
Timbuk
A Tree

Automata
Library

www.irisa.fr/la nde/g enet/ ti mbuk

Version 2.0

The Timbuk tree automata library now contains three standalonetools:

Timbuk: Copyright c 2000-2003Thomas Genet and Val�erie Viet Triem Tong

Taml: Copyright c 2003Thomas Genet

Tabi: Copyright c 2003Thomas Genet and [Boinet Matthieu, Brouard Robert, Cud-
ennecLoic, Durieux David, Gandia Sebastien,Gillet David, Halna Frederic, Le Gall Gilles,
Le Nay Judicael,Le Roux Luka, Mallah Mohamad-Tarek, Marchais Sebastien,Martin Mor-
gane,Minier Fran�cois,Stute Mathieu] { aavisu project team for french "maitrise" level (4th
University year) 2002-2003at IFSIC/Univ ersit�e de Rennes1.

1

Con ten ts

1 Timbuk library overview 4
1.1 What is Timbuk? . 4
1.2 Availabilit y, Licenseand Installation . 4
1.3 Note on the implementation . 5
1.4 Bug report and information . 5
1.5 Changesfrom version1.1 to version2.0 . 5

2 Tutorial 7
2.1 Timbuk . 7

2.1.1 Exact case. 10
2.1.2 Interactive approximations and prioritary transitions 12
2.1.3 Normalization rules . 15
2.1.4 Bigger example: cryptographic protocol 16
2.1.5 Verifying left-linearity condition . 23
2.1.6 Doing more and going faster . 24
2.1.7 More tricks . 25

2.2 Taml . 27
2.3 Tabi . 32

2.3.1 Basic . 32
2.3.2 Display modes. 33
2.3.3 Using Tabi to approximate in Timbuk 34

3 Speci�cation language reference manual 35
3.1 Comments . 36
3.2 Symbols . 36
3.3 Alphabets . 36
3.4 Variable sets. 36
3.5 Term Rewriting Systems . 36
3.6 TreeAutomata . 36

3.6.1 Implicit de�nitions . 36
3.6.2 Explicit de�nitions . 36

3.7 Approximations . 37

4 Tim buk reference manual 38
4.1 Running Timbuk . 38
4.2 Timbuk normalization and approximation tools 39

4.2.1 Prioritary transitions . 39
4.2.2 Normalization rules . 40
4.2.3 Merging rules . 40
4.2.4 Approximation equations. 41

4.3 Timbuk commands . 41
4.4 Timbuk modesand commandline options 43

4.4.1 Dynamic completion mode . 43

2

4.4.2 Static completion mode . 45

5 Taml reference manual 45
5.1 Running Taml . 45
5.2 Basic Taml functions . 46
5.3 Using all Timbuk library functions through Taml 49

6 Tabi reference manual 49
6.1 Mouseactions . 50
6.2 Buttons . 50
6.3 File menu . 51
6.4 Options menu . 51

7 How to use Ocaml functions of the Timbuk library? 51

3

1 Timbuk library overview

1.1 What is Timbuk?

Timbuk is a collection of tools for achieving proofs of reachabilit y over Term Rewriting
Systems(TRS for short) and for manipulating Tree Automata. The tree automata we use
hereare bottom-up non-deterministic �nite tree automata (NFTA for short).

The Timbuk library provides three standalonetools and a bunch of Objective Caml [12]
functions for basicmanipulation on TreeAutomata, alphabets, terms, Term Rewriting Sys-
tems, etc. The three tools are:

� Timbuk: a tree automata completionenginefor reachabilit y analysisover Term Rewrit-
ing Systems

� Taml: an Ocaml toplevel with basic functions on NFTA:

{ booleanoperations: intersection,union, inversion,etc...

{ emptinessdecision

{ cleaning,renaming

{ determinisation

{ matching over TreeAutomata

{ parsing, pretty printing

{ normalization of transitions

{ and somemore...

� Tabi: a TreeAutomata Browsing Interface for visual automata inspection

See[1] for a survey on Term Rewriting Systemsand [3] for a survey on tree automata.
For reachabilit y analysisand tree automata completion details, look at [7].

1.2 Av ailabilit y, License and Installation

Timbuk is freely available, under the terms of the GNU LIBRARY GENERAL PUBLIC
LICENSE, here:

http://www.irisa.fr/land e/g enet /tim buk/

Now, Timbuk is available for download in Ocaml sourceand windows binary �les. To install
and run Timbuk, pleaserefer to the README �le of the distribution. For documentation on
the Timbuk, Taml and Tabi tools, seetutorial in section2 and respective referencemanuals
in sections4, 5 and 6. For documentation on the interface of Ocaml NFTA functions, see
section7.

4

1.3 Note on the implemen tation

Most of the functions of the library are implemented straightforwardly without objects and
in a functional style. However, we tried to develop this library in a modular way such that
optimizations could be addedafterward. Thus optimizations are welcomeand can even be
proposedto us for implementation. Tabi as beendeveloped with Labltk (Ocaml with Tk
functions) in collaboration with a group of students in 4th year of Computer Scienceof
RennesUniversity (seeREADME�le for credits).

1.4 Bug rep ort and information

Pleasereport comments and bugs to Thomas.Genet@irisa.fr .

Seehttp://www.irisa.fr/lande /genet/ timb uk/ for information about Timbuk and re-
lated papers.

1.5 Changes from version 1.1 to version 2.0

BetweenTimbuk 1.1 and Timbuk 2.0, the following changeshave beendone:

� Added 'Taml': a standaloneOcaml toplevel with preloadedTimbuk library functions
over tree automata, terms, term rewriting systems,etc. This replacesthe old "CAL-
CULATOR MODE" Timbuk '.mlml' �les.

� Added 'Tabi': the TreeAutomata Browsing Interfacefor automata inspection. Tabi is
a standaloneapplication but can alsobe called from Timbuk and Taml.

� Made a more robust Make�le

� Made a poor man's windows Make�le

� Added --dynamic , --static , --fstatic , -f , -o , --strat options to Timbuk, with
the following usage:

Options: --dynamic for usual completion algorithm (default)
--static to activate the static compilation of matching and

normalisation (needs a complete set of prior and
norm rules)

--fstatic to activate the static compilation of matching and
normalisation. If the set of prior and norm rules is
not complete, a transition not covered by the rules is
normalised using a single new state #qstatic#

-f file to read Timbuk commandsfrom a file
-o file output Timbuk execution trace in a file

--strat followed by keywords:
exact (exact normalisation with prioritary rules)
prior (normalisation with prioritary rules
norm_rules (normalisation with approximation rules)

5

auto (automatic normalisation with new states)
auto_conf (similar to 'auto' but asks for confirmation first)
auto_prior (automatic normalisation with new states where

new transitions are stored as prioritary rules)
auto_prior_conf (similar to 'auto_prior' but asks for confirmation first)
manual_norm (manual addition of normalisation rules)
manual_norm_conf(si mil ar to 'manual_norm' but asks for confirmation first)
manual (manual normalisation)
manual_conf (similar to 'manual' but asks for confirmation first)

� Added the abilit y to de�ne approximation equations(in speci�cations and at run time)

� Added the 'exact' strategy which is always terminating and exact on somespeci�c
syntactic classes(seedocumentation)

� Changedthe (w) commandso that it writes to disk the TRS, the current completed
automaton, the initial automaton, the current approximation and the list of automaton
usedfor intersection in a same�le

� Added the (p) Timbuk commandfor searching a pattern containing symbols, variables
and states, in the completedautomaton.

� Added the (o) Timbuk command for computing intersection between the completed
automaton and someexternal automaton read in a �le.

� Added the (m) Timbuk commandfor mergingsomestatesin the completedautomaton.

� Added the (b) Timbuk commandfor browsing the current completedautomaton with
Tabi. Tabi alsogivesthe abilit y to construct somemerging rules graphically.

� Added the (f) Timbuk commandto forget somecompletion steps.

� Added the (d) Timbuk commandfor displaying the current TRS usedfor completion.

� Added the (e) Timbuk command for consulting/adding the current approximation
equations.

� Added the (g) Timbuk command for consulting/adding normalization rules interac-
tively

� Added the (det) Timbuk commandfor determinizingthe current completedautomaton.

� Added the completion step number to Timbuk.

� Extended the norm rules syntax to use normalization rules where it is possible to
achieve matching on the state labels. For instance it is now possibleto de�ne such a
normalization rule:

[encr(pubkey(q(x)), m) -> qstore] -> [m -> q(secret(x))]

in dynamic modeonly, whereq is herea state operator of arity 1 (de�ned usingStates
q:1 syntax).

6

� Added the 'Imp ort' keyword in the speci�cation languageto import tree automata
state operators in the approximation.

� Added the 'Set' keyword in the speci�cation languageto de�ne automata through
their �nite language,i.e. �nite set of terms which are compiled into a deterministic
tree automaton.

� Optimised standard completion mode (dynamic) in Timbuk.

� Discardedsomebugs.

2 Tutorial

In this tutorial, we assumethat the reader is familiar with term rewriting systems[1], tree
automata [3] aswell as the notations and de�nitions of [7]. However, in the �rst part of this
tutorial, basicnotions on term rewriting systemsshould be enough.

