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1 Timbuk library overview

1.1 What is Timbuk?

Timbuk is a collection of tools for achieving proofs of reachability over Term Rewriting
Systems (TRS for short) and for manipulating Tree Automata. The tree automata we use
here are bottom-up non-deterministic finite tree automata (NFTA for short).

The Timbuk library provides three standalone tools and a bunch of Objective Caml [12]
functions for basic manipulation on Tree Automata, alphabets, terms, Term Rewriting Sys-
tems, etc. The three tools are:

e Timbuk: a tree automata completion engine for reachability analysis over Term Rewrit-
ing Systems

e Taml: an Ocaml toplevel with basic functions on NFTA:

— boolean operations: intersection, union, inversion, etc...
— emptiness decision

— cleaning, renaming

— determinisation

— matching over Tree Automata

— parsing, pretty printing

— normalization of transitions

— and some more...
e Tabi: a Tree Automata Browsing Interface for visual automata inspection

See [I] for a survey on Term Rewriting Systems and [3] for a survey on tree automata.
For reachability analysis and tree automata completion details, look at [7].

1.2 Availability, License and Installation

Timbuk is freely available, under the terms of the GNU LIBRARY GENERAL PUBLIC
LICENSE, here:

http://www.irisa.fr/lande/genet/timbuk/

Now, Timbuk is available for download in Ocaml source and windows binary files. To install
and run Timbuk, please refer to the README file of the distribution. For documentation on
the Timbuk, Taml and Tabi tools, see tutorial in section 2] and respective reference manuals
in sections M, [l and [6l For documentation on the interface of Ocaml NFTA functions, see
section



1.3 Note on the implementation

Most of the functions of the library are implemented straightforwardly without objects and
in a functional style. However, we tried to develop this library in a modular way such that
optimizations could be added afterward. Thus optimizations are welcome and can even be
proposed to us for implementation. Tabi as been developed with Labltk (Ocaml with Tk
functions) in collaboration with a group of students in 4th year of Computer Science of
Rennes University (see README file for credits).

1.4 Bug report and information

Please report comments and bugs to Thomas.Genet@irisa.fr.

See http://www.irisa.fr/lande/genet/timbuk/ for information about Timbuk and re-
lated papers.

1.5 Changes from version 1.1 to version 2.0
Between Timbuk 1.1 and Timbuk 2.0, the following changes have been done:
e Added 'Taml’: a standalone Ocaml toplevel with preloaded Timbuk library functions

over tree automata, terms, term rewriting systems, etc. This replaces the old " CAL-

CULATOR MODE” Timbuk ’.mlml’ files.

Added 'Tabi’: the Tree Automata Browsing Interface for automata inspection. Tabi is
a standalone application but can also be called from Timbuk and Taml.

Made a more robust Makefile

Made a poor man’s windows Makefile

Added ----dynamic, ----static, -—---fstatic, -f, -0, -———-strat options to Tim-
buk, with the following usage:

Options: --dynamic for usual completion algorithm (default)

--static to activate the static compilation of matching and
normalisation (needs a complete set of prior and
norm rules)

--fstatic to activate the static compilation of matching and
normalisation. If the set of prior and norm rules is
not complete, a transition not covered by the rules is
normalised using a single new state #qgstatic#

-f file to read Timbuk commands from a file

-o file output Timbuk execution trace in a file

--strat followed by keywords:

exact (exact normalisation with prioritary rules)
prior (normalisation with prioritary rules
norm_rules (normalisation with approximation rules)



auto (automatic normalisation with new states)
auto_conf (similar to ’auto’ but asks for confirmation first)
auto_prior (automatic normalisation with new states where

new transitions are stored as prioritary rules)
auto_prior_conf (similar to ’auto_prior’ but asks for confirmation first)

manual_norm (manual addition of normalisation rules)

manual_norm_conf (similar to ’manual_norm’ but asks for confirmation first)
manual (manual normalisation)

manual_conf (similar to ’manual’ but asks for confirmation first)

Added the ability to define approximation equations (in specifications and at run time)

Added the ’exact’ strategy which is always terminating and exact on some specific
syntactic classes (see documentation)

Changed the (w) command so that it writes to disk the TRS, the current completed
automaton, the initial automaton, the current approximation and the list of automaton
used for intersection in a same file

Added the (p) Timbuk command for searching a pattern containing symbols, variables
and states, in the completed automaton.

Added the (o) Timbuk command for computing intersection between the completed
automaton and some external automaton read in a file.

Added the (m) Timbuk command for merging some states in the completed automaton.

Added the (b) Timbuk command for browsing the current completed automaton with
Tabi. Tabi also gives the ability to construct some merging rules graphically.

Added the (f) Timbuk command to forget some completion steps.
Added the (d) Timbuk command for displaying the current TRS used for completion.

Added the (e) Timbuk command for consulting/adding the current approximation
equations.

Added the (g) Timbuk command for consulting/adding normalization rules interac-
tively

Added the (det) Timbuk command for determinizing the current completed automaton.
Added the completion step number to Timbuk.

Extended the norm_rules syntax to use normalization rules where it is possible to
achieve matching on the state labels. For instance it is now possible to define such a
normalization rule:

[encr (pubkey(q(x)), m) -> gstore] -> [m -> q(secret(x))]

in dynamic mode only, where q is here a state operator of arity 1 (defined using States
q:1 syntax).



e Added the 'Tmport’ keyword in the specification language to import tree automata
state operators in the approximation.

e Added the ’Set” keyword in the specification language to define automata through
their finite language, i.e. finite set of terms which are compiled into a deterministic
tree automaton.

e Optimised standard completion mode (dynamic) in Timbuk.

e Discarded some bugs.

2 Tutorial

In this tutorial, we assume that the reader is familiar with term rewriting systems [1], tree
automata [3] as well as the notations and definitions of [7]. However, in the first part of this
tutorial, basic notions on term rewriting systems should be enough.

The Timbuk library was initially designed to achieve reachability over Term Rewriting
Systems, i.e. given a TRS R and two terms s and ¢ we try to prove or disprove that s —¢* t.
In Timbuk, we consider a more general problem which is reachability over sets of terms
rather than on couple of terms, i.e. are terms of a set F' R-reachable from terms of an initial
set . In that case, we can define the set of R-descendants of a set of terms E denoted
by R*(E) = {t | s € E and s —g* t}. Then given a second set of terms F', it is possible

to prove for instance that all terms R-reachable from E are in F' (R*(E) C F) or that
none of the terms of F' can be R-reached from E (R*(E) N F = (). This last property
has some applications in verification [10 [7] where TRS are used to model programs, F all
their possible initial configurations and F' a set of dangerous configurations not to be reached
when executing the program from the initial configurations.

When the sets E and F' are infinite sets of terms it is necessary use a specific representa-
tion in order to model them finitely. This is essentially the role of the tree automata. Then
computing exactly or approximately R*(E) for an infinite set of terms represented by a tree
automaton can be done using a tree automaton completion algorithm. This algorithm is
precisely the core of the Timbuk tool we now present. The aim of this tool is to produce a
tree automaton recognizing R*(E) exactly when it is possible and approximately otherwise,
and then to check if R*(E) N F = () for verification purposes.

2.1 Timbuk

The Timbuk tool performs tree automata completion with regards to a term rewriting system
to compute exactly or approximately R*(E). Tree automata and term rewriting systems are
stored in a Timbuk specification file (see section Bl for details about the syntax). Let us
begin by a simple example where there is no need to cope with tree automata syntax. Start
Timbuk on the basic.txt file containing a first example, i.e. simply type:

timbuk basic.txt



in a command window. Depending on the way you obtained Timbuk, you may not be
able to directly use 'timbuk’ as a standalone command and you may need to type ocamlrun
timbuk basic.txt instead. Please refer to the READVME file of the distribution for details on
how to run the Timbuk library tools.

