatically using a randomized representative generator.

Figure 3: Tabi graphical user interface

Tabi can be used as an independent program or as a graphical interface for the Timbuk and
Taml tools. When using Tabi from Timbuk, Tabi also permits to build merging rules over terms
that are built. Tabi as been developed with Labltk (Ocaml with Tk functions) in collaboration
with a group of students in 4th year of Computer Science of Rennes University (see README file for
credits)
Note on Automaton loading: when using Tabi from Timbuk (resp. Taml), Tabi starts on the current
completed automaton (resp. the automaton parameter of the browse function). When using Tabi

49

as a standalone program, one has to open a Timbuk specification file where the first automaton is
read. When an automaton is loaded the Start symbol is displayed.

6.1 Mouse actions

Moving the mouse pointer over a term or a state highlights it in green. If it is a term, then
the state recognizing this term is shown in red. See Figure 3 for an example with term
times(O, s(s(O))) and state qnew5.

Left click over a state q unfolds q, i.e. propose configurations or terms to replace q. Clicking
on q opens a window containing a list of possible configuration leading to q as well as a
button choose random. A left click on a configuration of the list replaces q by the chosen
configuration. Clicking on choose random opens a new window containing a list of randomly
generated ground terms recognized by q. Clicking on one of these terms replaces q by the
chosen term. Note that if q recognizes an empty language or if the depth or time for random
search is not sufficient to produce random terms, an error message is produced. See Options
menu in section 6.4 for changing depth or time for random term generation.

Middle click over a term t folds it, i.e. replace it by the state recognizing t.

CTRL + Left click over a term t changes the whole graphical representation of t from linear
mode to tree mode. This operation does not affect the term embedding t.

SHIFT + Left click over a term t changes the whole graphical representation of t from tree
mode to linear mode. This operation does not affect the term embedding t.

Right click over a term t switches from linear and tree mode on the top of t. This operation does
not affect the term embedding t nor subterms of t.

ALT + Left click over a term t draws a blue rectangle over t and select it for merging. After
selecting two terms t1 and t2 for merging, it is possible to press on button Merge in order
to add a merging rule q1 → q2 where q1 and q2 recognize respectively t1 and t2. Note that
merging rules can only be used if Tabi has been launched from Timbuk.

6.2 Buttons

+ and - Buttons are used to increase/decrease the zoom factor for displaying the terms.

Restart permits to restart the automata browsing from the beginning, i.e. from the Start symbol.
This is useful when the automaton has several final states to restart browsing from a different
final state.

Merge builds a merging rule from to terms selected for merging (see ALT + Click action in
section 6.1).

Apply merge quits Tabi and apply the list of merging rules defined by the user to the current
automaton (Only if using Tabi from Timbuk).

Autozoom/Zoom Buttons switches between automatic and manual zoom. When Autozoom is
selected Tabi automatically changes the zoom factor in order to keep the whole term visible in
the window. Note that when the zoom factor is getting to small Tabi automatically switches

50

to manual zoom. On the opposite, with the manual zoom it is possible to focus on a smaller
part of the term.

Linear/Tree mode Buttons switches between Linear and Tree mode (default modes) for dis-
playing terms obtained by unfolding.

6.3 File menu

Open browse in current directory for a Timbuk specification file containing a tree automaton (See
section 3 for precise syntax). Note that only the first automaton of the specification file is
taken into account.

Print produce a file tabi.ps containing a postscript version of the term displayed in the Tabi
window.

Exit quits Tabi (without applying merging rules).

6.4 Options menu

Undo Undo last folding or unfolding.

Redo Redo last folding or unfolding.

Browsing style switches between Final states or All states browsing style. In Final states style
(default), when left-clicking on the Start symbol one is only proposed the final states of
the automaton, whereas in All states style all the states of the automaton are proposed for
browsing.

See merging rules displays the merging rules already defined.

Random max depth changes the upper bound for depth of terms built by random representa-
tives generation.

Random max time changes the upper bound on time for random representatives generation.

Random max term number changes the upper bound on the number of representatives to be
randomly generated.

Show history opens a window with an ordered list of the terms built during the previous steps.
When clicking on any term of the list, the selected term becomes the current term.

Help displays a short help on the mouse actions.

7 How to use Ocaml functions of the Timbuk library?

Since this software is a modular library, we wanted to have a separated documentation for each
module. That is why we chose to generate this documentation using ocamlweb [8]. In the following
you will find one section for each main module: tree automaton, term, term rewriting systems, etc.
To see an example showing how to call those functions from Taml, have a look to section 2.2. To
see how to import modules and call those functions from some other Ocaml code see Taml main

51

Ocaml file: taml.ml or Timbuk mail Ocaml file: main.ml in the source distribution. Note that
labels in function declarations are only used for clarity of the documentation and cannot be used
in functions calls as in the Ocaml syntax extension.

Interface for module Automaton

7. This is the interface for bottom-up tree automata. A bottom-up tree automata is usually
defined as a tuple: 〈F ,Q,Qf , ∆〉 where F is an alphabet of symbols, Q is a set of states, Qf a set
of final states and ∆ is a set of transitions (also called a transition table). Here, the tree automata
module is defined w.r.t.