The Timbuk library was initially designedto achieve reachabilit y over Term Rewriting
Systems,i.e. given a TRS R and two terms s and t we try to prove or disprove that s ! R

? t.
In Timbuk, we consider a more general problem which is reachabilit y over sets of terms
rather than on coupleof terms, i.e. are terms of a set F R-reachable from terms of an initial
set E. In that case,we can de�ne the set of R-descendants of a set of terms E denoted
by R ?(E) = f t j s 2 E and s ! R

? tg. Then given a secondset of terms F , it is possible
to prove for instance that all terms R-reachable from E are in F (R ?(E) � F) or that
none of the terms of F can be R-reached from E (R ?(E) \ F = ;). This last property
has someapplications in veri�cation [10, 7] where TRS are usedto model programs,E all
their possibleinitial con�gurations and F a setof dangerouscon�gurations not to be reached
when executingthe program from the initial con�gurations.

When the setsE and F are in�nite setsof terms it is necessaryusea speci�c representa-
tion in order to model them �nitely . This is essentially the role of the tree automata. Then
computing exactly or approximately R ?(E) for an in�nite set of terms represented by a tree
automaton can be done using a tree automaton completion algorithm. This algorithm is
preciselythe coreof the Timbuk tool we now present. The aim of this tool is to producea
tree automaton recognizingR ?(E) exactly when it is possibleand approximately otherwise,
and then to check if R ?(E) \ F = ; for veri�cation purposes.

2.1 Tim buk

The Timbuk tool performstree automata completionwith regardsto a term rewriting system
to computeexactly or approximately R ?(E). Treeautomata and term rewriting systemsare
stored in a Timbuk speci�c ation �le (seesection 3 for details about the syntax). Let us
begin by a simple examplewherethere is no needto cope with tree automata syntax. Start
Timbuk on the basic.txt �le containing a �rst example,i.e. simply type:

timbuk basic.txt

7

in a commandwindow. Depending on the way you obtained Timbuk, you may not be
able to directly use'tim buk' asa standalonecommandand you may needto type ocamlrun
timbuk basic.txt instead. Pleaserefer to the README�le of the distribution for details on
how to run the Timbuk library tools.

If launching Timbuk succeeds,then Timbuk readsthe following basic.txt speci�cation
�le:
(* This is a specification file to be used with the Timbuk tutorial *)

Ops f:1 g:1 a:0

Vars x y z

TRSR
f(x) -> g(f(x))

Set init
f(a)

Set check1
f(g(f(a)))
g(f(g(a)))

Set check2
g(g(g(g(g(g(g(g(f(a)))))))))

and starts completion on the TRS R and the set of terms (here a set containing a single
term) denotedby init . When given a �nite set of terms using the Set constructor, Timbuk
transforms it into a tree automaton recognizingexactly this set, i.e. the set f f(a) g in
our case. The other sets (and thus other tree automata) associated with namescheck1
and check2 will be used later for veri�cation purpose. When launching Timbuk on this
speci�cation, you should obtain the following output:

Completion step: 0
Do you want to:
(c)omplete one step (use Ctrl-C to interrupt if necessary)
complete (a)ll steps (use Ctrl-C to interrupt if necessary)
(m)erge some states
(s)ee current automaton
(b)rowse current automaton with Tabi
(d)isplay the term rewriting system
(i)ntersection with verif automata
intersection with (o)ther verif automata on disk
search for a (p)attern in the automaton
(v)erify linearity condition on current automaton
(w)rite current automaton, TRSand approximation to disk
(f)orget old completion steps
(e)quation approximation in gamma
(g)amma normalisation rules
(det)erminise current automaton
(u)ndo last step

8

(q)uit completion

(c/a/m/s/b/d/i/o/p/v/w/f /e/g /det /u/ q)?

meaning that the current completion step number is 0 and that Timbuk expect you to give one
command. For instance, type s to display the current tree automaton being completed. You should
obtain the following output:

States qterm0:0 qterm1:0

Final States qterm0

Transitions
a -> qterm1
f(qterm1) -> qterm0

which is the tree automaton recognizing the set of terms f f (a)g. Now it is possibleto search for
reachable terms from f f (a)g by doing somecompletion steps. Type c to achieve one completion
step. Timbuk �nds a new reachable term which corresponds to a new tree automata transition to
add to the current tree automaton:

Adding transition:

g(f(qterm1)) -> qterm0

Adding this transition to the tree automaton will permit to recognizethe term g(f (a)) which is
reachable from f (a) when applying rule f (x) ! g(f (x)). However the transition g(f(qterm1)) ->
qterm0 has to be normalized �rst, i.e. be transformed into an equivalent set of normalized transi-
tions. Normalized transitions are of the form f (q1; : : : ; qn) ! q where q1; : : : ; qn are states. In our
case,the subterm f(qterm1) is not a state. Timbuk asksif you want to give speci�c normalization
rules by hand to normalize this transition. Answer no n and useautomatic normalization with new
states instead, by answering y to the secondquestion. This causesTimbuk to create a new state
qnew0to normalize automatically the transition into a set of two normalized transitions equivalent 1

to g(f(qterm1)) -> qterm0:

Adding transition:

g(qnew0) -> qterm0

... already normalised!

Adding transition:

f(qterm1) -> qnew0

... already normalised!

1Note that with thesetwo new transitions it is possibleto rewrite term g(f(qterm1)) into g(qnew0) and
then rewrite g(qnew0) into qterm0. Henceadding those two transitions permits to rewrite g(f(qterm1))
into qterm0 which corresponds to the transition we initially wanted to add.

9

This ends the �rst completion step. Using the same normalization methodology (i.e. always
normalize with new states) it is possible to complete step 2, step 3 and so on, but completion
does not terminate with this strategy. This is not really surprising since rule f (x) ! g(f (x)) is
not terminating on term f (a) and we are incrementally adding an in�nite set of descendants of
f (a). However, since this example belongsto a speci�c decidableclass2, we know that R?(f f (a)g)
can be exactly computed using a tree automaton (it is regular). In the next section, we achieve
the completion automatically on the same example using the exact strategy dedicated to the
speci�cations of the decidableclass.

2.1.1 Exact case

First, quit Timbuk if it is still running by typing q and launch it again with the exact strategy by
typing

timbuk --strat exact basic.txt

Then either type repeatedly c or type oncea for achieving completion until Timbuk succeeds
at step 3:

Automaton is complete!!

You can seethe �nal completedautomaton by typing s, and write this result into a �le by typing w.
Then it is possibleto check if terms of the setscheck1 and check2 are R-reachable from f(a) . This
can be doneby computing an intersection betweenthe completedautomaton recognizingthe set of
all R-reachable terms from f(a) (R?(init) = R?(f f (a)g)) with check1 and check2. Intersections
with �nite setsor other automata contained in the samespeci�cation �le can be done by typing i ,
this results in:

Intersection with check1 gives (the empty automaton):

States

Final States

Transitions

for check1, meaning that terms of check1 are not reachable and for check2 this results in:

Intersection with check2 gives (not empty):

States q9:0 q8:0 q7:0 q6:0 q5:0 q4:0 q3:0 q2:0 q1:0 q0:0

Final States q9

Transitions
a -> q0

2Seeexact strategy in section 4.4.1 for details on the decidableclasses.

10

f(q0) -> q1
g(q1) -> q2
g(q2) -> q3
g(q3) -> q4
g(q4) -> q5
g(q5) -> q6
g(q6) -> q7
g(q7) -> q8
g(q8) -> q9

meaning that the term of check2 is reachable from f(a) by rewriting with R. Now, quit Timbuk
and try a new sample�le example.txt

timbuk --strat exact example.txt

whereRdescribesthe classicalappend function on lists (the app symbol in the speci�cation �le)
and A0recognizesan in�nite set of terms of the form app(t1, t2) where t1 is any at list of a and
t2 is any at list of b. Automaton Problem1 recognizesonly the two terms given in the de�nition,
i.e. terms cons(b, cons(a, nil)) and cons(b, cons(b, cons(a, cons(a, nil)))) . Finally,
the automaton Problem2 recognizesthe languageof lists where there is at least one b followed by
an a. This exampleis also in oneof the decidableclassesand can be automatically completedusing
a (or c) after 3 completion steps. Like in the previous example,we can verify that the intersection
betweenthe completed automaton and Problem1 is empty meaning that the two recognizedterms
arenot R-reachable from terms recognizedby A0. However, the languagecorresponding to Problem1
is �nite and is a particular case.Thus, to really prove in the generalcasethat the append function
applied to any list of a and any list of b cannot result in any list where there is at least oneb before
an a it is necessaryto compute the intersection betweenthe completed automaton and Problem2,
which is hopefully empty and thus guaranteesthe property.