If launching Timbuk succeeds, then Timbuk reads the following basic.txt specification

file:

(* This is a specification file to be used with the Timbuk tutorial *)
Ops f:1 g:1 a:0
Vars x y z

TRS R
£f(x) -> g(£(x)

Set init
f(a)

Set checkl
f(g(£(a)))
g(f(g(a)))

Set check?2
g(g(g(glglglglg(£(a))))NN)

and starts completion on the TRS R and the set of terms (here a set containing a single
term) denoted by init. When given a finite set of terms using the Set constructor, Timbuk
transforms it into a tree automaton recognizing exactly this set, i.e. the set {f(a)} in
our case. The other sets (and thus other tree automata) associated with names checkl
and check2 will be used later for verification purpose. When launching Timbuk on this
specification, you should obtain the following output:

Completion step: O

Do you want to:

(c)omplete one step (use Ctrl-C to interrupt if necessary)
complete (a)ll steps (use Ctrl-C to interrupt if necessary)
(m)erge some states

(s)ee current automaton

(b)rowse current automaton with Tabi

(d)isplay the term rewriting system

(i)ntersection with verif automata

intersection with (o)ther verif automata on disk

search for a (p)attern in the automaton

(v)erify linearity condition on current automaton

(w)rite current automaton, TRS and approximation to disk
(f)orget old completion steps

(e)quation approximation in gamma

(g)amma normalisation rules

(det)erminise current automaton

(uw)ndo last step



(@Q)uit completion

(c/a/m/s/b/d/i/o/p/v/w/f/e/g/det/u/q)?

meaning that the current completion step number is 0 and that Timbuk expect you to give one
command. For instance, type s to display the current tree automaton being completed. You should
obtain the following output:

States qterm0:0 qterml:0
Final States qtermO

Transitions
a -> qterml
f(qterml) -> gtermO

which is the tree automaton recognizing the set of terms {f(a)}. Now it is possible to search for
reachable terms from {f(a)} by doing some completion steps. Type c to achieve one completion
step. Timbuk finds a new reachable term which corresponds to a new tree automata transition to
add to the current tree automaton:

Adding transition:

g(f(gqterml)) -> gtermO

Adding this transition to the tree automaton will permit to recognize the term g(f(a)) which is
reachable from f(a) when applying rule f(z) — ¢g(f(z)). However the transition g(f (qterm1)) ->
gtermO has to be normalized first, i.e. be transformed into an equivalent set of normalized transi-
tions. Normalized transitions are of the form f(q1,...,q,) — g where ¢i,...,q, are states. In our
case, the subterm f (qterml) is not a state. Timbuk asks if you want to give specific normalization
rules by hand to normalize this transition. Answer no n and use automatic normalization with new
states instead, by answering y to the second question. This causes Timbuk to create a new state
gnew0 to normalize automatically the transition into a set of two normalized transitions equivalen
to g(f(qterm1)) -> qtermO:

Adding transition:
g(gnew0) -> qtermO

. already normalised!

Adding transition:
f(qterml) -> gnewO

. already normalised!

!Note that with these two new transitions it is possible to rewrite term g(f (qterm1)) into g(qnew0) and
then rewrite g(gnew0) into qterm0. Hence adding those two transitions permits to rewrite g(f(qterm1))
into qterm0 which corresponds to the transition we initially wanted to add.



This ends the first completion step. Using the same normalization methodology (i.e. always
normalize with new states) it is possible to complete step 2, step 3 and so on, but completion
does not terminate with this strategy. This is not really surprising since rule f(z) — g(f(x)) is
not terminating on term f(a) and we are incrementally adding an infinite set of descendants of
f(a). However, since this example belongs to a specific decidable clasd, we know that R*({f(a)})
can be exactly computed using a tree automaton (it is regular). In the next section, we achieve
the completion automatically on the same example using the exact strategy dedicated to the
specifications of the decidable class.

2.1.1 Exact case

First, quit Timbuk if it is still running by typing q and launch it again with the exact strategy by
typing
timbuk ----strat exact basic.txt

Then either type repeatedly c or type once a for achieving completion until Timbuk succeeds
at step 3:

Automaton is complete!!

You can see the final completed automaton by typing s, and write this result into a file by typing w.
Then it is possible to check if terms of the sets checkl and check2 are R-reachable from f (a). This
can be done by computing an intersection between the completed automaton recognizing the set of
all R-reachable terms from f(a) (R*(init) = R*({f(a)})) with checkl and check2. Intersections
with finite sets or other automata contained in the same specification file can be done by typing i,
this results in:

Intersection with checkl gives (the empty automaton):

States

Final States

Transitions

for checkl, meaning that terms of checkl are not reachable and for check?2 this results in:
Intersection with check2 gives (not empty):

States 99:0 q8:0 q7:0 g6:0 g5:0 g4:0 g3:0 g2:0 q1:0 g0:0

Final States q9

Transitions
a -> qo0

2See exact strategy in section ATl for details on the decidable classes.
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£(q0) -> q1

g(ql) -> q2
g(q2) -> g3
g(q3) -> g4
g(q4) -> g5
g(gb) -> g6
g(q6) -> q7
g(q7) -> g8
g(g8) -> q9

meaning that the term of check? is reachable from f(a) by rewriting with R. Now, quit Timbuk
and try a new sample file example.txt

timbuk ----strat exact example.txt

where R describes the classical append function on lists (the app symbol in the specification file)
and AO recognizes an infinite set of terms of the form app(t1, t2) where t1 is any flat list of a and
t2 is any flat list of b. Automaton Probleml recognizes only the two terms given in the definition,
i.e. terms cons(b, cons(a, nil)) and cons(b, cons(b, cons(a, cons(a, nil)))). Finally
the automaton Problem?2 recognizes the language of lists where there is at least one b followed by
an a. This example is also in one of the decidable classes and can be automatically completed using
a (or c) after 3 completion steps. Like in the previous example, we can verify that the intersection
between the completed automaton and Probleml is empty meaning that the two recognized terms
are not R-reachable from terms recognized by A0. However, the language corresponding to Problem1
is finite and is a particular case. Thus, to really prove in the general case that the append function
applied to any list of a and any list of b cannot result in any list where there is at least one b before
an a it is necessary to compute the intersection between the completed automaton and Problem2,
which is hopefully empty and thus guarantees the property.

Conjointly to intersections with additional tree automata, Timbuk provide another tool for
proving or disproving reachability: pattern matching over the completed tree automaton. To do
pattern matching, type p. Timbuk first recalls the symbols on which the pattern can be built: the
alphabet, the set of states operators and the set of variables. On our example this results in the
following output:

Alphabet=
cons:2 a:0 b:0 nil:0 app:2 rev:1

States=
gqnew0:0 ga:0 gb:0 gla:0 qlb:0 qf:0

Variables=
Xy z

Then Timbuk asks for a given pattern. For instance by typing nil for the pattern to be searched,
we obtain:

Type a term and hit Return: nil

11



Solutions:
Occurence in state qla!
solution 1: Empty substitution

Occurence in state qlb!
solution 1: Empty substitution

Occurence in state qf!
solution 1: Empty substitution

Occurence in state gnewO!
solution 1: Empty substitution

which means that the term nil is recognized by four different states in the completed automaton,
namely gla, qlb, gf and gnew0. Note that pattern matching is achieved on every terms recognized
by the automaton as well as on all their subterms, this is why we here have several occurrences of
this pattern. Now let us look for the following pattern:

cons(x, qla)

which produces the following list of solutions:

Solutions:
Occurence in state gla!
solution 1: x <- qa

where this solution means that cons(qa, gla) is uniquely recognized by qla, and there is no
other state q such that cons(q, gla) is recognized by the automaton. Now, if we get back to our
verification problem, we can check that with append on lists of a and lists of b, no b can occur
before an a by looking for this simple pattern: cons(b, cons(a, y)) which results in the following
output:

Pattern not found!