• a symbol type

• an alphabet type (the type of F) whose symbols are of symbol type

• a variable type. It is used for defining variables occuring in matching on tree automata

• a configuration type i.e. left-hand side of transitions

• a state content type which can be anything assigned to states: formulas, or simply text

• a transition type which is a term rewriting system and defined the type of ∆ we use

• a state set type defining the type of Q and Qf we use. In fact, in practice its major role is
to assign state contents to states.

module TreeAutomata
(Symbol type : PRINTABLE TYPE)
(Alphabet type : ALPHABET TYPE with type symbol = Symbol type.t)
(Variable type : PRINTABLE TYPE)
(Configuration type : TERM TYPE with type symbol = Symbol type.t

and type variable = Variable type.t
and type alphabet = Alphabet type.t)

(State content : STATE CONTENT TYPE)
(Transition type : TRS TYPE with type alphabet = Alphabet type.t

and type term = Configuration type.t)
(State set type : STATE SET TYPE with type state = Configuration type.t

and type state content = State content .t
and type alphabet = Alphabet type.t
and type symbol = Symbol type.t) :

sig

exception Not a state of string
exception Not in folder
exception Multiply defined symbol of string
exception Linearity problem of string
exception Normalisation problem of string

type symbol = Symbol type.t

52

type alphabet = Alphabet type.t
type term = Configuration type.t
type rule = Transition type.rule
type substitution = Configuration type.substitution

type mini subst = (term × term)

type sol filt =
— Empty
— Bottom
— S of mini subst
— Not of sol filt
— And of sol filt × sol filt
— Or of sol filt × sol filt

type state = term
type state set = State set type.t

type transition table = Transition type.t
type tree automata

type t = tree automata
type (’a, ’b) folder

8. Constructor of tree automata. The main difference with usual definitions of tree automata
is that we here use an extended definition of states. States are terms (gasp!). States are terms
constructed on a specific alphabet which is what we call state operators. This make no difference
with usual definition of states and tree automata if you consider only state operators of arity 0
(i.e. constant state symbol) then if q, state123, q0, q1, etc... are state operators of arity 0, then
q, state123, q0, q1, etc... are states. However, if you define a state operator q of arity 1, and qa
of arity 0, then qa, q(qa), q(q(qa)), ... are states. In fact, you can even define more complicated
states, since state operators can transform any term (constructed on the alphabet and on state
operators) into a state. For example, assume that your alphabet F contains operators: f of arity
2 and b of arity 0, and your state operators contain at least q of arity 1 and qa of arity 0, then a,
q(qa), q(q(qa)), q(b), q(f(b,b)), q(f(qa, b)), q(q(f(q(qa), b))), etc... are states.

In most cases, state operators of arity greater than 0 are not needed. Nevertheless, note that
to define a simple tree automaton with state set Q = {q0, q2, q3} and final states Qf = {q2}, you
will need to define state operators q0, q2, q3 of arity 0, and to give to the make automaton function
the state operators (of alphabet type), the state set corresponding to Q and then the set of final
states representing Qf . However, it is much easier to use the parsing function of tree automata
or, even simpler, the parsing function of the specification module, please have a look to the file
tutorial .mlml for more details.

val make automaton :
main alphabet : alphabet →

state operators : alphabet →
state set →

final states : state set →
transitions : transition table →

prior transitions : transition table → t

build an automaton from a finite term list, a string label for states and an integer

53

val term set to automaton : alphabet → term list → string → int → (t × int)

9. accessors of automata

val get alphabet : t → alphabet
val get state ops : t → alphabet
val get states : t → state set
val get final states : t → state set
val get transitions : t → transition table
val get prior : t → transition table

10. Prettyprint of tree automata. The first thing to be able to do with an automaton is to display
it.

val print : t → unit

val to string : t → string

11. Now, we find the boolean operations on tree automata.
First of all, intersection of two tree automata. This function produces a tree automaton with
structured states (states that are in fact products of states) and structured state sets (symbolic
form of state set products). In order to obtain a full tree automaton with constructed state sets,
apply accessibility cleaning (defined in the following) on it.

val inter : t → t → t

union of two tree automata (by renaming and union of transition tables, state set, final state sets
etc...).

val union : t → t → t

The complement operation.

val inverse : t → t

The automaton recognizing the subtraction of langages: subtract L(a2) to L(a1)

val subtract : t → t → t

Decision of inclusion between two langages: is L(a1) included in L(a2)?

val is included : t → t → bool

Decision of the emptyness of a language recognized by a tree automaton.

val is language empty : t → bool

Are the transitions recursive?

val is recursive : transition table → bool

Is the recognised language finite?

val finite recognized language : t → bool

12. Make a run of a tree automaton: verify if a term t rewrites into state q with regards to
transitions of automaton a. This is not the usual definition of a run, but the usual one can easily
be obtained from this one.

54

val run : t : term → q : state → a : t → bool

13. The determinisation function: given a tree automaton it gives an equivalent deterministic
one.

val determinise : t → t

14. Completion of tree automaton... in a non-deterministic way i.e., the result is a non-deterministic
tree automaton. If a deterministic one is needed, it needs to be determinised afterwards.

val make complete : t → t

15. Construction of an automaton recognizing reducible terms. Starting from an alphabet a and
a TRS r built on a, this function constructs the tree automaton recognizing terms reducible by r .

val make red automaton :
a : alphabet → r : Transition type.t → t

16. Construction of an automaton recognizing irreducible terms. Starting from an alphabet a and
a TRS r built on a, this function constructs the tree automaton recognizing terms irreducible by r .
The result is a deterministic complete tree automaton, it may be cleant afterwards with simplify if
necessary.