Conjointly to intersections with additional tree automata, Timbuk provide another tool for
proving or disproving reachabilit y: pattern matching over the completed tree automaton. To do
pattern matching, type p. Timbuk �rst recalls the symbols on which the pattern can be built: the
alphabet, the set of states operators and the set of variables. On our example this results in the
following output:

Alphabet=
cons:2 a:0 b:0 nil:0 app:2 rev:1

States=
qnew0:0 qa:0 qb:0 qla:0 qlb:0 qf:0

Variables=
x y z

Then Timbuk asksfor a given pattern. For instance by typing nil for the pattern to be searched,
we obtain:

Type a term and hit Return: nil

11

Solutions:
Occurence in state qla!
solution 1: Empty substitution

Occurence in state qlb!
solution 1: Empty substitution

Occurence in state qf!
solution 1: Empty substitution

Occurence in state qnew0!
solution 1: Empty substitution

which meansthat the term nil is recognizedby four di�eren t states in the completed automaton,
namely qla , qlb , qf and qnew0. Note that pattern matching is achieved on every terms recognized
by the automaton as well as on all their subterms, this is why we here have several occurrencesof
this pattern. Now let us look for the following pattern:

cons(x, qla)
which producesthe following list of solutions:

Solutions:
Occurence in state qla!
solution 1: x <- qa

where this solution means that cons(qa, qla) is uniquely recognizedby qla , and there is no
other state q such that cons(q, qla) is recognizedby the automaton. Now, if we get back to our
veri�cation problem, we can check that with append on lists of a and lists of b, no b can occur
beforean a by looking for this simple pattern: cons(b, cons(a, y)) which results in the following
output:

Pattern not found!

2.1.2 In teractiv e appro ximations and prioritary transitions

When the speci�cation used is outside of decidable (regular) classes,completion with the exact
strategy generally does not terminate. It is however possible to build an under-approximation
of the reachable terms by computing n steps of completion for a given natural n. On the other
hand, Timbuk permits to build an over-approximations of the set of reachable terms. In the
next speci�cation example example2.txt , we compute an approximation of the reverse function
(symbol rev de�ned by TRS R) on the regular language of terms recognizedby automaton A0
i.e., rev applied to any at lists of a and b where all a's are before b's in the list. The second
automaton called Problem1 recognizesa regular languageof terms that should beunreachable from
A0 by rewriting with R: at lists where there is at least one 'a' before a 'b' in the list. Here is the
complete speci�cation �le example2.txt :

12

(* This is a specification file to be used with the Timbuk tutorial *)

Ops cons:2 a:0 b:0 nil:0 app:2 rev:1

Vars x y z

TRSR
app(nil, x) -> x
app(cons(x, y), z) -> cons(x, app(y, z))
rev(nil) -> nil
rev(cons(x, y)) -> app(rev(y), cons(x, nil))

Automaton A0
States qrev qlab qlb qa qb
Description qrev: "rev applied to lists where a are before b"

qlab: "lists where a are before b (possibly empty)"
qlb : "lists of b (poss. empty)"

Final States qrev
Transitions

rev(qlab) -> qrev nil -> qlab cons(qa, qlab) -> qlab
cons(qa, qlb) -> qlab nil -> qlb cons(qb, qlb) -> qlb
a -> qa b -> qb

Automaton Problem1
States qa qb qany qlb qlab qnil
Description

qany: "Any flat list made of a and b"
qlb : "Any flat list made of a and b, beginning with a b"
qlab: "Any flat list with at least an a followed by a b"

Final States qlab
Transitions

a -> qa
b -> qb
cons(qa, qany) -> qany
cons(qb, qany) -> qany
nil -> qany
cons(qb, qany) -> qlb
cons(qa, qlb) -> qlab
cons(qb, qlab) -> qlab
cons(qa, qlab) -> qlab

Let us achieve an interactive manual completion on this example (we will seehow to automate
this processin the following): type the command timbuk --strat prior manual example2.txt
to use Timbuk with a normalization strategy using prioritary transitions �rst and then manual
introduction of prioritary transition at a secondtime. The �rst completion step gives somenew
transitions and the following output:

Adding transition:

app(rev(qlb),cons(qa,ni l)) -> qrev

Use key word 'States' followed by the names of the new states ended by a dot '.'(optional) then give a sequence
of transitions ended by a dot '.'

Add a star '*' before transitions you want to add to the prior set. The prior transitions should be normalized!!

We are proposeda transition which has to be normalized. First, we have to �nd states to recognize
subterms rev(qlb) and nil . Since qlb recognizeslists of b, rev(qlb) represents the reverse
function applied to lists of b and this should be a list of b. Thus we can recognizerev(qlb) by
qlb . We de�ne a new state qnil to normalize nil , and give the prioritary transitions to apply
using the following syntax:

13

States qnil.
* rev(qlb) -> qlb

* nil -> qnil.

wherethe * symbol precedingthe transitions meansthat we want to install the following transition
in the set of prioritary transitions. Hence, in the next completion steps, if a new con�guration of
the form rev(qlb) appears, it will be automatically normalized into the state qlb . After giving
these prioritary transitions, the transition is still not normalized. Timbuk shows the result of the
normalization processso far:

Normalization simplifies the transition into: app(qlb,cons(qa,qnil)) -> qrev

Adding transition:

app(qlb,cons(qa,qnil)) -> qrev

Oncemore, we are asked to give somerules for normalizing this transition. Sincecons(qa, qnil)
represents a list with one a, we can create a new state qla to normalize it:
States qla.

* cons(qa, qnil) -> qla.

and this terminates the normalization of the �rst transition. There remainsa transition to normal-
ize:

Adding transition:

app(rev(qlab),cons(qa,q nil)) -> qrev

Sincethe state qlab recognizesa list of a's followed by someb's, we intend rev(qlab) to be a list
of b's followed by somea's, so let us normalize it by a new state called qlba and intro duce the
corresponding prioritary transition.

States qlba.

* rev(qlab) -> qlba.

Then, some other transitions are automatically normalized and added, and this terminates the
�rst completion step. In the following completion steps no other new states are necessaryand
it is enough to successively introduce the following prioritary transitions to normalize the new
transitions we are proposedand thus terminate the completion:

* app(qlb, qla) -> qlba * cons(qb, qnil) -> qlb * app(qnil, qlb) -> qlb
* app(qnil, qla) -> qla * rev(qnil) -> qnil * app(qla, qla) -> qla.

Finally, from the menu it is possible to see the completed automaton which now contains 37
transitions and to compute the intersection with the automaton Problems, which gives an empty
automaton meaning that applying rev to a list of a's followed by someb's cannot result into any
list where there is an 'a' beforea 'b'.

Now, save the produced completed automaton in a �le named comp.txt by typing w and
then the �le name comp.txt . Now you can edit this �le and check that the whole speci�cation
(TRS, completed automaton, initial automaton, additional automata used for veri�cation as well
as the constructed approximation) are stored in this �le in Timbuk syntax. Note that since the
approximation has beenentirely built with prioritary rules and prioritary rules are usually stored
in the completed A0 automaton, the approximation stored in the �le is empty.

14

2.1.3 Normalization rules

Normalization rules (or norm rules) are rules of the form:

[s ! x] ! [l1 ! r1 : : : ln ! rn]

where s, l1, . . . , ln are terms that may contain symbols, variables and states, and x, r 1, . . . ,
rn are either states or variables such that if r i is a variable then it is equal to x. To normalize a
transition of the form t ! q0, we match the pattern s on t and x on q0, obtain a given substitution
� and then we normalize t with the rewrite systemf l1� ! r1� ; : : : ; ln � ! rn � g where r 1� ; : : : ; r n �
are necessarilystates (seesection 4.2.2 for details about norm rules).

Let us come back to the previous example and achieve completion with normalization rules.
Start again Timbuk on the example2.txt �le with the default Timbuk normalization strategy:

timbuk example2.txt

The default normalization strategy correspondsto the strategy operator sequence:prior norm rules
manual norm conf auto conf , meaning that any transition is �rst normalized using prioritary
transitions, then using normalization rules and if it is still not normalized, the used is asked for
normalization rules, �nally he can leave the automatic normalization �nish the normalization if
necessary. Doing a �rst step of completion, we are proposeda �rst transition to normalize and
since there is still no prioritary transitions nor normalization rules, the strategy now consider the
manual norm operator:

Adding transition:

app(rev(qlb),cons(qa,ni l)) -> qrev

Do you want to give by hand some NORMALIZATIONrules? (y/n)?

Answer y to this question. First, Timbuk recalls the current normalization rules (here no one is
already de�ned), alphabet, variables and state operators on which new rules can be built:

Do you want to give by hand some NORMALIZATIONrules? (y/n)? y
Current normalisation rules are:

Alphabet=cons:2 a:0 b:0 nil:0 app:2 rev:1
and Variables= x y z
and States= qrev:0 qlab:0 qlb:0 qa:0 qb:0

Type additionnal normalization rules using the 'States' and 'Rules' keyword and end
by a dot '.':

(use keyword 'Top' to place a rule at the beginning of the rule list)

For this example, let us use a naive approximation strategy: for every term of the form app(t1,
t2) let us normalize the two parameters of app by two distinct states, i.e. normalize term t1 by
a common state qapp1 and t2 by qapp2 for every possibleterms t1 and t2 . This can be done by
typing interactively the following text:

15

States qapp1 qapp2
Rules
[app(x, y) -> z] -> [x -> qapp1 y -> qapp2].

whereStates (optional) is usedto de�ne a sequenceof new states(if necessary)and Rules (manda-
tory) de�nes a sequenceof norm rules endedby a dot symbol. Completion continuesand proposes
a new transition to normalize: cons(qa,nil) -> qapp2. Let us give somenew normalization rules
using the same naive strategy: we de�ne two dedicated states qcons1 and qcons2 recognizing
respectively the �rst and secondsubterm of every term of the form cons(t1, t2) .