2.1.2 Interactive approximations and prioritary transitions

When the specification used is outside of decidable (regular) classes, completion with the exact
strategy generally does not terminate. It is however possible to build an under-approximation
of the reachable terms by computing n steps of completion for a given natural n. On the other
hand, Timbuk permits to build an over-approximations of the set of reachable terms. In the
next specification example example2.txt, we compute an approximation of the reverse function
(symbol rev defined by TRS R) on the regular language of terms recognized by automaton AO
i.e., rev applied to any flat lists of a and b where all a’s are before b’s in the list. The second
automaton called Probleml recognizes a regular language of terms that should be unreachable from
A0 by rewriting with R: flat lists where there is at least one ’a’ before a "»’ in the list. Here is the
complete specification file example?2.txt:
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(* This is a specification file to be used with the Timbuk tutorial *)
Ops cons:2 a:0 b:0 nil:0 app:2 rev:1
Vars x y z

TRS R
app(nil, x) -> x
app(cons(x, y), z) -> cons(x, app(y, z))
rev(nil) -> nil
rev(cons(x, y)) -> app(rev(y), cons(x, nil))

Automaton AO

States qrev glab qlb ga gb

Description qrev: "rev applied to lists where a are before b"
glab: "lists where a are before b (possibly empty)"
qlb : "lists of b (poss. empty)"

Final States qrev

Transitions
rev(qlab) -> grev nil -> qlab cons(qa, qlab) -> qlab
cons(qa, qlb) -> glab nil -> qlb cons(gb, glb) -> qlb
a -> qa b -> gb

Automaton Probleml
States qa gb gany qlb gqlab gnil
Description
gany: "Any flat list made of a and b"
qlb : "Any flat list made of a and b, beginning with a b"
qlab: "Any flat list with at least an a followed by a b"
Final States glab
Transitions
a -> qa
b -> gb
cons(qa, qany) -> gany
cons(gb, qany) -> qany
nil -> gany
cons(gb, qany) -> qlb
cons(qa, qlb) -> qglab
cons(gb, glab) -> glab
cons(qa, qlab) -> glab

Let us achieve an interactive manual completion on this example (we will see how to automate this
process in the following): type the command timbuk ----strat prior manual example2.txt
to use Timbuk with a normalization strategy using prioritary transitions first and then manual
introduction of prioritary transition at a second time. The first completion step gives some new
transitions and the following output:

Adding transition:
app(rev(qlb) ,cons(qa,nil)) -> grev
Use key word ’States’ followed by the names of the new states ended by a dot ’.’ (optional) then give a sequence

of transitions ended by a dot ’.’

Add a star ’*’ before transitions you want to add to the prior set. The prior transitions should be normalized!!

We are proposed a transition which has to be normalized. First, we have to find states to recognize
subterms rev(qlb) and nil. Since glb recognizes lists of b, rev(qlb) represents the reverse
function applied to lists of b and this should be a list of b. Thus we can recognize rev(qlb) by
glb. We define a new state gnil to normalize nil, and give the prioritary transitions to apply
using the following syntax:
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States qnil.
* rev(qlb) -> qlb

* nil -> gnil.

where the * symbol preceding the transitions means that we want to install the following transition
in the set of prioritary transitions. Hence, in the next completion steps, if a new configuration of
the form rev(qlb) appears, it will be automatically normalized into the state qlb. After giving
these prioritary transitions, the transition is still not normalized. Timbuk shows the result of the
normalization process so far:

Normalization simplifies the transition into: app(qlb,cons(ga,qnil)) -> grev

Adding transition:

app(qlb,cons(qa,qnil)) -> grev

Once more, we are asked to give some rules for normalizing this transition. Since cons(qa, qnil)
represents a list with one a, we can create a new state qla to normalize it:
States qla.

* cons(qa, qnil) -> qla.

and this terminates the normalization of the first transition. There remains a transition to normal-
ize:

Adding transition:

app(rev(qlab),cons(qa,qnil)) -> qrev

Since the state qlab recognizes a list of a’s followed by some b’s, we intend rev(qlab) to be a list
of b’s followed by some a’s, so let us normalize it by a new state called qlba and introduce the
corresponding prioritary transition.

States qlba.
* rev(qlab) -> glba.

Then, some other transitions are automatically normalized and added, and this terminates the
first completion step. In the following completion steps no other new states are necessary and
it is enough to successively introduce the following prioritary transitions to normalize the new
transitions we are proposed and thus terminate the completion:

* app(qlb, qla) -> glba * cons(gb, qnil) -> glb * app(qnil, qlb) -> qlb

* app(qnil, qla) -> qla * rev(qnil) -> gnil * app(qla, qla) -> qla.
Finally, from the menu it is possible to see the completed automaton which now contains 37
transitions and to compute the intersection with the automaton Problems, which gives an empty
automaton meaning that applying rev to a list of a’s followed by some b’s cannot result into any
list where there is an ’a’ before a 'b’.

Now, save the produced completed automaton in a file named comp.txt by typing w and
then the file name comp.txt. Now you can edit this file and check that the whole specification
(TRS, completed automaton, initial automaton, additional automata used for verification as well
as the constructed approximation) are stored in this file in Timbuk syntax. Note that since the
approximation has been entirely built with prioritary rules and prioritary rules are usually stored
in the completed_AO automaton, the approximation stored in the file is empty.

14



2.1.3 Normalization rules

Normalization rules (or norm rules) are rules of the form:
[s—=x] = [l —=7r1...ly = 1)

where s, [y, ..., I, are terms that may contain symbols, variables and states, and =z, rq, ...,
ry, are either states or variables such that if r; is a variable then it is equal to z. To normalize a
transition of the form ¢ — ¢/, we match the pattern s on ¢ and x on ¢/, obtain a given substitution
o and then we normalize ¢ with the rewrite system {l0 — ri0,...,l,0 — r,o} where rio,...,r 0
are necessarily states (see section for details about norm rules).

Let us come back to the previous example and achieve completion with normalization rules.
Start again Timbuk on the example2.txt file with the default Timbuk normalization strategy:

timbuk example2.txt

The default normalization strategy corresponds to the strategy operator sequence: prior norm_rules
manual _norm_conf auto_conf, meaning that any transition is first normalized using prioritary
transitions, then using normalization rules and if it is still not normalized, the used is asked for
normalization rules, finally he can leave the automatic normalization finish the normalization if
necessary. Doing a first step of completion, we are proposed a first transition to normalize and
since there is still no prioritary transitions nor normalization rules, the strategy now consider the
manual_norm operator:

Adding transition:
app(rev(qlb),cons(qa,nil)) -> qgrev
Do you want to give by hand some NORMALIZATION rules? (y/n)?