This implements a standard algorithm that is usually not efficient at all. For a better efficiency,
use the next function called nf opt .

val nf automaton :
a : alphabet → r : transition table → t

This one is usually more efficient than the previous one in practice. However the result is also
slightly different: the produced tree automaton is not necessarily deterministic nor complete!

val nf opt :
a : alphabet → r : transition table → t

17. Cleaning of tree automata
Accessibility cleaning of tree automaton: retrieves all states that do not recognize any term.

val accessibility cleaning : t → t

Utility cleaning: retrieves all dead states. For utility cleaning on an automaton with structured state
sets (obtained for example by application of an intersection operation use accessibility cleaning
before this one.

val utility cleaning : t → t

Accessibility cleaning followed by utility cleaning

val clean : t → t

Simplification of tree automaton: a renumbering of the result of cleaning (accessibility + utility)
of the tree automaton. Useful for deciding if the langage recognized by an automaton a is empty.
If it is then is emtpy(simplify a) is true

val simplify : t → t

18. State Renumbering

55

This function rewrites state labels in a tree automaton a thanks to a term rewriting system r on
states. Be careful! for state sets including states q1, q2 for example and if you use structured
states labels like q(f(q1,q2)), if q1 and q2 are to be renamed into q3 and q4 respectively, then so is
q(f(q1,q2)) which is renamed into q(f(q3,q4))!!

val rewrite state labels :
a : t → r : transition table → t

This function transforms a rewriting rule list (over states) used for state rewriting into an equivalent
terminating one (by building some equivalence classes first)

val simplify equivalence classes : rule list → rule list

Automatic renumbering of a tree automaton. To apply this function on an automaton with struc-
tured state sets (obtained by intersection for example), use accessibility cleaning before this one.

val automatic renum : t → t

19. For saving an automaton to disk, see function save automaton in the module specification.

Low level functions

20. Emptyness of an automaton, i.e. emptyness of its transition table. For checking of the
language apply simplify function before) i.e., a is a tree automaton recognizing an empty langage
if and only if is empty(simplify a) is true.

val is empty : t → bool

21. Modification of final state set.

val modify final : t → state set → t

22. Modification of prior transitions.

val modify prior : t → transition table → t

23. Modification of state operators.

val modify state ops : t → alphabet → t

24. Modification of state set.

val modify states : t → state set → t

25. Modification of state operators.

val modify transitions : t → transition table → t

26. Construction of a state from a symbol with arity 0. Recall that a state is a term!

val make state : symbol → state

27. Construction of a state config from a state. A state config is a configuration (i.e. a lhs or a
rhs of a transition) that is a state. For example: in q1 → q2, q1 is a state configuration.

56

val make state config : state → term

28. Construction of a new transition

val new trans : symbol → state list → state → rule

29. Is a configuration a state configuration? A state config is a configuration (i.e. a lhs or a rhs
of a transition) that is a state. For example: in q1 → q2, q1 is a state configuration.

val is state config : term → bool

30. State label of a state in a state configuration.

val state label : term → state

val lhs : rule → term
val rhs : rule → term

31. Top symbol of a transition

val top symbol :
rule → symbol

32. Is a transition normalized? i.e. of the form f(q1, . . . , qn) → q′ where q1, . . . , qn are states.

val is normalized : rule → bool

33. Construction of the list of states of the left hand side of a transition.

val list state : rule → state list

34. Construction of the state set formed by the states of all the transition of the transition table.

val states of transitions :
transition table → state set

35. Normalization of epsilon transitions of the form q1→q2 with regards to a given transition
table delta .

val normalize epsilon :
q1 : state →

q2 : state →
delta : transition table → transition table

36. Normalization of a transitions table ltrans with new states whose labels are labelˆj where
j starts from i . It returns a triple with the new normalized transition table and the new state
operator alphabet as well as the integer n+1 where n is the number of the last assigned new state.
delta is simply used to normalise epsilon transitions found in ltrans

val normalize :
ltrans : transition table →

delta : transition table →
label :string → i :int → transition table × int × alphabet

37. Similar to normalize but produces a deterministic set of transition

57

val normalize deterministic :
transition table →

transition table →
string → int → transition table × int × alphabet

38. Matching of a term (ground or with variables) on a tree automaton configuration with regard
to a transition list (here given as a folder of transitions sorted by top symbol and right-hand side
(state).

val matching :
the term : term →

the config : term →
(symbol , (state , rule list) folder) folder →

substitution list

39. Puts a sol filt (matching solution) in disjunctive normal form

val dnf : sol filt → sol filt

40. checks if a list of associations is a substitution i.e., a same variable cannot be mapped to
different values. The substitution has to be given in a singleton list. The result is the empty list if
the substitution is not valid

val check subst : substitution list → substitution list

41. Simplification of matching solutions, by propagating Bottom solutions into the formula and
retrieving Bottom occuring in disjunctions and retrieving conjunctions where Bottom occurs

val simplify sol : sol filt → sol filt

42. Constructs the disjointness constraint. This is used to check that there is no non-linear lhs of
a rule (say f(x,x)) and no lhs of a transition (say f(q1,q2)) such that the language recognized by q1
and q2 are not disjoint. The non-linear lhs are given in a list of terms l , the transitions are given
as a folder f of transitions sorted by top symbol and right-hand side (state), and the result is a list
of list of states whose disjointness has to be checked.

val disjointness constraint :
l : term list →

f : (symbol , (state , rule list) folder) folder →
state list list

43. Is a term t1 rewritten into a state q (special term) by transitions contained in the folder f .

val is recognized into :
t1 : term →

q : state →
f : (symbol , (state , rule list) folder) folder → bool

44. similar to the is recognized into but in the particular case where the transition is an epsilon
transition q1→q2 , this consists in verifying that all the transitions going to q1 are already going
to q2 . Transitions are given into a transition table delta .