States qcons1 qcons2
Rules
[cons(x, y) -> z] -> [x -> qcons1 y -> qcons2].

This is enough to terminate this completion step. Remaining steps are automatic and does not
needany new approximation rule construction. Finally, we obtain a tree automaton with only 24
transitions but that does not ful�ll the property we wanted to prove with automaton Problem1
(type i to check that intersection is not empty) becauseapproximation has been too drastic.
However, some weaker properties can be veri�ed on this automaton, for instance that the term
cons(a, rev(cons(a, nil))) is not reachable from A0 (by pattern matching). With regards to
the property we wanted to prove initially with automaton Problem1, the approximation we gave
in section 2.1.2 is one of the simplest we could build. All we can do with normalization rules here
is to give the set of prioritary rules of section 2.1.2 as a normalization rule:

States qnil qla qlba
Rules [x -> y] -> [rev(qlb) -> qlb

nil -> qnil
rev(qlab) -> qlba
app(qlb, qla) -> qlba
cons(qb, qnil) -> qlb
app(qnil, qlb) -> qlb
app(qnil, qla) -> qla
rev(qnil) -> qnil
app(qla, qla) -> qla]

wherethe pattern [x -> y] of the left-hand sideof the normalization rule matchesevery transition,
hencethe right hand sidewill beapplied on every transitions (lik eprioritary transitions). In the next
section, we give an example where normalization rules shows their e�ciency when approximation
has to be preciseon someparts and can be more drastic on the remaining ones.

2.1.4 Bigger example: cryptographic proto col

Now let us introducea bigger examplecoming from the cryptographic protocol veri�cation domain.
This example is the corrected version of the Needham-Schroder Public Key (NSPK for short)
cryptographic protocol [13]. The NSPK protocol aims at mutual authentication of two agents, an
initiator A and a responder B , separatedby an insecurenetwork. Mutual authentication means
that, when a protocol sessionis completed between two agents, they should be assuredof each
other's identit y. This protocol is basedon an exchange of nonces (usually fresh random numbers

16

or time stamps) and on asymmetric encryption of messages:every agent has a public key (for
encryption) and a private key (for decryption). Every public key is supposedto be known by any
agent whereas,the private key of agent X is supposedto beonly known by X . Thus, in this setting,
we supposethat messagesencrypted with the public key of X can only be decrypted and read by
X . This is in fact a common hypothesisof the Dolev-Yao model [6]. Here is a description of the
three stepsof the �xed version of protocol, borrowed from [13]:

1. A ,! B : f NA ; AgK B

2. B ,! A : f NA ; NB ; B gK A

3. A ,! B : f NB gK B

In the �rst step, A tries to initiate a communication with B : A createsa nonceN A and sendsto B
a message,containing NA aswell ashis identit y, encrypted with the public key of B : K B . Then, in
the secondstep, B sendsback to A a messageencrypted with the public key of A, containing the
nonceNA that B received, a new nonceNB , and B 's identit y. Finally, in the last step, A returns
the nonceNB he received from B . If the protocol is completed, mutual authentication of the two
agents is ensured:

� as soon as A receives the messagecontaining the nonce N A , sent back by B at step 2., A
believesthat this messagewas really built and sent by B . Indeed, N A was encrypted with
the public key of B and, thus, B is the only agent that is able to sendback N A ,

� similarly, when B receives the messagecontaining the nonceN B , sent back by A at step 3.,
B believesthat this messagewas really built and sent by A.

Another property that may be expected for this kind of protocol is con�dentiality of nonces. In
particular, if noncesremain con�dential, they can be usedlater askeysfor symmetric encryption of
communications betweenA and B . Thus, con�dentialit y of noncesis alsoof interest. In this part we
are going to focuson this last aspect: for agents respecting the protocol and whatever the intruder
may do, weexpect that noncesremain con�dential. The correctedversionof the Needham-Schroder
public key protocol is encoded in the example nspk.txt �le of the distribution.

In this speci�cation �le, each agent is labeled by a unique identi�er. Let L agt = f A; B ; o;s(o);
s(s(o)) ; : : :g be the set of agent labels, where A and B are some agents we observe which are
supposedto be honest and f o;s(o); : : :g is an in�nite set of dishonestagents. For any agent label
l 2 L agt , the term ident (l) will denote the agent whose label is l . The term pubkey(a) denotes
the public key of agent a and encr(k; a; c) denotesthe result of encryption of content c by key k.
In this last term, a is a ag recording who has performed the encryption. This �eld is not used
by the protocol rules but is used for veri�cation. The term N (x; y) represents a nonce generated
by agent x for identifying a communication with y. We also use an AC binary symbol store in
order to represents sets. For example the term store(x; store(y; z)) (equivalent modulo AC to
store(store(x; y); z) and to store(y; store(z; x)), etc.) will represent the set f x; y; zg. With regards
to this set interpretation of terms, the store represent a set union. Like in many other approaches
basedon the Dolev-Yao, the intruder is consideredas being the network itself, i.e. every message
can be read, erased,replayed, etc. In our setting the intruder/net work is thus a set of messages
represented using the store symbol.

Starting from a set of initial requests,our aim is to compute a tree automaton recognizingan
over-approximation of all possiblesent messageswith any number of running protocol sessionsand

17

an active intruder. The approximation also contains someterms signaling either communication
requestsor establishedcommunications. For example,a term of the form goal(x; y) meansthat x
expect to open a communication with y. A term of the form connect(x; y; z) meansthat x believes
to have initiated a communication with y, but, in reality x communicateswith z. The encoding into
the TRS is straightforward: each step of the protocol is described thanks to a rewrite rule whose
left-hand side is a precondition on the current state (set of received messagesand communication
requests), and the right-hand side represents the messageto be sent (and sometimesestablished
communication) if the precondition is met. This encoding is very similar to the onedetailed in [10].

The tree automaton A0 recognizesthe initial con�gurations (state qnet), i.e. any term of the
set E de�ned inductiv ely as follows

E = f nul l ; ident (A); ident (B); ident (o); ident (s(o)) ; : : : ; pubkey(A); pubkey(B); pubkey(o);
pubkey(s(o)) ; : : : ; pr ivkey(o); pr ivkey(s(o)) ; : : : ; goal(A; A); goal(A; B); goal(B ; A); goal(B ; B);

goal(A; o); goal(o;A); goal(o;B); goal(B ; o); goal(A; s(o)); : : : ; store(t 1; t2) j t1; t2 2 Eg

Hence,initially the intruder/net work knows identit y of all the agents, all the public keys,the private
keys of the dishonestagents. Terms of the form goal(:::) cannot be exploited by the intruder but
are neededto initialize the protocol betweeneach pair of agents. Note that connectionrequestsof A
(resp. B) with himself are taken into account but can easily be discardedof initial con�gurations of
the protocol analysis if they are not relevant. For this casestudy, we assumedthat such a behavior
may occur.

In the �rst part of the automaton someprioritary transitions are de�ned in order to force some
of the terms to be recognizeddeterministically by a unique (prioritary) state. This is used for
veri�cation purpose or for ensuring left-linearit y condition (see section 2.1.5). For left-linearit y
condition, for instance, since terms matched by non left-linear variables of the rewrite rules of
the protocol are agent labels, it is important that agent labels are recognizeddeterministically.
This is why the set of prioritary transitions contains transitions to force terms o;s(o); s(s(o)) ; : : :
to be deterministically recognizedby state I label, A to be deterministically recognizedby Al abel
and B label by state B label. It is similar for nonceswhich all have somededicated (prioritary)
deterministic states.

First, let us try to complete the automaton A0 without the approximation contained in the �le
example nspk.txt . This can be done by typing:

timbuk --noapprox example nspk.txt
The �rst step of completion producessometransitions which are already coveredby the current

automaton and partially normalize another one, which is �nally proposedto the user to �nish the
normalization.

Adding transition:

store(store(qnet,qnet), qnet) -> qnet

... covered by current automaton.

Adding transition:

store(qnet,store(qnet,q net)) -> qnet

18

... covered by current automaton.

Adding transition:

store(qnet,qnet) -> qnet

... already normalised!