Answer y to this question. First, Timbuk recalls the current normalization rules (here no one is
already defined), alphabet, variables and state operators on which new rules can be built:

Do you want to give by hand some NORMALIZATION rules? (y/n)? y
Current normalisation rules are:

Alphabet=cons:2 a:0 b:0 nil:0 app:2 rev:1
and Variables= x y z
and States= qrev:0 glab:0 glb:0 ga:0 gb:0

Type additionnal normalization rules using the ’States’ and ’Rules’ keyword and end
by a dot ’.’:

(use keyword ’Top’ to place a rule at the beginning of the rule list)

For this example, let us use a naive approximation strategy: for every term of the form app(t1,
t2) let us normalize the two parameters of app by two distinct states, i.e. normalize term t1 by
a common state qappl and t2 by gapp?2 for every possible terms t1 and t2. This can be done by
typing interactively the following text:
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States qappl qapp2
Rules
lapp(x, y) -> z] -> [x -> qappl y -> qapp2].

where States (optional) is used to define a sequence of new states (if necessary) and Rules (manda-
tory) defines a sequence of norm rules ended by a dot symbol. Completion continues and proposes
a new transition to normalize: cons(qa,nil) -> qapp2. Let us give some new normalization rules
using the same naive strategy: we define two dedicated states gqconsl and gcons2 recognizing
respectively the first and second subterm of every term of the form cons(t1, t2).

States qconsl qcons2
Rules
[cons(x, y) -> z] -> [x -> gconsl y -> gqcons2].

This is enough to terminate this completion step. Remaining steps are automatic and does not
need any new approximation rule construction. Finally, we obtain a tree automaton with only 24
transitions but that does not fulfill the property we wanted to prove with automaton Probleml
(type i to check that intersection is not empty) because approximation has been too drastic.
However, some weaker properties can be verified on this automaton, for instance that the term
cons(a, rev(cons(a, nil))) is not reachable from A0 (by pattern matching). With regards to
the property we wanted to prove initially with automaton Probleml, the approximation we gave
in section [2.1.2]is one of the simplest we could build. All we can do with normalization rules here
is to give the set of prioritary rules of section as a normalization rule:

States qnil gla glba

Rules [x -> y] -> [ rev(qlb) -> qlb
nil -> gnil
rev(qlab) -> glba
app(qlb, gla) -> glba
cons(gb, gnil) -> qlb
app(gnil, glb) -> glb
app(gqnil, qla) -> qla
rev(gnil) -> gnil
app(qla, gqla) -> glal

where the pattern [x -> y] of the left-hand side of the normalization rule matches every transition,
hence the right hand side will be applied on every transitions (like prioritary transitions). In the next
section, we give an example where normalization rules shows their efficiency when approximation
has to be precise on some parts and can be more drastic on the remaining ones.

2.1.4 Bigger example: cryptographic protocol

Now let us introduce a bigger example coming from the cryptographic protocol verification domain.
This example is the corrected version of the Needham-Schroder Public Key (NSPK for short)
cryptographic protocol [13]. The NSPK protocol aims at mutual authentication of two agents, an
initiator A and a responder B, separated by an insecure network. Mutual authentication means
that, when a protocol session is completed between two agents, they should be assured of each
other’s identity. This protocol is based on an exchange of nonces (usually fresh random numbers

16



or time stamps) and on asymmetric encryption of messages: every agent has a public key (for
encryption) and a private key (for decryption). Every public key is supposed to be known by any
agent whereas, the private key of agent X is supposed to be only known by X. Thus, in this setting,
we suppose that messages encrypted with the public key of X can only be decrypted and read by
X. This is in fact a common hypothesis of the Dolev-Yao model [6]. Here is a description of the
three steps of the fixed version of protocol, borrowed from [I3]:

1. A= B:{Ny, A}k,
2. B%A:{NA,NB,B}KA

3. A— B: {NB}KB

In the first step, A tries to initiate a communication with B: A creates a nonce N4 and sends to B
a message, containing N 4 as well as his identity, encrypted with the public key of B: Kg. Then, in
the second step, B sends back to A a message encrypted with the public key of A, containing the
nonce N4 that B received, a new nonce Np, and B’s identity. Finally, in the last step, A returns
the nonce Np he received from B. If the protocol is completed, mutual authentication of the two
agents is ensured:

e as soon as A receives the message containing the nonce N4, sent back by B at step 2., A
believes that this message was really built and sent by B. Indeed, Ny was encrypted with
the public key of B and, thus, B is the only agent that is able to send back N4,

e similarly, when B receives the message containing the nonce Np, sent back by A at step 3.,
B believes that this message was really built and sent by A.

Another property that may be expected for this kind of protocol is confidentiality of nonces. In
particular, if nonces remain confidential, they can be used later as keys for symmetric encryption of
communications between A and B. Thus, confidentiality of nonces is also of interest. In this part we
are going to focus on this last aspect: for agents respecting the protocol and whatever the intruder
may do, we expect that nonces remain confidential. The corrected version of the Needham-Schroder
public key protocol is encoded in the example_nspk.txt file of the distribution.

In this specification file, each agent is labeled by a unique identifier. Let L., = {4, B, 0, s(0),
s(s(0)),...} be the set of agent labels, where A and B are some agents we observe which are
supposed to be honest and {0, s(0),...} is an infinite set of dishonest agents. For any agent label
l € Lqg, the term ident(l) will denote the agent whose label is I. The term pubkey(a) denotes
the public key of agent a and encr(k,a,c) denotes the result of encryption of content ¢ by key k.
In this last term, a is a flag recording who has performed the encryption. This field is not used
by the protocol rules but is used for verification. The term N(z,y) represents a nonce generated
by agent z for identifying a communication with y. We also use an AC binary symbol store in
order to represents sets. For example the term store(z,store(y, z)) (equivalent modulo AC to
store(store(z,y), z) and to store(y, store(z,x)), etc.) will represent the set {z,y, z}. With regards
to this set interpretation of terms, the store represent a set union. Like in many other approaches
based on the Dolev-Yao, the intruder is considered as being the network itself, i.e. every message
can be read, erased, replayed, etc. In our setting the intruder/network is thus a set of messages
represented using the store symbol.

Starting from a set of initial requests, our aim is to compute a tree automaton recognizing an
over-approximation of all possible sent messages with any number of running protocol sessions and
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an active intruder. The approximation also contains some terms signaling either communication
requests or established communications. For example, a term of the form goal(x,y) means that x
expect to open a communication with y. A term of the form connect(zx,y, z) means that x believes
to have initiated a communication with y, but, in reality * communicates with z. The encoding into
the TRS is straightforward: each step of the protocol is described thanks to a rewrite rule whose
left-hand side is a precondition on the current state (set of received messages and communication
requests), and the right-hand side represents the message to be sent (and sometimes established
communication) if the precondition is met. This encoding is very similar to the one detailed in [10].

The tree automaton AO recognizes the initial configurations (state gnet), i.e. any term of the
set F defined inductively as follows

E = {null,ident(A),ident(B),ident(0),ident(s(0)),. .., pubkey(A), pubkey(B), pubkey(o),
pubkey(s(0)), ..., privkey(o), privkey(s(o0)), ..., goal(A, A), goal(A, B), goal(B, A), goal (B, B),
goal(A, o), goal(o, A), goal(o, B), goal(B, 0), goal(A, s(0)), ..., store(ti,t2) | t1,ts € E}

Hence, initially the intruder/network knows identity of all the agents, all the public keys, the private
keys of the dishonest agents. Terms of the form goal(...) cannot be exploited by the intruder but
are needed to initialize the protocol between each pair of agents. Note that connection requests of A
(resp. B) with himself are taken into account but can easily be discarded of initial configurations of
the protocol analysis if they are not relevant. For this case study, we assumed that such a behavior
may occur.

In the first part of the automaton some prioritary transitions are defined in order to force some
of the terms to be recognized deterministically by a unique (prioritary) state. This is used for
verification purpose or for ensuring left-linearity condition (see section R.1.5). For left-linearity
condition, for instance, since terms matched by non left-linear variables of the rewrite rules of
the protocol are agent labels, it is important that agent labels are recognized deterministically.
This is why the set of prioritary transitions contains transitions to force terms o, s(0), s(s(0)), ...
to be deterministically recognized by state Ilabel, A to be deterministically recognized by Alabel
and B label by state Blabel. It is similar for nonces which all have some dedicated (prioritary)
deterministic states.