58

val is covered :
q1 : Configuration type.t →

q2 : Configuration type.t →
delta : transition table → bool

45. Parsing of a tree automaton with regards to an alphabet. For syntax, have a look to the
example .txt file. See also the file parse function of the module specification specification .mli .

val parse : alphabet → Genlex .token Stream.t → t

end

59

Interface for module Specification

46. This is the interface for specifications. What we call a specification is a collection of term
rewriting systems and bottom-up tree automata all defined on a common alphabet. Consequenlty,
this module is defined thanks to an alphabet type, a variable set type (used to define rewrite rules),
a term rewriting system type and an automata type. Term rewriting system and tree automata are
all assigned with a name (a string) in the specification. The simplest way to construct a specification
is to write it in a file and parse it thanks to the file parse function. For a sample specification
file, please look at the file example .txt contained is the distribution.

module Specification
(Alphabet type : ALPHABET TYPE)
(Variable set type : VARIABLE SET TYPE)
(Term type : TERM TYPE with type alphabet = Alphabet type.t)
(TRS type : TRS TYPE with type alphabet = Alphabet type.t

and type variable set = Variable set type.t)
(Automata type : AUTOMATA TYPE with type alphabet = Alphabet type.t

and type term = Term type.t)
(Gamma type : GAMMA TYPE with type variable set = TRS type.variable set

and type alphabet = TRS type.alphabet) :
sig

type alphabet = Alphabet type.t
type variable set = Variable set type.t
type trs = TRS type.t
type automaton = Automata type.t
type gamma content = Gamma type.gamma content
type spec = {alphabet : alphabet ; variables : variable set ;

trs list : (string × trs) list ;
automata list : (string × automaton) list ;
gamma list : (string × gamma content) list}

type t = spec
exception Name used twice of string
exception No TRS of that name of string
exception No automaton of that name of string
exception No approximation of that name of string
exception No name of string

47. Parsing of a specification in a file of name file name .

val file parse : file name : string → spec

48. Lexer for specifications

val lexer : char Stream.t → Genlex .token Stream.t

49. Get the alphabet of a specification s .

60

val get alphabet : s : spec → alphabet

50. Get the set of variables of a specification s .

val get variables : s : spec → variable set

51. Get the term rewriting system named name in the specification s .

val get trs : name : string → s : spec → trs

52. Get the list of named term rewriting systems of a specification s.

val get list trs : s : spec → (string × trs) list

53. Get the automaton named name in the specification s.

val get automaton : name : string → s : spec → automaton

54. Get the list of named automata of a specification s.

val get list automata : s : spec → (string × automaton) list

55. Get the approximation named name in the specification s .

val get approximation : name : string → s : spec → gamma content

56. Get the list of named approximation of a specification s.

val get list approximation : s : spec → (string × gamma content) list

57. Pretty print of a specification s .

val to string : s : spec → string

58. Writing a specification s to a file named file name.

val write to disk : s : spec → file name : string → unit

59. Saving an automaton a under the name aut name in a specification file named file name.

val save automaton : a : automaton → aut name : string → file name :string → unit
end

61

Interface for module Term

60. This is the interface for terms of T (F ,X) constructed on an alphabet F and a set of variables
X
module Term

(Symbol type : PRINTABLE TYPE)
(Alphabet type : ALPHABET TYPE with type symbol = Symbol type.t)
(Variable type : PRINTABLE TYPE)
(Variable set type : VARIABLE SET TYPE with type variable = Variable type.t) :

sig

61. A term is either a variable, a constant, a functionnal symbol with a list of subterms, or a
special term. A special term is build on a union of the alphabet and a special alphabet.

For example, let F = {f : 2, g : 1, a : 0} an alphabet and F ′ = {prod : 2, q : 0, h : 2} a special
alphabet.

Then f(g(a), g(prod(q, h(g(q), q)))) is a term where prod(q, h(g(q), q)) is a special subterm. The
Special () constructor is used in the implementation to separate the special subterms in a term.

type symbol = Symbol type.t
type variable = Variable type.t
type alphabet = Alphabet type.t
type variable set = Variable set type.t
type term = (Symbol type.t , Variable type.t) term const
type t = term

type substitution = (Variable type.t × term) list
exception Terms do not match of string × string
exception Terms do not unify of string × string
exception Badly formed term of string
exception Parse error of string
exception Undefined symbol of string
exception Bad operation on special term of string
exception Bad operation on var of string

val equal : t → t → bool

62. Depth of a term, where depth of Special terms, variables and constant is 0

val depth : t → int

63. Pretty printing of terms into strings

val to string : t → string

val top symbol : t → Symbol type.t

64. the direct subterms of a term

62

val list arguments : t → t list

65. is a term a variable?

val is variable : t → bool

66. is a term a constant?

val is constant : t → bool

67. is a term special: its top constructor is a Special constructor

val is special : t → bool

68. get the term t from Special(t)

val get special : t → t

69. mapping function f1 on every symbol of term t1 and f2 on every constant, variable or special
term

val map : f1 : (Symbol type.t → Symbol type.t) → f2 : (t → t) → t1 : t → t

70. get the list of the leaves of a term

val list leaves : t → t list

71. get the list of variables of a term

val list variables : t → Variable type.t list

72. get the list of non linear variables of a term (with no redundancy)

val list non linear variables : t → variable list

73. rename a variable: add a string to the end of the variable

val var change : variable → string → variable

74. rename variables of a term: add a string to the end of every variable name

val rename var : term → string → term

75. linearize a term: produces a linear version of a term t associated with the variable renamings
that have been operated in order to make the term linear.

val linearize : term → (term × (variable × (variable list)) list)

76. is a term ground? i.e. with no variables. Note that a special term can be ground

val is ground : t → bool

77. is a term linear? i.e. there is only one occurence of each variable in the term

val is linear : t → bool

78. get the list of all terms t such that Special (t) is a subterm of t1

63

val list special : t1 : t → t list

79. Check the consistency of a term with regards to an alphabet. i.e. checks that for every
subterm f(s1, ..., sn) of t1 , f has an arity n in the alphabet a. This function returns the term itself
if it is correct, raise a Badly formed term exception if arity of the symbol does not correspond to
its number of arguments, and raise a Undefined symbol exception if the term contains a symbol
that does not belong to the alphabet.