Adding transition:

store(encr(privkey(Ilab el), o,qn et) ,pri vkey(Il abel)) -> qnet

Prior normalisation simplifies the transition into:

store(encr(privkey(Ilabe l),I labe l,q net) ,pri vkey(Il abel)) -> qnet

Adding transition:

store(encr(privkey(Ilab el), Ilab el, qnet),pr ivk ey(I labe l)) -> qnet

To normalize this transition, we can give somenew normalization rules. The transition we here
have to normalize is of the form store(t1, t2) -> qnet where qnet is the state recognizingthe
set of every messageof the intruder/net work. To normalize this transition, it is enoughto remark
that if the intruder has the union of stores(or messageelements) t1 and t2 in its knowledgethen
he reasonably has also t1 and t2 independently. Hence we can normalize t1 by qnet and t2
by qnet for every possible t1 and t2 . This can be done by adding the following normalization
rule: [store(x, y) -> qnet] -> [x -> qnet y -> qnet] meaning that for normalizing every
transition of the form store(x, y) -> qnet , subterm x and subterm y will be normalized by the
state qnet . This rule can be addedduring the completion using the following syntax (�rst, Timbuk
recalls the alphabets and variables on which rules can be built):

Do you want to give by hand some NORMALIZATIONrules? (y/n)? y
Current normalisation rules are:

Alphabet=goal:2 store:2 null:0 encr:3 pubkey:1 privkey:1 N:2 cons:2 ident:1 o:0
s:1 A:0 B:0 connect:3

and Variables= x y z u v w m
and States= Ilabel:0 qnet:0 Alabel:0 Blabel:0 Aident:0 Bident:0 Iident:0 NAB:0
NAA:0 NBB:0 NBA:0 NI:0

Type additionnal normalization rules using the 'States' and 'Rules' keyword and end
by a dot '.':

19

(use keyword 'Top' to place a rule at the beginning of the rule list)

Rules
[store(x, y) -> qnet] -> [x -> qnet y -> qnet].

This lead to the automatic normalization of many new transitions producedby the completion.
The next new transition the user is proposedis the following:

Adding transition:

encr(pubkey(Alabel),Ila bel, cons(NI ,Iid ent)) -> qnet

This meansthat the intruder has received in its knowledge(qnet) a new term which is of the form
encr(pubkey(Alabel), x, m) i.e. a messagemencrypted with the public key of A. In this case,
it is a bad idea to normalize mwith the state qnet since it would directly give the secretmessage
mto the intruder though it is encrypted with the public key of A (and should remain secret, if the
protocol is correct). Normalizing mwith qnet would thus build a too big over-approximation where
this secret is given to the intruder. On the opposite, it is possibleto de�ne a particular state (say
qAcontent) for recognizingeverysecretbelongingto A. It is alsonecessaryto de�ne a new speci�c
state qAkeyfor recognizingpubkey(Alabel) . De�ning thosenew statesand the new normalisation
rules can be done interactively using the following syntax:

States qAcontent qAkey
Rules

[encr(pubkey(Alabel),x,y) -> z] ->
[y -> qAcontent

pubkey(Alabel) -> qAkey].

where every subterm y under an encryption with the public key of A will be normalized using
the qAcontent state. The following transition to normalize is similar to the previous one but for
B : encr(pubkey(Blabel),Ilabe l,co ns(NI,I iden t)) -> qnet . The normalization rule to add
is thus of the sameform:

States qBcontent qBkey
Rules

[encr(pubkey(Blabel),x,y) -> z] ->
[y -> qBcontent

pubkey(Blabel) -> qBkey].

Next transition is also concernedwith the public encryption of a messagebut this time with the
public key of dishonestagents all recognizedby state Ilabel . Like in the previous cases,we could
add a speci�c state for recognizing the encrypted message,however, since the intruder knows the
private key of those agents it is likely to obtain the content of the encrypted messageanyway.
Hence, it is not erroneousto normalize the encrypted messagewith qnet (and put the content of
the messagedirectly in the intruder's knowledge). Here,usingstate qnet insteadof a newdedicated
state permits to producea more compact approximation that is still correct with regardsto secrecy
properties for A and B . It is possibleto do the samewith the subterm pubkey(Ilabel) . Here is
the corresponding normalization rule to add interactively:

20

Rules
[encr(pubkey(Ilabel), x, y) -> z] ->

[y -> qnet
pubkey(Ilabel) -> qnet].

Note that in previous transitions, normalizing pubkey(Alabel) and pubkey(Blabel) would have
built a too big approximation loosingsecrecyproperties associated to A and B . Indeednormalizing
pubkey(Alabel) by qnet in a transition of the form encr(pubkey(Alabel),x, m) -> qnet would
produce two new transitions, namely: pubkey(Alabel) -> qnet and encr(qnet,x, m) -> qnet .
The problem doesnot comefrom the �rst one (since the intruder already has the public key of A)
but from the secondsince with this last transition and the transition pubkey(Ilabel) -> qnet
that is already in the automaton, the intruder can build the term encr(pubkey(Ilabel),x, m)
-> qnet . Then, sinceprivkey(Ilabel) is also in qnet , the intruder can apply decryption on the
last term and obtain min clear.

Adding the last normalization rule permits to end the �rst completion step. In the next com-
pletion step, we are successively proposedthe following new transitions to normalize:

cons(NI,cons(NI,Bident)) -> qnet
cons(NAA,cons(NAA,Aident)) -> qAcontent
cons(NBA,cons(NAB,Aident)) -> qBcontent

All those transitions represent structured messagesrespectively stored in the intruders knowledge,
A secret messagecontent, and B secret messagecontent. One could now de�ne somenew secret
states for recognizing the (secret) subterms of those messages.However, we can also do a more
drastic approximation by using the three samestates to normalize the subterms, i.e. collapsethe
messagestructure:

Rules
[cons(x,y) -> qnet] -> [y -> qnet]
[cons(x, y) -> qAcontent] -> [y -> qAcontent]
[cons(x, y) -> qBcontent] -> [y -> qBcontent] .

This approximation doesnot invalidate the secrecyproperty of the protocol and make the approx-
imation more compact. Note that those three rules can be equivalently replacedby the following
normalization rule: [cons(x, y) -> z] -> [y -> z] . This is the last approximation rules to
give and the remaining completion steps are performed automatically within someminutes. Fi-
nally the automaton is complete. Now to prove the secrecyproperties, two steps are necessary.
First, since the TRS used for completion is non left-linear, to guarantee that this automaton is
really an over-approximation of R ?(E), it is necessaryto verify the left-linearit y condition. This
condition can be automatically veri�ed on the completed automaton (seesection 2.1.5 for details).
The secondstep, necessaryto prove that secrecyof honest noncesis guaranteed consists in com-
puting the intersection between the completed automaton and an automaton describing all the
possiblecaseswhere an honest nonce has beencaptured by the intruder. This last automaton is
the automaton Problems of the example nspk.txt �le. This automaton recognizesany term of
the form store(N, t) where t is any term built on the alphabet and N is any term in the set
N(A,B), N(A,A), N(B,B), N(B,A) , i.e. every possiblenoncesproduced by an honest agent for
an other honest agent. Typing i in the menu make Timbuk compute an intersection between the

21

completedautomaton and the automaton problemsand results into an empty intersection, meaning
that those noncescannot be grabbed by the intruder.

Note that this can also be checked using the pattern matching. Type p and then the pattern
store(N(A,B), x) for instance. This pattern has no solution meaning that this term is not reach-
able. For a more generalveri�cation, now type p and pattern store(N(x, y), z) . This results in
the following output:

Solutions:
Occurence in state qnet!
solution 1: x <- Alabel, y <- Ilabel, z <- NI
solution 2: x <- Ilabel, y <- Ilabel, z <- NI
solution 3: x <- Ilabel, y <- Blabel, z <- NI
solution 4: x <- Ilabel, y <- Alabel, z <- NI
solution 5: x <- Blabel, y <- Ilabel, z <- NI
solution 6: x <- Alabel, y <- Ilabel, z <- Iident
solution 7: x <- Ilabel, y <- Ilabel, z <- Iident
solution 8: x <- Ilabel, y <- Blabel, z <- Iident
solution 9: x <- Ilabel, y <- Alabel, z <- Iident
solution 10: x <- Blabel, y <- Ilabel, z <- Iident
solution 11: x <- Alabel, y <- Ilabel, z <- Aident
solution 12: x <- Ilabel, y <- Ilabel, z <- Aident
solution 13: x <- Ilabel, y <- Blabel, z <- Aident
solution 14: x <- Ilabel, y <- Alabel, z <- Aident
solution 15: x <- Blabel, y <- Ilabel, z <- Aident
solution 16: x <- Alabel, y <- Ilabel, z <- Bident
solution 17: x <- Ilabel, y <- Ilabel, z <- Bident
solution 18: x <- Ilabel, y <- Blabel, z <- Bident
solution 19: x <- Ilabel, y <- Alabel, z <- Bident
solution 20: x <- Blabel, y <- Ilabel, z <- Bident
solution 21: x <- Alabel, y <- Ilabel, z <- qnet
solution 22: x <- Ilabel, y <- Ilabel, z <- qnet
solution 23: x <- Ilabel, y <- Blabel, z <- qnet
solution 24: x <- Ilabel, y <- Alabel, z <- qnet
solution 25: x <- Blabel, y <- Ilabel, z <- qnet

meaningthat noncesproducedby or producedfor a dishonestagent (x or y is associated to Ilabel)
have beencaptured but none of the fully honest ones(where x and y have beenassociated to A or
B).