First, let us try to complete the automaton A0 without the approximation contained in the file
example_nspk.txt. This can be done by typing:

timbuk ----noapprox example_nspk.txt

The first step of completion produces some transitions which are already covered by the current
automaton and partially normalize another one, which is finally proposed to the user to finish the
normalization.
Adding transition:

store(store(gnet,qnet) ,qnet) -> gnet

. covered by current automaton.

Adding transition:

store(qnet,store(gnet,qgnet)) -> gnet
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covered by current automaton.

Adding transition:
store(qnet,qnet) -> gnet

. already normalised!

Adding transition:
store(encr(privkey(Ilabel),o,qnet),privkey(Ilabel)) -> gnet
Prior normalisation simplifies the transition into:

store(encr(privkey(Ilabel),Ilabel,qnet),privkey(Ilabel)) -> qnet

Adding transition:

store(encr(privkey(Ilabel),Ilabel,qnet),privkey(Ilabel)) -> gnet

To normalize this transition, we can give some new normalization rules. The transition we here
have to normalize is of the form store(tl, t2) -> gnet where gnet is the state recognizing the
set of every message of the intruder /network. To normalize this transition, it is enough to remark
that if the intruder has the union of stores (or message elements) t1 and t2 in its knowledge then
he reasonably has also t1 and t2 independently. Hence we can normalize t1 by gnet and t2
by gnet for every possible t1 and t2. This can be done by adding the following normalization
rule: [store(x, y) -> gunet] -> [x -> gnet y -> gnet] meaning that for normalizing every
transition of the form store(x, y) -> gnet, subterm x and subterm y will be normalized by the
state gnet. This rule can be added during the completion using the following syntax (first, Timbuk
recalls the alphabets and variables on which rules can be built):

Do you want to give by hand some NORMALIZATION rules? (y/n)? y
Current normalisation rules are:

Alphabet=goal:2 store:2 null:0 encr:3 pubkey:1 privkey:1 N:2 cons:2 ident:1 0:0
s:1 A:0 B:0 connect:3

and Variables=xy zu v wm

and States= Ilabel:0 gnet:0 Alabel:0 Blabel:0 Aident:0 Bident:0 Iident:0 NAB:O

NAA:0 NBB:0O NBA:0 NI:O

Type additionnal normalization rules using the ’States’ and ’Rules’ keyword and end
by a dot ’.’:
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(use keyword ’Top’ to place a rule at the beginning of the rule list)

Rules
[store(x, y) -> qnet] -> [x -> gnet y -> gnet].

This lead to the automatic normalization of many new transitions produced by the completion.
The next new transition the user is proposed is the following:

Adding transition:

encr (pubkey(Alabel) ,Ilabel,cons(NI,Iident)) -> gnet

This means that the intruder has received in its knowledge (gqnet) a new term which is of the form
encr (pubkey(Alabel), x, m) i.e. a message m encrypted with the public key of A. In this case,
it is a bad idea to normalize m with the state gnet since it would directly give the secret message
m to the intruder though it is encrypted with the public key of A (and should remain secret, if the
protocol is correct). Normalizing m with gnet would thus build a too big over-approximation where
this secret is given to the intruder. On the opposite, it is possible to define a particular state (say
gAcontent) for recognizing every secret belonging to A. It is also necessary to define a new specific
state gAkey for recognizing pubkey(Alabel). Defining those new states and the new normalisation
rules can be done interactively using the following syntax:

States gAcontent qAkey
Rules
[encr (pubkey(Alabel) ,x,y) -> z] ->
[ y -> qAcontent
pubkey (Alabel) -> gAkey ].

where every subterm y under an encryption with the public key of A will be normalized using
the gAcontent state. The following transition to normalize is similar to the previous one but for
B: encr(pubkey(Blabel),Ilabel,cons(NI,Iident)) -> gnet. The normalization rule to add
is thus of the same form:

States gBcontent gBkey
Rules
[encr (pubkey(Blabel) ,x,y) -> z] ->
[ y -> gBcontent
pubkey(Blabel) -> gBkey ].

Next transition is also concerned with the public encryption of a message but this time with the
public key of dishonest agents all recognized by state Ilabel. Like in the previous cases, we could
add a specific state for recognizing the encrypted message, however, since the intruder knows the
private key of those agents it is likely to obtain the content of the encrypted message anyway.
Hence, it is not erroneous to normalize the encrypted message with gnet (and put the content of
the message directly in the intruder’s knowledge). Here, using state gnet instead of a new dedicated
state permits to produce a more compact approximation that is still correct with regards to secrecy
properties for A and B. It is possible to do the same with the subterm pubkey(Ilabel). Here is
the corresponding normalization rule to add interactively:
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Rules
[encr(pubkey(Ilabel), x, y) -> z] ->
[ y -> guet
pubkey(Ilabel) -> gnet].

Note that in previous transitions, normalizing pubkey(Alabel) and pubkey(Blabel) would have
built a too big approximation loosing secrecy properties associated to A and B. Indeed normalizing
pubkey (Alabel) by gnet in a transition of the form encr (pubkey(Alabel) ,x, m) -> gnet would
produce two new transitions, namely: pubkey(Alabel) -> gnet and encr(gnet,x, m) -> gnet.
The problem does not come from the first one (since the intruder already has the public key of A)
but from the second since with this last transition and the transition pubkey(Ilabel) -> gnet
that is already in the automaton, the intruder can build the term encr (pubkey(Ilabel),x, m)
-> gnet. Then, since privkey(Ilabel) is also in gnet, the intruder can apply decryption on the
last term and obtain m in clear.

Adding the last normalization rule permits to end the first completion step. In the next com-
pletion step, we are successively proposed the following new transitions to normalize:

cons(NI,cons(NI,Bident)) -> gunet
cons (NAA,cons(NAA,Aident)) -> gAcontent
cons (NBA, cons (NAB,Aident)) -> gBcontent

All those transitions represent structured messages respectively stored in the intruders knowledge,
A secret message content, and B secret message content. One could now define some new secret
states for recognizing the (secret) subterms of those messages. However, we can also do a more
drastic approximation by using the three same states to normalize the subterms, i.e. collapse the
message structure:

Rules

[cons(x,y) -> gnet] -> [y -> qnet]
[cons(x, y) -> qAcontent] -> [y -> gAcontent]
[cons(x, y) -> gBcontent] -> [y -> gBcontent]

This approximation does not invalidate the secrecy property of the protocol and make the approx-
imation more compact. Note that those three rules can be equivalently replaced by the following
normalization rule: [cons(x, y) -> z] -> [y -> z]. This is the last approximation rules to
give and the remaining completion steps are performed automatically within some minutes. Fi-
nally the automaton is complete. Now to prove the secrecy properties, two steps are necessary.
First, since the TRS used for completion is non left-linear, to guarantee that this automaton is
really an over-approximation of R*(E), it is necessary to verify the left-linearity condition. This
condition can be automatically verified on the completed automaton (see section .15l for details).
The second step, necessary to prove that secrecy of honest nonces is guaranteed consists in com-
puting the intersection between the completed automaton and an automaton describing all the
possible cases where an honest nonce has been captured by the intruder. This last automaton is
the automaton Problems of the example_nspk.txt file. This automaton recognizes any term of
the form store(N, t) where t is any term built on the alphabet and N is any term in the set
N(A,B), N(A,A), N(B,B), N(B,A), i.e. every possible nonces produced by an honest agent for
an other honest agent. Typing i in the menu make Timbuk compute an intersection between the
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completed automaton and the automaton problems and results into an empty intersection, meaning
that those nonces cannot be grabbed by the intruder.