val check : a : Alphabet type.t → t1 : t → t

80. apply a substitution to a term (at every variable position in it)

val apply : substitution → t → t

81. returns the list of terms (s t1) (substitution s applied to t1) for every substitution s of l

val apply several : l : (substitution list) → t1 : t → t list

82. returns the list of terms (s t1) (substitution s applied to t1) for every substitution s of l and
every term t1 of lt

val apply substs on terms : l : (substitution list) → t1 : t list → t list

83. Parsing of terms w.r.t. an alphabet a and a set of variable varset

val parse :
a : Alphabet type.t →

var set : Variable set type.t → Genlex .token Stream.t → t

84. Parsing of ground terms w.r.t. an alphabet a

val parse ground :
a : Alphabet type.t →

Genlex .token Stream.t → t

85. Parsing of ground terms sets w.r.t. an alphabet a

val parse ground term set :
a : Alphabet type.t →

Genlex .token Stream.t → t list

86. Verify the coherence of a substitution: a variable must not be mapped to distinct terms.
Otherwise a Term do not match exception is raised

val coherent : substitution → substitution

87. matching of term1 on term2 , such that term2 is ground or at least with variables disjoint
from those of term1 .

val matching : term1 : t → term2 : t → substitution

88. unification of term1 on term2 . No unification on Special terms. Variables of term1 and term2
are to be disjoint

64

val unify : term1 : t → term2 : t → substitution

89. similar functions for special terms
Check the consistency of a term with regards to an alphabet a and a special alphabet spa i.e.
checks that for every subterm f(s1, ..., sn) of t1 , f has an arity n in the alphabet if f(s1, ..., sn) is
a term or in spa if f(s1, ..., sn) is below a Special constructor.This function returns the term itself
if it is correct, raise a Badly formed term exception if arity of the symbol does not correspond to
its number of arguments, and raise a Undefined symbol exception if the term contains a symbol
that does not belong to the alphabets.

val check special : a : Alphabet type.t → spa : Alphabet type.t → t1 : t → t

replacement in special terms: for every pair (t1 , t2) of l , replace every Special (t1) by Special (t2)
at every Special position in t3

val replace special : l : ((t × t) list) → t3 : t → t

the map combinator on special terms

val map special : (Symbol type.t → Symbol type.t) → (t → t) → t → t

Generalisation of substitution to special terms with any depth thanks to the combinator on terms:
Term.map special

val apply special : substitution → term → term

Parsing of a term with special subterms w.r.t. alphabet a and special alphabet spa .

val parse special :
a : Alphabet type.t →

spa : Alphabet type.t →
Variable set type.t → Genlex .token Stream.t → t

Parsing of ground special terms w.r.t. alphabet a and special alphabet spa.

val parse ground special :
a : Alphabet type.t →

spa : Alphabet type.t →
Genlex .token Stream.t → t

Applying matching on term1 and term2 , such that term2 is ground or at least with disjoint set of
variables. Special terms may contain variables

val matching special : t → t → substitution

end

65

Interface for module Rewrite

90. This is the interface for rewrite rules and rewrite systems constructed on an alphabet F , a
set of variables X and a set of terms T (F ,X)

module RewriteSystem
(Alphabet type : ALPHABET TYPE)
(Variable set type : VARIABLE SET TYPE)
(Term type : TERM TYPE with type variable set = Variable set type.t

and type alphabet = Alphabet type.t) :
sig

type alphabet = Alphabet type.t
type variable set = Variable set type.t
type term = Term type.t
type ruleSystem
type t = ruleSystem
type rule

exception Variable rhs not included in lhs of string
exception Does not rewrite on top
exception Badly formed rule of string

91. the empty trs and other constructors

val empty : t
val new rule : term → term → rule
val is empty : t → bool
val mem : rule → t → bool

92. adding a rule in a trs, and union of two trs

val add : rule → t → t
val union : t → t → t

93. if the rule is not in the trs we can catenate without testing membership

val add fast : rule → t → t

94. if trs are known to be disjoint we can catenate without testing membership for union

val union fast : t → t → t

95. first rule of a ruleSystem and remainder of the system

val first : t → rule
val remainder : t → t

nth rule of the system (in the parsing order)

66

val nth : t → int → rule

96. right-hand side and left-hand side of a rule

val rhs : rule → term
val lhs : rule → term

97. equality on rules

val rule equal : rule → rule → bool

98. is a rule left or right or left and right linear ?

val is ground : rule → bool
val is left linear : rule → bool
val is right linear : rule → bool
val is linear : rule → bool

99. list of non linear lhs of a ruleSystem

val non linear lhs : t → term list

100. intersection of two trs

val inter : t → t → t

101. moving from list to ruleSystem and conversely

val to list : t → rule list
val list to trs : rule list → t

102. prettyprint

val rule to string : rule → string
val to string : t → string

103. renaming every variable of a rule: adding a string to the end of every variable label

val rename rule var : rule → string → rule

104. renaming every variable of a rewrite system: adding a string to the end of every variable
label

val rename var : t → string → t

105. Checking one rule with regards to an alphabet: checks construction of lhs and rhs as well
as inclusion of var(rhs) in var(lhs)

val check rule : rule → alphabet → rule

106. Checking a trs with regards to an alphabet: checks construction of lhs and rhs as well as
inclusion of var(rhs) in var(lhs)

val check : t → alphabet → t

107. parsing of a rule, given an alphabet a variable set varset

67

val parse rule :
a : alphabet →

varset : variable set → Genlex .token Stream.t → rule

108. parsing of a trs given an alphabet a variable set varset

val parse :
a : alphabet →

varset : variable set → Genlex .token Stream.t → t

109. rewrite once on top position of term t1 with any rule of trs r

val rewrite top once : r : t → t1 : Term type.t → Term type.t

110. leftmost innermost normalisation of the term t1 thanks to a trs r . Of course TRS should
terminate!