Now, let ustry to check the authentication property. Recall that a term of the form connect(x,y,z)
meansthat x believes to have initiated a communication with y but in reality x is communicating
with z. Type p and search for the pattern connect(x, y, z) in the completed automaton. This
producesthe following output:

Solutions:
Occurence in state qnet!
solution 1: x <- Blabel, y <- Ilabel, z <- Ilabel
solution 2: x <- Alabel, y <- Alabel, z <- Ilabel
solution 3: x <- Alabel, y <- Blabel, z <- Ilabel

22

solution 4: x <- Blabel, y <- Ilabel, z <- Blabel
solution 5: x <- Ilabel, y <- Ilabel, z <- Blabel
solution 6: x <- Ilabel, y <- Blabel, z <- Blabel
solution 7: x <- Ilabel, y <- Ilabel, z <- Ilabel
solution 8: x <- Ilabel, y <- Alabel, z <- Ilabel
solution 9: x <- Ilabel, y <- Ilabel, z <- Alabel
solution 10: x <- Ilabel, y <- Blabel, z <- Alabel
solution 11: x <- Alabel, y <- Alabel, z <- Alabel
solution 12: x <- Alabel, y <- Alabel, z <- Blabel
solution 13: x <- Blabel, y <- Blabel, z <- Alabel
solution 14: x <- Blabel, y <- Alabel, z <- Alabel
solution 15: x <- Alabel, y <- Blabel, z <- Blabel
solution 16: x <- Alabel, y <- Blabel, z <- Alabel
solution 17: x <- Ilabel, y <- Alabel, z <- Alabel
solution 18: x <- Alabel, y <- Ilabel, z <- Alabel
solution 19: x <- Blabel, y <- Ilabel, z <- Alabel
solution 20: x <- Ilabel, y <- Blabel, z <- Ilabel
solution 21: x <- Ilabel, y <- Alabel, z <- Blabel
solution 22: x <- Alabel, y <- Ilabel, z <- Blabel
solution 23: x <- Blabel, y <- Alabel, z <- Blabel
solution 24: x <- Blabel, y <- Blabel, z <- Blabel
solution 25: x <- Alabel, y <- Ilabel, z <- Ilabel
solution 26: x <- Blabel, y <- Alabel, z <- Ilabel
solution 27: x <- Blabel, y <- Blabel, z <- Ilabel

where somesolutions are not satisfactory with regards to authentication. For instance, solution 3
says that A thinks that he is talking to B whereasit is talking to I (any dishonestagent). In fact
this is not an error of the protocol but it is due to an approximation function which is to drastic
to prove the authentication (seesection 2.1.6 for a more preciseapproximation function and the
proof of the authentication property).

2.1.5 Verifying left-linearit y condition

At the end of the previous successfulcompletion, by typing v in the Timbuk menu, one can verify
the left-linearit y condition (see[7] for details) on the non left-linear TRSs used for modeling the
protocol to guarantee that the completed automaton recognizesan over-approximation of R ?(E).
On this example,after the full completion, by typing v we obtain within a few seconds:

Checking intersection: Ilabel ^ Alabel ... done.
Checking intersection: Alabel ^ Blabel ... done.
Checking intersection: Ilabel ^ Blabel ... done.
No linearity problem!

meaningthat left-linearit y condition is ful�lled. What Timbuk doesis that it searchesfor every
possiblestate matched by non left-linear variables and proves that if the states matched by non
linear variablesare di�eren t then the languagesrecognizedby thosestatesare disjoint. This is here
the casefor states Ilabel , Alabel and Blabel . When it is not the case,it is necessaryto modify
the normalization rules or the prioritary rules so that those states recognizedisjoint languages.

23

2.1.6 Doing more and going faster

Once your approximation are established,it is possibleto store it directly in the speci�cation �le,
seeapproximation Secret in �le example nspk.txt for instance. Then it is possible to directly
start a completion processwith the �rst approximation by typing:

timbuk example nspk.txt

In this �le, there is a secondapproximation called SecAndAuth that permits to prove both
the secrecyand the authentication property which can be used instead of the �rst one thanks to
the Timbuk option --approx SecAndAuth. However, since this completion takes sometime, and
since this set of approximation rules is known to be complete w.r.t. the completion to perform
(i.e. no manual interaction is needed)it is alsopossibleto usethe experimental static completion
algorithm (seesection 4.4.2) with the --static Timbuk option:

timbuk --approx SecAndAuth --static example nspk.txt

Type a to achieve the full completion at once. Type v to verify the left-linearit y condition
(note that it is also faster in static mode), then type i and check that honest noncesare still not
captured by the intruder. Then type p and search for pattern connect(x, y, z) . This results in
the following output:

Solutions:
Occurence in state qnet!
solution 1: x <- Alabel, y <- Ilabel, z <- Ilabel
solution 2: x <- Blabel, y <- Ilabel, z <- Blabel
solution 3: x <- Blabel, y <- Ilabel, z <- Alabel
solution 4: x <- Ilabel, y <- Ilabel, z <- Ilabel
solution 5: x <- Ilabel, y <- Blabel, z <- Alabel
solution 6: x <- Ilabel, y <- Blabel, z <- Blabel
solution 7: x <- Ilabel, y <- Alabel, z <- Ilabel
solution 8: x <- Alabel, y <- Blabel, z <- Blabel
solution 9: x <- Blabel, y <- Alabel, z <- Alabel
solution 10: x <- Alabel, y <- Alabel, z <- Alabel
solution 11: x <- Blabel, y <- Blabel, z <- Blabel
solution 12: x <- Ilabel, y <- Alabel, z <- Blabel
solution 13: x <- Ilabel, y <- Alabel, z <- Alabel
solution 14: x <- Ilabel, y <- Blabel, z <- Ilabel
solution 15: x <- Ilabel, y <- Ilabel, z <- Blabel
solution 16: x <- Ilabel, y <- Ilabel, z <- Alabel
solution 17: x <- Blabel, y <- Ilabel, z <- Ilabel
solution 18: x <- Alabel, y <- Ilabel, z <- Alabel
solution 19: x <- Alabel, y <- Ilabel, z <- Blabel

This resultsshows that whenever a dishonestagent is concernedby a communication, authentication
is not guaranteed: lines 2, 3, 5, 7, 12, 14, 15, 16, 18, 19 shows each time that x is connectto someone
else that he expects. On the opposite, each time that x and y range over honest agents, values
for y and z coincide (lines 8, 9, 10, 11). Hence, for honest agents, this protocol guarantees the
authentication.

Remark on appro ximation de�nition in static mo de: When de�ning approximation rules
to be usedin the static mode, note that Timbuk may considerthat your set of approximation rule

24

is not complete though you know it is. This is the casefor the �le example nspk.txt : if you
have a careful look to the approximation Secret it contains the rules establishedin section 2.1.4
as well as an additional at the end of the rule set: [x -> y] -> [z -> qnet] ensuring that every
subterm that has not already been normalized by the previous rule is to be normalized by state
qnet . This is a trick to help Timbuk static completion algorithm to admit that this approximation
is complete. Note that instead of completing by hand the approximation rule set it is also possible
to usethe --fstatic option that automatically addsa default rule of the samekind and thus never
complains about incomplete normalization rule sets.

2.1.7 More tric ks

Syntax of normalization rules is in fact a bit lessrestrictiv e that what is said in the previoussection.
Let us retry to complete the basic.txt �le:

timbuk basic.txt

During the �rst completion step we are proposedto give somenormalization rules. Let us de�ne
a state operator (seesection 3.6.2 for details about state operators) and write interactively some
normalization rules in extendedsyntax:

States q:1
Rules [g(x) -> y] -> [x -> q(x)].

The e�ect of this rule is to normalize every subterm t of a transition g(t) ! q0 by a state
labeled by q(t). This single normalization rule permits to achieve the completion automatically
till the end. Here is a more practical example. Using this extended syntax, the normalization
rules given in section 2.1.4 for proving the secrecyon the NSPK cryptographic protocol, can be
abbreviated as follows (approximation called Secret2 in example nspk.txt �le):

Approximation Secret2
States q:1 secret:1 qnet key:1 Alabel Ilabel Blabel
Rules

[store(x, y) -> z] -> [x -> qnet y -> qnet]

[encr(pubkey(Ilabel), x, y) -> z] ->
[y -> qnet

pubkey(Ilabel) -> qnet]

(* Every messagecomponent encrypted by someoneelse than the intruder goes in a
dedicated state *)

[encr(pubkey(u), x, y) -> z] ->
[y -> q(secret(u))

pubkey(u) -> q(key(u))]

(* In the storage states, everything is collapsed (structure of the message is
not important) *)

[cons(x, y) -> z] -> [y -> z]

25

Recall that approximation rules are used in the order. Hence, every messageencrypted by a
dishonestagent will benormalizedusingthe secondrule and every messageencryptedby an (honest)
agent Xmatched by variable u will be normalized using the third rule and statesq(secret(X)) and
q(key(X)) . It is possible to reachieve completion using this new approximation. However, since
this extended syntax cannot be used in static mode, we need to achieve completion in dynamic
(default) mode:

timbuk --approx Secret2 example nspk.txt

Someother tricks for building approximation are still under development but are already integrated
in Timbuk for testing: merging rules, approximation equationsand interactive merging with Tabi.
Merging rules (see section 4.2.3) are rules of the form q1 -> q2 for merging two states in an
automaton. Such rules can be given to Timbuk explicitly using the mcommand, or they can be
built interactively using Tabi (seesection 2.3.3). Approximation equationsare a third way to merge
somestates of the automaton by giving someequivalencebetweensometerms (patterns in fact).