Note that this can also be checked using the pattern matching. Type p and then the pattern
store(N(A,B), x) for instance. This pattern has no solution meaning that this term is not reach-
able. For a more general verification, now type p and pattern store(N(x, y), z). This results in
the following output:

Solutions:

Occurence in state qnet!

solution 1: x <- Alabel, y <- Ilabel, z <- NI
solution 2: x <- Ilabel, y <- Ilabel, z <- NI
solution 3: x <- Ilabel, y <- Blabel, z <- NI
solution 4: x <- Ilabel, y <- Alabel, z <- NI
solution 5: x <- Blabel, y <- Ilabel, z <- NI
solution 6: x <- Alabel, y <- Ilabel, z <- Iident
solution 7: x <- Ilabel, y <- Ilabel, z <- Iident
solution 8: x <- Ilabel, y <- Blabel, z <- Iident
solution 9: x <- Ilabel, y <- Alabel, z <- Iident
solution 10: x <- Blabel, y <- Ilabel, z <- Iident
solution 11: x <- Alabel, y <- Ilabel, z <- Aident
solution 12: x <- Ilabel, y <- Ilabel, z <- Aident
solution 13: x <- Ilabel, y <- Blabel, z <- Aident
solution 14: x <- Ilabel, y <- Alabel, z <- Aident
solution 15: x <- Blabel, y <- Ilabel, z <- Aident
solution 16: x <- Alabel, y <- Ilabel, z <- Bident
solution 17: x <- Ilabel, y <- Ilabel, z <- Bident
solution 18: x <- Ilabel, y <- Blabel, z <- Bident
solution 19: x <- Ilabel, y <- Alabel, z <- Bident
solution 20: x <- Blabel, y <- Ilabel, z <- Bident
solution 21: x <- Alabel, y <- Ilabel, z <- qgnet
solution 22: x <- Ilabel, y <- Ilabel, z <- gnet
solution 23: x <- Ilabel, y <- Blabel, z <- qgnet
solution 24: x <- Ilabel, y <- Alabel, z <- gnet
solution 25: x <- Blabel, y <- Ilabel, z <- qgnet

meaning that nonces produced by or produced for a dishonest agent (x or y is associated to Ilabel)
have been captured but none of the fully honest ones (where x and y have been associated to A or
B).

Now, let us try to check the authentication property. Recall that a term of the form connect (x,y,z)
means that x believes to have initiated a communication with y but in reality x is communicating
with z. Type p and search for the pattern connect(x, y, z) in the completed automaton. This
produces the following output:

Solutions:

Occurence in state gnet!

solution 1: x <- Blabel, y <- Ilabel, z <- Ilabel
solution 2: x <- Alabel, y <- Alabel, z <- Ilabel
solution 3: x <- Alabel, y <- Blabel, z <- Ilabel
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solution 4: x <- Blabel, y <- Ilabel, z <- Blabel
solution 5: x <- Ilabel, y <- Ilabel, z <- Blabel
solution 6: x <- Ilabel, y <- Blabel, z <- Blabel
solution 7: x <- Ilabel, y <- Ilabel, z <- Ilabel
solution 8: x <- Ilabel, y <- Alabel, z <- Ilabel
solution 9: x <- Ilabel, y <- Ilabel, z <- Alabel
solution 10: x <- Ilabel, y <- Blabel, z <- Alabel
solution 11: x <- Alabel, y <- Alabel, z <- Alabel
solution 12: x <- Alabel, y <- Alabel, z <- Blabel
solution 13: x <- Blabel, y <- Blabel, z <- Alabel
solution 14: x <- Blabel, y <- Alabel, z <- Alabel
solution 15: x <- Alabel, y <- Blabel, z <- Blabel
solution 16: x <- Alabel, y <- Blabel, z <- Alabel
solution 17: x <- Ilabel, y <- Alabel, z <- Alabel
solution 18: x <- Alabel, y <- Ilabel, z <- Alabel
solution 19: x <- Blabel, y <- Ilabel, z <- Alabel
solution 20: x <- Ilabel, y <- Blabel, z <- Ilabel
solution 21: x <- Ilabel, y <- Alabel, z <- Blabel
solution 22: x <- Alabel, y <- Ilabel, z <- Blabel
solution 23: x <- Blabel, y <- Alabel, z <- Blabel
solution 24: x <- Blabel, y <- Blabel, z <- Blabel
solution 25: x <- Alabel, y <- Ilabel, z <- Ilabel
solution 26: x <- Blabel, y <- Alabel, z <- Ilabel
solution 27: x <- Blabel, y <- Blabel, z <- Ilabel

where some solutions are not satisfactory with regards to authentication. For instance, solution 3
says that A thinks that he is talking to B whereas it is talking to I (any dishonest agent). In fact
this is not an error of the protocol but it is due to an approximation function which is to drastic
to prove the authentication (see section for a more precise approximation function and the
proof of the authentication property).

2.1.5 Verifying left-linearity condition

At the end of the previous successful completion, by typing v in the Timbuk menu, one can verify
the left-linearity condition (see [7] for details) on the non left-linear TRSs used for modeling the
protocol to guarantee that the completed automaton recognizes an over-approximation of R*(E).
On this example, after the full completion, by typing v we obtain within a few seconds:

Checking intersection: Ilabel ~ Alabel ... done.
Checking intersection: Alabel ~ Blabel ... done.
Checking intersection: Ilabel "~ Blabel ... done.

No linearity problem!

meaning that left-linearity condition is fulfilled. What Timbuk does is that it searches for every
possible state matched by non left-linear variables and proves that if the states matched by non
linear variables are different then the languages recognized by those states are disjoint. This is here
the case for states Ilabel, Alabel and Blabel. When it is not the case, it is necessary to modify
the normalization rules or the prioritary rules so that those states recognize disjoint languages.
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2.1.6 Doing more and going faster

Once your approximation are established, it is possible to store it directly in the specification file,
see approximation Secret in file example_nspk.txt for instance. Then it is possible to directly
start a completion process with the first approximation by typing:

timbuk example_nspk.txt

In this file, there is a second approximation called SecAndAuth that permits to prove both the
secrecy and the authentication property which can be used instead of the first one thanks to the
Timbuk option ----approx SecAndAuth. However, since this completion takes some time, and
since this set of approximation rules is known to be complete w.r.t. the completion to perform
(i.e. no manual interaction is needed) it is also possible to use the experimental static completion
algorithm (see section L4.2)) with the ----static Timbuk option:

timbuk ----approx SecAndAuth ----static example_nspk.txt

Type a to achieve the full completion at once. Type v to verify the left-linearity condition
(note that it is also faster in static mode), then type i and check that honest nonces are still not
captured by the intruder. Then type p and search for pattern connect(x, y, z). This results in
the following output:

Solutions:

Occurence in state qgnet!

solution 1: x <- Alabel, y <- Ilabel, z <- Ilabel
solution 2: x <- Blabel, y <- Ilabel, z <- Blabel
solution 3: x <- Blabel, y <- Ilabel, z <- Alabel
solution 4: x <- Ilabel, y <- Ilabel, z <- Ilabel
solution 5: x <- Ilabel, y <- Blabel, z <- Alabel
solution 6: x <- Ilabel, y <- Blabel, z <- Blabel
solution 7: x <- Ilabel, y <- Alabel, z <- Ilabel
solution 8: x <- Alabel, y <- Blabel, z <- Blabel
solution 9: x <- Blabel, y <- Alabel, z <- Alabel
solution 10: x <- Alabel, y <- Alabel, z <- Alabel
solution 11: x <- Blabel, y <- Blabel, z <- Blabel
solution 12: x <- Ilabel, y <- Alabel, z <- Blabel
solution 13: x <- Ilabel, y <- Alabel, z <- Alabel
solution 14: x <- Ilabel, y <- Blabel, z <- Ilabel
solution 15: x <- Ilabel, y <- Ilabel, z <- Blabel
solution 16: x <- Ilabel, y <- Ilabel, z <- Alabel
solution 17: x <- Blabel, y <- Ilabel, z <- Ilabel
solution 18: x <- Alabel, y <- Ilabel, z <- Alabel
solution 19: x <- Alabel, y <- Ilabel, z <- Blabel

This results shows that whenever a dishonest agent is concerned by a communication, authentication
is not guaranteed: lines 2, 3, 5, 7, 12, 14, 15, 16, 18, 19 shows each time that x is connect to someone
else that he expects. On the opposite, each time that x and y range over honest agents, values
for y and z coincide (lines 8, 9, 10, 11). Hence, for honest agents, this protocol guarantees the
authentication.