val left inner norm : r : t → t1 : Term type.t → Term type.t

111. bottom up normalisation of term t1 thanks to trs r . Useful when the trs is a transition
table of an automaton

val bottom up norm : r : t → t1 : Term type.term → Term type.t

112. similar functions but for rules and trs built on special terms ...

val check special rule :
rule → alphabet → alphabet → rule

val check special :
t → alphabet → alphabet → t

val parse special rule :
alphabet →

alphabet →
variable set → Genlex .token Stream.t → rule

val parse special :
alphabet →

alphabet →
variable set → Genlex .token Stream.t → t

val parse ground special :
alphabet →

alphabet → Genlex .token Stream.t → t
val parse ground special rule :

alphabet → alphabet → Genlex .token Stream.t → rule

val left inner norm special :
t → Term type.t → Term type.t

val left inner norm special system :
t → t → t

end

68

Interface for module Alphabet

113. This is the interface for alphabets which are sets of symbols associated with their arity i.e.
their number of arguments

module Alphabet :
functor (Symbol type : PRINTABLE TYPE) →

sig
type symbol = Symbol type.t
type t

exception Symbol not in alphabet of string
exception Multiply defined symbol of string

114. One alphabet constructor

val new alphabet : t

115. Parsing of alphabets (another constructor)

val parse : Genlex .token Stream.t → t

116. Testing the occurrence of a symbol in an alphabet

val occur : symbol → t → bool

117. Adding a symbol with its arity in an alphabet

val add symbol : symbol → int → t → t

118. Getting the arity of a symbol in an alphabet. This function raises the exception Symbol not in alphabet (
where s is the string associated with the symbol if it is not in the alphabet

val get arity : symbol → t → int

val to list : t → (symbol × int) list

val to string list : t → string list

119. Testing disjointness of two alphabets

val disjoint : t → t → bool

120. Construct the union of two disjoint alphabets

val union fast : t → t → t

121. Construct the union of two alphabets, possibly non-disjoint

val union : t → t → t

122. Pretty print

val to string : t → string

end

69

Interface for module State set

123. This is the interface for state sets. See the automaton module for a detailed description of
the representation of states. State sets are sets of states associated with a state content which can
be of various form: formulas, text, automaton (why not?)

module State set
(Symbol type : PRINTABLE TYPE)
(Alphabet type : ALPHABET TYPE with type symbol = Symbol type.t)
(State type : TERM TYPE with type symbol = Symbol type.t

and type alphabet = Alphabet type.t)
(State content : STATE CONTENT TYPE) :

sig
type alphabet = Alphabet type.t
type symbol = Symbol type.t
type state content = State content .t
type state = State type.t
type t

exception State not in state set of string
exception Not a state of string
exception Structured state sets of string

124. Is a state set structured?

val is structured : t → bool

125. The empty state set

val empty : t

126. Add a state with no state content to a state set

val add : state → t → t

127. Add a state with its content

val add verb : state → state content → t → t

128. Transform a list of state into a state set

val list to set : state list → t

129. Extract the list of states from a state set

val to list : t → state list

130. Add all states of a list to a state set

70

val add all : state list → t → t

131. Adds a list of states to a set s1 , using their description coming from another set s2

val add all verb : state list → s1 : t → s2 : t → t

132. Is a state set empty? and is a state member of a state set?

val is empty : t → bool
val mem : state → t → bool

133. The first element of a state set and the remainder

val first : t → state
val remainder : t → t

134. pretty print

val to string : t → string

135. pretty print in verbose mode, where the content is also printed in front of its corresponding
state

val to string verb : t → string

136. get the state content associated to a state in a state set

val state description : state → t → state content

137. The default binary symbol used for representing product of states

val default prod symbol : symbol

138. construction of a product state from two states

val state product : state → state → state

139. construction of the cartesian product of two state sets (in a symbolic way i.e. the cartesian
product is not computed

val symbolic product : t → t → t

140. boolean operations on state sets

val inter : t → t → t
val union : t → t → t
val minus : t → t → t
val union disjoint : t → t → t

141. are all states from the list member of the state set

val all mem : state list → t → bool

142. produce and add to a state operator alphabet s1 all symbols labeled by strˆ"k" where k
takes the values from i to j

71

val produce :
i :int → j :int → str :string → s1 : Alphabet type.t →

Alphabet type.t

143. Parsing of symbols of state set

val parse ops : Genlex .token Stream.t → Alphabet type.t

144. Parsing of a state set

val parse :
alphabet →

alphabet → Genlex .token Stream.t → t

145. Parsing of a state set with associated state contents

val parse verb :
alphabet →

alphabet → Genlex .token Stream.t → t
end

72

Interface for module Variable set

146. This is the interface for variable sets

module Variable set :
functor (Variable type : PRINTABLE TYPE) →

sig
type variable = Variable type.t
type t
val empty : t
val is empty : t → bool
val mem : variable → t → bool
val to string : t → string
val to string list : t → string list
val parse : Genlex .token Stream.t → t

end

73

74

References

[1] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press, 1998.

[2] Walter S. Brainerd. Tree generating regular systems. Information and Control, 14:217–231,
1969.

[3] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison, and M. Tommasi.
Tree automata techniques and applications. http://www.grappa.univ-lille3.fr/tata/,
2002.

[4] J.L. Coquidé, M. Dauchet, R. Gilleron, and S. Vágvölgyi. Bottom-up tree pushdown automata
and rewrite systems. In R. V. Book, editor, Proceedings 4th Conference on Rewriting Tech-
niques and Applications, Como (Italy), volume 488 of Lecture Notes in Computer Science,
pages 287–298. Springer-Verlag, 1991.