Here is a simple example done on the processes.txt �le. This example consists of a TRS
modeling the behavior of two parallel processescounting elements on a sharedcounter that should
not be accessedby the two processesat the sametime (see[7] for details on this example). If we
start a completion with an exact normalization strategy:

timbuk --strat exact processes.txt

Then completion diverges. This comes from the fact in the initial language the number of
elements to be counted by processesis not bounded. Hence, the counter (built on the usual
Peano operators for naturals: o and s()) counts an in�nite number of elements. Divergenceof
completion, can easily be pruned adding interactively an approximation equation. In our case,we
achieved completion until the 6th completion step then add the following approximation equation
merging together all the naturals greater to 0:

Current equations are:

Alphabet=S:4 Proc:2 cons:2 null:0 busy:0 free:0 s:1 o:0
and Variables= x y z u

Type additionnal equations and end by a dot '.':
s(s(x))=s(x).

This equation permits to mergesomeof the states of the automaton:

State merging using approximation equations!

qnew8 -> qnew9
qnew6 -> qnew9

Then, doing another completion step permits to end the completion process.It is possibleto check
that both processeshave never accessedthe counter at the sametime by verifying that the pattern
S(Proc(busy, x), Proc(busy, y), z, u) has no solution in the automaton:

26

Alphabet=
S:4 Proc:2 cons:2 null:0 busy:0 free:0 s:1 o:0

States=
qnew9:0 qnew8:0 qnew7:0 qnew6:0 qnew5:0 qnew4:0 qnew3:0 qnew2:0 qnew1:0 qnew0:0 q0:0
q1:0 q2:0 q3:0 q4:0

Variables=
x y z u

Type a term and hit Return: S(Proc(busy, x), Proc(busy, y), z, u)

Pattern not found!

2.2 Taml
Start Taml by typing: taml in a command line window. Taml is an Ocaml interpreter extended
with Timbuk library functionalities (see section 5 for referencemanual of Taml and see[12] for
details about Ocaml syntax). The following tutorial is a step by step construction of TRS and
automata. However, if necessary, the whole tutorial �le can be executedat onceby loading the �le
in Taml, using the following Ocaml directive #use "tutorial.ml" .

First, let us de�ne an alphabet f by typing the following Taml commands (commands are
pre�xed by the # symbol which represents the usual Ocaml prompt, this of coursehas not to be
typed by the user):

let f= alphabet "app:2 cons:2 nil:0 a:0 b:0";;

Taml gives the following output, meaning that f has beenacceptedas a valid alphabet.

val f : Taml.Alphabet.t = app:2 cons:2 nil:0 a:0 b:0

Similarly one can de�ne a variable set v:

let v= varset "x y z u";;
val v : Taml.Variable_set.t = x y z u

Now, let us de�ne a term t over the alphabet f and the variable set v as follows:

let t= term f v "cons(a, cons(b, nil))";;
val t : Taml.Term.t = cons(a,cons(b,nil))

Since Taml embeds a complete Ocaml interpreter, it is thus possible to use usual Ocaml syntax
facilities and alsoto combine Taml functions with usualOcaml functions. For instance,it is possible
to de�ne a speci�c term function specializedfor alphabet f and variable set v in the following way:

let fvterm= term f v;;
val fvterm : string -> Taml.Term.t = <fun>

27

Now it is possible to construct a list of terms built on alphabet f and variable set v using the
specialized function fvterm as well as Ocaml List.map function (mapping a function to every
element of a list) in the following way:

let l= List.map fvterm ["app(cons(a, nil),cons(b, cons(b, nil)))"; "a"; "cons(a,nil)"];;
val l : Taml.Term.t list = [app(cons(a,nil),cons(b ,con s(b ,nil)))
;
a
;
cons(a,nil)
]

Similarly we can construct term rewriting systemsand tree automata directly in the interpreter:

let tt= trs f v "app(nil, x) -> x app(cons(x, y), z) -> cons(x, app(y, z))";;
val tt : Taml.Rewrite.t =

app(nil,x) -> x
app(cons(x,y),z) -> cons(x,app(y,z))

let aut= automaton f "
States qa qb qla qlb qf
Final States qf
Transitions

a -> qa
b -> qb
cons(qa, qla) -> qla
nil -> qla
cons(qb, qlb) -> qlb
nil -> qlb
app(qla,qlb) -> qf";;

val aut : Taml.Automaton.t =
States qa:0 qb:0 qla:0 qlb:0 qf:0

Final States qf

Transitions
a -> qa
b -> qb
cons(qa,qla) -> qla
nil -> qla
cons(qb,qlb) -> qlb
nil -> qlb
app(qla,qlb) -> qf

Now let us show that a given term is recognizedby a given state in a tree automaton

28

let t1= List.hd l;;
val t1 : Taml.Term.t = app(cons(a,nil),cons(b, cons(b,n il)))

let s= state "qf";;
val s : Taml.Automaton.state = qf

run t1 s aut;;
- : bool = true

One can alsorewrite terms using the term rewriting systemtt and the Rewrite.left inner norm
function of the Timbuk library (seesection 5.3 for details on use of Timbuk functions outside of
Taml interface):

let t2= Rewrite.left_inner_norm tt t1;;
val t2 : Taml.Term.t = cons(a,cons(b,cons(b,ni l)))

It is also possible to read automaton and TRS from a Timbuk speci�cation �le. For instance,
let us read the automata completed A0 and the TRS current TRSin the �le comp.txt which
corresponds to the completion done in section 2.1.2.

let tt= read_trs "current_TRS" "comp.txt";;
val tt : Taml.Specification.trs =

app(nil,x) -> x
app(cons(x,y),z) -> cons(x,app(y,z))
rev(nil) -> nil
rev(cons(x,y)) -> app(rev(y),cons(x,nil))

let aut= read_automaton "completed_A0" "comp.txt";;
val aut : Taml.Specification.automa ton =

States qlba:0 qla:0 qnil:0 qrev:0 qlab:0 qlb:0 qa:0 qb:0

Description
qrev: "rev applied to lists where a are before b"
qlab: "lists where a are before b (possibly empty)"
qlb: "lists of b (poss. empty)"

Final States qrev

Prior
app(qla,qla) -> qla
rev(qnil) -> qnil
app(qnil,qla) -> qla
app(qnil,qlb) -> qlb
cons(qb,qnil) -> qlb
app(qlb,qla) -> qlba
rev(qlab) -> qlba
cons(qa,qnil) -> qla

29

nil -> qnil
rev(qlb) -> qlb

Transitions
rev(qlab) -> qrev
nil -> qlab
cons(qa,qlab) -> qlab
cons(qa,qlb) -> qlab
nil -> qlb
cons(qb,qlb) -> qlb
a -> qa
b -> qb
nil -> qrev
rev(qlab) -> qlba
app(qlba,qla) -> qrev
rev(qlb) -> qlb
nil -> qnil
cons(qa,qnil) -> qla
app(qlb,qla) -> qrev
cons(qa,qnil) -> qrev
cons(qb,qlba) -> qrev
nil -> qlba
app(qlba,qla) -> qlba
app(qlb,qla) -> qlba
cons(qb,qnil) -> qlb
app(qnil,qlb) -> qlb
app(qnil,qla) -> qla
rev(qnil) -> qnil
app(qla,qla) -> qla
app(qlb,qlb) -> qlb
cons(qa,qnil) -> qlba
app(qnil,qla) -> qlba
app(qla,qla) -> qlba
cons(qb,qlba) -> qlba
cons(qb,qla) -> qlba
cons(qa,qla) -> qla
app(qnil,qla) -> qrev
app(qla,qla) -> qrev
cons(qb,qla) -> qrev
cons(qa,qla) -> qlba
cons(qa,qla) -> qrev

Now we can compute the automaton recognizingthe set of terms irreducible by TRS current TRS
by typing the following command:

let aut_iff= irr f tt;;
val aut_iff : Taml.Automaton.t =

States q2:0 q1:0 q0:0

30

Final States q0 q1 q2

Transitions
b -> q2
a -> q2
nil -> q1
app(q2,q2) -> q2
app(q2,q1) -> q2
cons(q1,q1) -> q0
cons(q2,q2) -> q0
cons(q2,q1) -> q0
cons(q1,q2) -> q0
cons(q0,q0) -> q0
cons(q2,q0) -> q0
cons(q1,q0) -> q0
cons(q0,q2) -> q0
cons(q0,q1) -> q0
app(q2,q0) -> q2

Now, recall that in section 2.1.2 the automaton completed A0 (stored in the Ocaml variable aut)
of the �le comp.txt recognizesan over-approximation of R?(L (A0)) whereA0and Rare respectively
the automaton and the TRS de�ned in �le example2.txt (and such that R = current TRS). We
can thus construct the automaton recognizing an over approximation of the set of normal forms
R!(L (A0)) as follows:

let norm= inter aut aut_iff;;