Remark on approximation definition in static mode: When defining approximation rules
to be used in the static mode, note that Timbuk may consider that your set of approximation rule
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is not complete though you know it is. This is the case for the file example_nspk.txt: if you
have a careful look to the approximation Secret it contains the rules established in section E2.1.4]
as well as an additional at the end of the rule set: [x -> y] -> [z -> gnet] ensuring that every
subterm that has not already been normalized by the previous rule is to be normalized by state
gnet. This is a trick to help Timbuk static completion algorithm to admit that this approximation
is complete. Note that instead of completing by hand the approximation rule set it is also possible
to use the ——--fstatic option that automatically adds a default rule of the same kind and thus
never complains about incomplete normalization rule sets.

2.1.7 More tricks

Syntax of normalization rules is in fact a bit less restrictive that what is said in the previous section.
Let us retry to complete the basic.txt file:

timbuk basic.txt

During the first completion step we are proposed to give some normalization rules. Let us define
a state operator (see section B.6.2] for details about state operators) and write interactively some
normalization rules in extended syntax:

States q:1
Rules [g(x) -> y] -> [x -> q(x)].

The effect of this rule is to normalize every subterm ¢ of a transition g(t) — ¢’ by a state
labeled by ¢(t). This single normalization rule permits to achieve the completion automatically
till the end. Here is a more practical example. Using this extended syntax, the normalization
rules given in section 2.1.4] for proving the secrecy on the NSPK cryptographic protocol, can be
abbreviated as follows (approximation called Secret2 in example_nspk.txt file):

Approximation Secret2
States q:1 secret:1 gnet key:1 Alabel Ilabel Blabel
Rules

[store(x, y) -> z] -> [x -> gnet y -> gnetl]
[encr(pubkey(Ilabel), x, y) -> z] ->
[ y > gnet

pubkey(Ilabel) -> gnet]

(* Every message component encrypted by someone else than the intruder goes in a
dedicated state *)

[encr (pubkey(u), x, y) -> z] ->
[ y -> q(secret(u))
pubkey (u) —> q(key(u))]

(* In the storage states, everything is collapsed (structure of the message is
not important) *)

[cons(x, y) -> z] -> [y —> z]
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Recall that approximation rules are used in the order. Hence, every message encrypted by a
dishonest agent will be normalized using the second rule and every message encrypted by an (honest)
agent X matched by variable u will be normalized using the third rule and states q(secret (X)) and
q(key(X)). It is possible to reachieve completion using this new approximation. However, since
this extended syntax cannot be used in static mode, we need to achieve completion in dynamic
(default) mode:

timbuk ----approx Secret2 example_nspk.txt

Some other tricks for building approximation are still under development but are already integrated
in Timbuk for testing: merging rules, approximation equations and interactive merging with Tabi.
Merging rules (see section ELZ3]) are rules of the form q1 -> g2 for merging two states in an
automaton. Such rules can be given to Timbuk explicitly using the m command, or they can be
built interactively using Tabi (see section [2.3.3). Approximation equations are a third way to merge
some states of the automaton by giving some equivalence between some terms (patterns in fact).

Here is a simple example done on the processes.txt file. This example consists of a TRS
modeling the behavior of two parallel processes counting elements on a shared counter that should
not be accessed by the two processes at the same time (see [7] for details on this example). If we
start a completion with an exact normalization strategy:

timbuk ----strat exact processes.txt

Then completion diverges. This comes from the fact in the initial language the number of
elements to be counted by processes is not bounded. Hence, the counter (built on the usual
Peano operators for naturals: o and s()) counts an infinite number of elements. Divergence of
completion, can easily be pruned adding interactively an approximation equation. In our case, we
achieved completion until the 6th completion step then add the following approximation equation
merging together all the naturals greater to O:

Current equations are:

Alphabet=S:4 Proc:2 cons:2 null:0 busy:0 free:0 s:1 0:0
and Variables= x y z u

Type additionnal equations and end by a dot ’.’:
s(s(x))=s(x).

This equation permits to merge some of the states of the automaton:

State merging using approximation equations!

gnew8 -> gnew9
gnew6 -> gnew9

Then, doing another completion step permits to end the completion process. It is possible to check
that both processes have never accessed the counter at the same time by verifying that the pattern
S(Proc(busy, x), Proc(busy, y), z, u) has no solution in the automaton:
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Alphabet=
S:4 Proc:2 cons:2 null:0 busy:0 free:0 s:1 0:0

States=
gnew9:0 gnew8:0 gnew7:0 gqnew6:0 gnewb:0 gnew4:0 gnew3:0 gnew2:0 gnewl:0 gnew0:0 q0:0
ql:0 g2:0 g3:0 g4:0

Variables=
Xyzu

Type a term and hit Return: S(Proc(busy, x), Proc(busy, y), z, u)

Pattern not found!

2.2 Taml

Start Taml by typing: taml in a command line window. Taml is an Ocaml interpreter extended
with Timbuk library functionalities (see section [ for reference manual of Taml and see [12] for
details about Ocaml syntax). The following tutorial is a step by step construction of TRS and
automata. However, if necessary, the whole tutorial file can be executed at once by loading the file
in Taml, using the following Ocaml directive #use "tutorial.ml".

First, let us define an alphabet £ by typing the following Taml commands (commands are
prefixed by the # symbol which represents the usual Ocaml prompt, this of course has not to be
typed by the user):

# let f= alphabet "app:2 cons:2 nil:0 a:0 b:0";;

Taml gives the following output, meaning that £ has been accepted as a valid alphabet.
val £ : Taml.Alphabet.t = app:2 cons:2 nil:0 a:0 b:0

Similarly one can define a variable set v:

# let v= varset "x y z u";;
val v : Taml.Variable_set.t = xy z u

Now, let us define a term t over the alphabet £ and the variable set v as follows:

# let t= term f v "cons(a, cons(b, nil))";;
val t : Taml.Term.t = cons(a,cons(b,nil))

Since Taml embeds a complete Ocaml interpreter, it is thus possible to use usual Ocaml syntax
facilities and also to combine Taml functions with usual Ocaml functions. For instance, it is possible
to define a specific term function specialized for alphabet £ and variable set v in the following way:

# let fvterm= term f v;;
val fvterm : string -> Taml.Term.t = <fun>
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Now it is possible to construct a list of terms built on alphabet £ and variable set v using the
specialized function fvterm as well as Ocaml List.map function (mapping a function to every
element of a list) in the following way:

# let 1= List.map fvterm ["app(cons(a, nil),cons(b, cons(b, nil)))"; "a"; "cons(a,nil)"];;
val 1 : Taml.Term.t list = [app(cons(a,nil),cons(b,cons(b,nil)))

a

cons(a,nil)

]
Similarly we can construct term rewriting systems and tree automata directly in the interpreter:

# let tt= trs f v "app(nil, x) -> x  app(cons(x, y), z) -> cons(x, app(y, z))";;
val tt : Taml.Rewrite.t =

app(nil,x) -> x
app(cons(x,y),z) -> cons(x,app(y,z))

# let aut= automaton f "
States qa gb gqla qlb qf
Final States qf
Transitions
a -> qa
b -> gb
cons(qga, qla) -> qla
nil -> qla
cons(gb, gqlb) -> qlb
nil -> qlb
app(qla,qlb) -> qf";;

val aut : Taml.Automaton.t =
States qa:0 gb:0 gla:0 gqlb:0 qf:0

Final States qf

Transitions

a -> qa

b -> gb
cons(qa,qla) -> qla
nil -> qla
cons(gb,qlb) -> qlb
nil -> glb
app(qla,qlb) -> qgf

Now let us show that a given term is recognized by a given state in a tree automaton
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# let tl= List.hd 1;;
val t1 : Taml.Term.t = app(cons(a,nil),cons(b,cons(b,nil)))

# let s= state "qf";;
val s : Taml.Automaton.state = qf

# run t1 s aut;;
- : bool = true

One can also rewrite terms using the term rewriting system tt and the Rewrite.left_inner_norm
function of the Timbuk library (see section B.3] for details on use of Timbuk functions outside of
Taml interface):

# let t2= Rewrite.left_inner_norm tt ti1;;
val t2 : Taml.Term.t = cons(a,cons(b,cons(b,nil)))

It is also possible to read automaton and TRS from a Timbuk specification file. For instance,
let us read the automata completed_AO and the TRS current_TRS in the file comp.txt which
corresponds to the completion done in section 2.1.2.

# let tt= read_trs "current_TRS" "comp.txt";;
val tt : Taml.Specification.trs =
app(nil,x) -> x
app(cons(x,y),z) -> cons(x,app(y,z))
rev(nil) -> nil
rev(cons(x,y)) —-> app(rev(y),cons(x,nil))

# let aut= read_automaton "completed_AO" "comp.txt";;
val aut : Taml.Specification.automaton =
States qlba:0 gqla:0 qnil:0 qrev:0 qlab:0 gqlb:0 qa:0 gb:0

Description

grev: "rev applied to lists where a are before b"
glab: "lists where a are before b (possibly empty)"
glb: "lists of b (poss. empty)"

Final States qrev

Prior

app(qla,qla) -> qla
rev(gnil) -> gnil
app(qnil,qla) -> qla
app(qnil,qlb) -> qlb
cons(gb,qgnil) -> qlb
app(qlb,qla) -> glba
rev(gqlab) -> glba
cons(qga,qnil) -> qla
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nil -> gnil
rev(qlb) -> glb

Transitions

rev(qlab) -> qrev

nil -> glab
cons(ga,qlab) -> glab
cons(qga,qlb) -> glab
nil -> qlb
cons(gb,qlb) -> qlb

a -> qa

b -> gb

nil -> grev

rev(glab) -> glba
app(qlba,qla) -> grev
rev(qlb) -> glb

nil -> gnil
cons(ga,qnil) -> qla
app(qlb,qla) -> qrev
cons(qa,qnil) -> qrev
cons(gb,qlba) -> qrev
nil -> glba
app(qlba,qla) -> glba
app(qlb,qla) -> glba
cons(gb,qgnil) -> qlb
app(gnil,qlb) -> qlb
app(gnil,qla) -> qla
rev(gnil) -> gnil
app(qla,qla) -> qla
app(qlb,qlb) -> glb
cons(qa,qnil) -> glba
app(gnil,qla) -> glba
app(qla,qla) -> gqlba
cons(gb,qlba) -> glba
cons(gb,qla) -> gqlba
cons(qa,qla) -> qla
app(gnil,qla) -> grev
app(qla,qla) -> qrev
cons(gb,qla) -> grev
cons(ga,qla) -> gqlba
cons(qga,qla) -> grev

Now we can compute the automaton recognizing the set of terms irreducible by TRS current_TRS
by typing the following command:

# let aut_iff= irr £ tt;;
val aut_iff : Taml.Automaton.t =
States 92:0 q1:0 q0:0
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Final States q0 ql g2

Transitions

b -> g2

a —-> q2

nil -> q1
app(q2,92) -> q2
app(q2,q1) -> q2
cons(ql,ql) -> g0
cons(q2,92) -> q0
cons(qg2,ql) -> g0
cons(ql,q2) -> q0
cons(q0,q0) -> qO0
cons(q2,90) -> g0
cons(ql,q0) -> qO0
cons(q0,92) -> g0
cons(q0,ql) -> qO0
app(q2,90) -> g2

Now, recall that in section 2.1.2] the automaton completed_AO (stored in the Ocaml variable aut)
of the file comp.txt recognizes an over-approximation of R*(£(A0)) where A0 and R are respectively
the automaton and the TRS defined in file example2.txt (and such that R = current_TRS). We
can thus construct the automaton recognizing an over approximation of the set of normal forms
R'(L(A0)) as follows:

# let norm= inter aut aut_iff;;

However, the intersection automaton is very big and not cleaned (it may have some unnecessary
states). Furthermore, for efficiency reasons, our implementation of intersection does not build
explicitly the set of states of the intersection automaton. To obtain a finalized automaton, it is
necessary to use cleaning functions such as simplify:

# let norm2= simplify norm;;
val norm2 : Taml.Automaton.t =
States q7:0 g96:0 g5:0 g4:0 g3:0 g92:0 q1:0 g0:0

Final States q6 q7

Transitions

nil -> qi

nil -> q0

nil -> q7

b -> q3

a -> q4
cons(q4,90) -> gb
cons(qg4,q0) -> g6
cons(q3,ql) -> g6
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cons(q4,q0) -> g2
cons(q3,ql) -> g2
cons(qg4,95) -> g2
cons(g3,95) -> g2
cons(q3,92) -> g2
cons(g3,92) -> g6
cons(q4,95) -> gb
cons(g3,95) -> g6
cons(q4,95) -> g6

This automaton represents an over-approximation of R'(£(A0)). To have a more precise idea of the
recognized language, one can browse it using Tabi:

# browse norm?2;;

Then click on the Start symbol and then on the button choose random to build some randomized
representatives of the language. The representatives are all lists where b’s are always before a’s
which corresponds to the definition of the reverse function applied on lists of a’s followed by some
b’s. Details on Tabi use will be given in the next section. For the moment, just quit random and
quit Tabi. Note that in the automaton, there remains only constructor symbols (functional symbols
app and rev have disappeared). This proves that definition of reverse is complete w.r.t. the lists we
have considered (see [9] for details). To conclude on this tutorial for Taml, note that Taml provides
a small online help on the most used functions by typing:

# helpQ;;
2.3 Tabi
2.3.1 Basic

To start Tabi, simply type tabi in a command line window. Then open the automaton Ad3 of the
example3.txt Timbuk specification file using the file browser: choose the Open File item of the File
menu and browse the directories to open the file example3.txt. After a while the Start symbol
is displayed in the Tabi window. Click on it and choose in the list the final state to start from.
For instance, click on final state qfl. Now we are going to browse the automaton to build some
representatives of the language recognized by this final state. Click with the left mouse button on
the state qfl. A window opens. It contains a list of configurations (or terms) leading to this state.
Choose configuration times(q0,q0). The state gfl is replaced by the selected configuration. This is
what we call unfolding of a state.

Now click on a state q0, replace it by the unique possible configuration: O. Then do the same
for the other occurrence of state q0. We have obtained a ground term recognized by state gfl in the
tree automaton AO. Note that moving the mouse pointer over the term and its subterms displays
in red the state recognizing the selected 