[5] M. Dauchet and S. Tison. The theory of ground rewrite systems is decidable. In Proceedings
5th IEEE Symposium on Logic in Computer Science, Philadelphia (Pa., USA), pages 242–248,
June 1990.

[6] D.Dolev and A. Yao. On the security of public key protocols. In Proc. IEEE Transactions on
Information Theory, pages 198–208, 1983.

[7] G. Feuillade, T. Genet, and V. Viet Triem Tong. Reachability Analysis over Term Rewrit-
ing Systems. Technical Report RR-4970, Institut National de Recherche en Informatique et
Automatique, 2003. http://www.irisa.fr/lande/genet/timbuk/#papers.

[8] J.-C. Filiâtre and C. Marché. ocamlweb: a literate programming tool for Objec-
tive Caml. Institut National de Recherche en Informatique et Automatique, 2000.
http://www.lri.fr/~filliatr/ocamlweb/.

[9] T. Genet. Decidable approximations of sets of descendants and sets of normal forms. In Pro-
ceedings 9th Conference on Rewriting Techniques and Applications, Tsukuba (Japan), volume
1379 of Lecture Notes in Computer Science, pages 151–165. Springer-Verlag, 1998.

[10] T. Genet and F. Klay. Rewriting for Cryptographic Protocol Verification. In Proceedings 17th
International Conference on Automated Deduction, Pittsburgh (Pen., USA), volume 1831 of
Lecture Notes in Artificial Intelligence. Springer-Verlag, 2000.

[11] F. Jacquemard. Decidable approximations of term rewriting systems. In H. Ganzinger, editor,
Proceedings 7th Conference on Rewriting Techniques and Applications, New Brunswick (New
Jersey, USA), pages 362–376. Springer-Verlag, 1996.

[12] X. Leroy, D. Doligez, J. Garrigue, D. Rémy, and J. Vouillon. The Objective Caml system release
3.00 – Documentation and user’s manual. Institut National de Recherche en Informatique et
Automatique, 2000. http://caml.inria.fr/ocaml/htmlman/.

[13] G. Lowe. Breaking and fixing the Needham-Schroeder public-key protocol using CSP and
FDR. In Proceedings of the 2nd International Workshop on Tools and Algorithms for the
Construction and Analysis of Systems, Passau (Germany), volume 1055 of Lecture Notes in
Computer Science, pages 147–166. Springer-Verlag, 1996.

75

[14] P. Réty. Regular Sets of Descendants for Constructor-based Rewrite Systems. In Proceedings
of the 6th International Conference on Logic Programming and Automated Reasoning, Tbilisi
(Georgia), volume 1705 of Lecture Notes in Artificial Intelligence. Springer-Verlag, 1999.

[15] K. Salomaa. Deterministic Tree Pushdown Automata and Monadic Tree Rewriting Systems.
Journal of Computer and System Sciences, 37:367–394, 1988.

76

Index

accessibility cleaning , 17
add , 92, 126
add all , 130
add all verb, 131
add fast , 93
add symbol , 117
add verb, 127
all mem , 141
alphabet (field), 46
alphabet (type), 7, 46, 61, 90, 123, 7–9, 15,

16, 23, 36, 37, 45, 46, 49, 90, 105–108,
112, 123, 144, 145

Alphabet (module), 113
And , 7
apply , 80
apply several , 81
apply special , 89
apply substs on terms , 82
automata list (field), 46
automatic renum , 18
automaton (type), 46, 46, 53, 54, 59
Automaton (module), 7
aut name (label), 59
Badly formed rule (exn), 90
Badly formed term (exn), 61
Bad operation on special term (exn), 61
Bad operation on var (exn), 61
bi folder (label), 45
bi folder add , 45
bi folder add trans list , 45
bi folder flatten , 45
bi folder mem, 45
Bottom , 7
bottom up norm , 111
check , 79, 106
check rule, 105
check special , 89, 112
check special rule, 112
check subst , 40
clean , 17
coherent , 86
configs from symbol to state , 45
criteria (label), 45
criteria1 (label), 45

criteria2 (label), 45
default prod symbol , 137
delta (label), 35, 36, 44
depth , 62
determinise , 13
disjoint , 119
disjointness constraint , 42
dnf , 39
Does not rewrite on top (exn), 90
empty , 91, 125, 146
Empty , 7
equal , 61
f1 (label), 69
f2 (label), 69
file name (label), 47, 58, 59
file parse , 47
final states (label), 8
finite recognized language, 11
first , 95, 133
folder (label), 45
folder (type), 7, 38, 42, 43, 45
folder add , 45
folder assoc, 45
folder cartesian product , 45
folder flatten , 45
folder hd , 45
folder replace , 45
folder tail , 45
gamma content (type), 46, 46, 55, 56
gamma list (field), 46
get alphabet , 9, 49
get approximation , 55
get arity , 118
get automaton , 53
get final states, 9
get list approximation , 56
get list automata , 54
get list trs , 52
get prior , 9
get special , 68
get states , 9
get state ops , 9
get transitions , 9
get trs , 51

77

get variables , 50
inter , 11, 100, 140
inverse, 11
is constant , 66
is covered , 44
is empty , 20, 91, 132, 146
is empty folder , 45
is ground , 76, 98
is included , 11
is language empty , 11
is left linear , 98
is linear , 77, 98
is normalized , 32
is recognized into, 43
is recursive, 11
is right linear , 98
is special , 67
is state config , 29
is structured , 124
is variable , 65
label (label), 36
left inner norm , 110
left inner norm special , 112
left inner norm special system, 112
lexer , 48
lhs , 30, 96
Linearity problem (exn), 7
linearize , 75
list arguments , 64
list leaves , 70
list non linear variables , 72
list special , 78
list state , 33
list to set , 128
list to trs , 101
list variables , 71
ltrans (label), 36
main alphabet (label), 8
make automaton , 8
make complete , 14
make fast union , 45
make red automaton , 15
make state, 26
make state config , 27
map, 69
map special , 89
matching , 38, 87

matching special , 89
mem , 91, 132, 146
mini subst (type), 7, 7
minus , 140
modify final , 21
modify prior , 22
modify states , 24
modify state ops , 23
modify transitions , 25
Multiply defined symbol (exn), 7, 113
name (label), 51, 53, 55
Name used twice (exn), 46
new alphabet , 114
new rule, 91
new trans , 28
nf automaton , 16
nf opt , 16
non linear lhs , 99
Normalisation problem (exn), 7
normalize , 36
normalize deterministic, 37
normalize epsilon , 35
Not , 7
Not a state (exn), 7, 123
Not in folder (exn), 7
No approximation of that name (exn), 46
No automaton of that name (exn), 46
No name (exn), 46
No TRS of that name (exn), 46
nth, 95
occur , 116
Or , 7
parse , 45, 83, 108, 115, 144, 146
Parse error (exn), 61
parse ground , 84
parse ground special , 89, 112
parse ground special rule, 112
parse ground term set , 85
parse ops , 143
parse rule, 107
parse special , 89, 112
parse special rule, 112
parse verb, 145
print , 10
prior transitions (label), 8
produce , 142
q1 (label), 35, 44

78

q2 (label), 35, 44
remainder , 95, 133
rename rule var , 103
rename var , 74, 104
replace special , 89
Rewrite (module), 90
RewriteSystem (module), 90
rewrite state labels , 18
rewrite top once, 109
rhs , 30, 96
rule (type), 7, 90, 7, 18, 28, 30–33, 38, 42,

43, 45, 91–93, 95–98, 101–103, 105,
107, 112

ruleSystem (type), 90, 90
rule equal , 97
rule to string , 102
run, 12
s1 (label), 131, 142
s2 (label), 131
save automaton , 59
simplify , 17
simplify equivalence classes , 18
simplify sol , 41
sol filt (type), 7, 7, 39, 41
spa (label), 89
spec (type), 46, 46, 47, 49–58
Specification (module), 46
state (type), 7, 123, 7, 12, 26–28, 30, 33, 35,

38, 42, 43, 45, 126–133, 136, 138, 141
states of transitions , 34
state content (type), 123, 7, 127, 136
state description , 136
state label , 30
State not in state set (exn), 123
state operators (label), 8
state product , 138
state set (type), 7, 8, 9, 21, 24, 34
State set (module), 123
str (label), 142
Structured state sets (exn), 123
substitution (type), 7, 61, 7, 38, 40, 80–82,

86–89
subtract , 11
symb (label), 45
symbol (type), 7, 61, 113, 123, 7, 26, 28,

31, 38, 42, 43, 45, 60, 116–118, 123,
137

symbolic product , 139
Symbol not in alphabet (exn), 113
t1 (label), 43, 69, 78, 79, 81, 82, 89, 109–

111
t3 (label), 89
term (type), 7, 61, 90, 7, 8, 12, 27, 29, 30,

38, 42, 43, 45, 46, 61, 74, 75, 89, 91,
96, 99, 111

Term (module), 60
term1 (label), 87, 88
term2 (label), 87, 88
Terms do not match (exn), 61
Terms do not unify (exn), 61
term set to automaton , 8
the config (label), 38
the term (label), 38
top symbol , 31, 63
to list , 101, 118, 129
to string , 10, 57, 63, 102, 122, 134, 146
to string list , 118, 146
to string verb, 135
trans (label), 45
transitions (label), 8
transitions by state , 45
transitions by state by symbol , 45
transitions by symbol , 45
transition table (type), 7, 8, 9, 11, 16, 18,

22, 25, 34–37, 44
TreeAutomata (module), 7
tree automata (type), 7, 7
trs (type), 46, 46, 51, 52
trs list (field), 46
Undefined symbol (exn), 61
unify , 88
union , 11, 92, 121, 140
union disjoint , 140
union fast , 94, 120
utility cleaning , 17
variable (type), 61, 146, 7, 60, 72, 73, 75,

146
variables (field), 46
Variable rhs not included in lhs (exn), 90
variable set (type), 46, 61, 90, 46, 50, 90,

107, 108, 112
Variable set (module), 146
varset (label), 107, 108
var change, 73

79

var set (label), 83
write to disk , 58

80

	Timbuk library overview
	What is Timbuk?
	Availability, License and Installation
	Note on the implementation
	Bug report and information
	Changes from version 1.1 to version 2.0

	Tutorial
	Timbuk
	Exact case
	Interactive approximations and prioritary transitions
	Normalization rules
	Bigger example: cryptographic protocol
	Verifying left-linearity condition
	Doing more and going faster
	More tricks

	Taml
	Tabi
	Basic
	Display modes
	Using Tabi to approximate in Timbuk

	Specification language reference manual
	Comments
	Symbols
	Alphabets
	Variable sets
	Term Rewriting Systems
	Tree Automata
	Implicit definitions
	Explicit definitions

	Approximations

	Timbuk reference manual
	Running Timbuk
	Timbuk normalization and approximation tools
	Prioritary transitions
	Normalization rules
	Merging rules
	Approximation equations

	Timbuk commands
	Timbuk modes and command line options
	Dynamic completion mode
	Static completion mode

	Taml reference manual
	Running Taml
	Basic Taml functions
	Using all Timbuk library functions through Taml

	Tabi reference manual
	Mouse actions
	Buttons
	File menu
	Options menu

	How to use Ocaml functions of the Timbuk library?