However, the intersection automaton is very big and not cleaned(it may have someunnecessary
states). Furthermore, for e�ciency reasons,our implementation of intersection does not build
explicitly the set of states of the intersection automaton. To obtain a �nalized automaton, it is
necessaryto usecleaning functions such as simplify :

let norm2= simplify norm;;
val norm2 : Taml.Automaton.t =

States q7:0 q6:0 q5:0 q4:0 q3:0 q2:0 q1:0 q0:0

Final States q6 q7

Transitions
nil -> q1
nil -> q0
nil -> q7
b -> q3
a -> q4
cons(q4,q0) -> q5
cons(q4,q0) -> q6
cons(q3,q1) -> q6

31

cons(q4,q0) -> q2
cons(q3,q1) -> q2
cons(q4,q5) -> q2
cons(q3,q5) -> q2
cons(q3,q2) -> q2
cons(q3,q2) -> q6
cons(q4,q5) -> q5
cons(q3,q5) -> q6
cons(q4,q5) -> q6

This automaton represents an over-approximation of R!(L (A0)). To have a more preciseidea of the
recognizedlanguage,one can browseit using Tabi:

browse norm2;;

Then click on the Start symbol and then on the button chooserandomto build somerandomized
representativ es of the language. The representativ es are all lists where b's are always before a's
which corresponds to the de�nition of the reversefunction applied on lists of a's followed by some
b's. Details on Tabi usewill be given in the next section. For the moment, just quit random and
quit Tabi. Note that in the automaton, there remainsonly constructor symbols (functional symbols
app and rev have disappeared). This provesthat de�nition of reverseis completew.r.t. the lists we
have considered(see[9] for details). To concludeon this tutorial for Taml, note that Taml provides
a small online help on the most usedfunctions by typing:

help();;

2.3 Tabi

2.3.1 Basic

To start Tabi, simply type tabi in a command line window. Then open the automaton A03 of the
example3.txt Timbuk speci�cation �le using the �le browser: choosethe OpenFile item of the File
menu and browse the directories to open the �le example3.txt . After a while the Start symbol
is displayed in the Tabi window. Click on it and choose in the list the �nal state to start from.
For instance, click on �nal state qf1. Now we are going to browse the automaton to build some
representativ es of the languagerecognizedby this �nal state. Click with the left mousebutton on
the state qf1. A window opens. It contains a list of con�gurations (or terms) leading to this state.
Choosecon�guration times(q0,q0). The state qf1 is replacedby the selectedcon�guration. This is
what we call unfolding of a state.

Now click on a state q0, replace it by the unique possiblecon�guration: O. Then do the same
for the other occurrenceof state q0. We have obtained a ground term recognizedby state qf1 in the
tree automaton A0. Note that moving the mousepointer over the term and its subterms displays
in red the state recognizingthe selectedsubterm.

Instead of building terms by hand, it is also possibleto produce random representativ es. Usea
middle click over term times(O,O) to fold it back to the state qf1. Now useleft click on qf1 again to
open the con�guration list window. Then instead of choosing a particular con�guration, click on
button chooserandom. A newwindow openscontaining a list of randomly generatedrepresentativ es

3Tabi always readsthe �rst automaton of the speci�cation �le

32

for state qf1. In our case,this list should contain exactly 3 representativ eswhich is in fact exactly
the languagerecognizedby qf1. Click on one of them to useit to replacestate qf1.

Now assume,that you want to restart browsing from a di�eren t �nal state, say qnew23. This
can be done by clicking on button Restart which reinitializes the browsing from the Start symbol
seenat the beginning. Click on Start symbol and select the �nal state qnew23. Produce a random
representativ e for qnew23as seenbefore. This state does not recognizea �nite languageand the
randomly generatedterms are bigger and more numerous. Now changethe valuesfor random upper
bound for term depth, random upper bound for time and random upper bound for random term
number using respectively the items Randommax depth, Randommax time and Randommax term
number of the Optionsmenu and seethe e�ect on randomizedterm generation. For instance, refold
state qnew23with a right click on the top of the term and set Randommax depth and Randommax
term number to 10. Then produce random terms for state qnew23. Produced terms are lesserand
smaller.

Now assumethat you want to browse state qnew20which is not �nal. Click on the Browsing
style item of the Optionsmenu, and click on the All statesbutton. Then click on the Restart button.
Now, by clicking on the start symbol, it is possibleto browseany state of the automaton such as
qnew20.

2.3.2 Displa y modes

The default displaying mode you are using is autozoom (at that moment autozoom should be
selectedin the Tabi windows) meaning that Tabi tends to display the whole browsed term as big
as possiblein the window. When the term size is getting bigger and bigger, the font is reducedso
that it can still be displayed in the window. When the font is getting too tiny, Tabi automatically
switches to zoom mode where only a part of the term is displayed and one can move from a part
to another using the scrolling bars.

To show the di�eren t display modes we are going to browse some big terms. Let us �rst
construct big terms. Set the valuesof Randommax depth, Randommax time and Randommax term
number respectively to 10000,20 and 10000. Note that, to produce bigger random terms, it is not
enoughto increasethe Randommaxdepthvalue sinceit is only an upper bound for term depth. For
instance, if Randommax time is set to 10000and Randommax term number is set to 2, then random
generation will stop when 2 random terms have beenproduced. Since this generation starts from
the smaller terms that can be produced, the set of randomly generatedterms is likely to contain
the smallest possible terms. Similarly, it is necessaryto increasethe Randommax time value in
order to give Tabi the time necessaryto considerdeeper terms.

Now, produce randomly generatedrepresentativ esfor the state qnew20and choosethe deepest
one. This term is displayed and the font is reduced so that it �ts in the window. If the term is
too big (or the window too small) then Tabi switches to the zoom mode. The term is displayed
in linear mode. Now hold the CTRLkey pressedand do a left click on the whole term (the term
should be entirely selected). Now the whole term is displayed in tree mode. It is also possibleto
mix both modes by switching from a mode to another on subterms. For instance, your term is
likely to contain a tall subtree built on s symbols. Hold the SHIFTkey pressedand do a left click
on the top of this subtree to switch back its representation into linear mode. You should obtain
something close to Figure 1. There are someother ways to switch from a mode to another (see
Tabi's referencemanual in section 6 for details).

The default displaying mode is the linear mode i.e. unfoldings are presented in linear mode.
The user may switch from this mode to the tree mode by clicking on the corresponding button.

33

Figure 1: An exampleof automata browsing with Tabi

However, the mode only a�ects the future unfoldings.

2.3.3 Using Tabi to appro ximate in Tim buk

Tabi can alsobe usedfrom Taml with the browse function and from Timbuk with the b command.
Using Tabi from Timbuk permits to �gure out what is the languagerecognizedby the automaton
run under completion. Furthermore, using Tabi from Timbuk permits to de�ne somemerging rules
graphically on the term structure. This can be of great help for building approximations as well
for de�ning tree automata easily when you are not usedto cope with the tree automata syntax.

For instance, starts Timbuk on the basic2.txt speci�cation �le with the exact strategy.

timbuk --strat exact basic2.txt

Initially , the init automaton to be completed recognizesexactly the set f f (f (f (a))) g and is
declaredin the following way in the basic2.txt �le:

Set init
f(f(f(a)))

From this simple language,to build a tree automaton recognizing the languagef (f ?(a)), one can
proceedin the following way. From Timbuk type b to browsethe init languagewith Tabi. Produce
a random representativ e for the unique �nal state qterm0. The random representativ e should also
be unique: f(f(f(a))) . Now select the subterm f(a) (that should be recognizedby state qterm2),
hold the CTRLkey pressedand do a right click on this subterm. This should draw a blue rectangle
around this subterm. Proceed similarly with the subterm f(f(a)) that should be recognizedby
qterm1. This should draw a secondrectangleover this subterm. Then presson the button Mergeto
build a merging rule and on the button Apply mergeto apply the merging to the init automaton.
Applying the merging quits Tabi. Then, back in Timbuk browseagain the modi�ed automaton by
typing b and produce somerandom representativ es for qterm0: the languagenow recognizedby
this state and automaton is now f (f ?(a)).

34

3 Speci�cation language reference manual
In a Timbuk speci�cation �le, it is possibleto de�ne one alphabet (mandatory) and a set of vari-
able. Those elements are followed by any number of Term Rewriting Systems,Tree Automata and
Approximations all of them associated with a distinct name. Have a look to Figure 2 for a sample
Timbuk speci�cation �le.
Ops

f:2 g:1 a:0 b:0

Vars x y z u

TRSR1

f(x, y) -> g(f(x, y))
g(a) -> f(a, a)
g(x) -> f(x, x)

Set A0
f(a, a)
f(b, b)
f(g(a), g(a))

Automaton A1
States qa q[1--4]

Description qa : "exactly a"
q1 : "g*(a)"
q2 : "g(g*(a))"
q3 : "any term built on a and f"

Final States q4
Transitions

a -> qa
a -> q1
g(q1) -> q1
g(q1) -> q2
a -> q3
f(q3, q3) -> q3
f(q2, q3) -> q4

Approximation first
Import A1
States qg
Rules

[x -> y] -> [a -> qa]
[g(x)-> q2] -> [x -> q2]
[g(x)-> y] -> [x -> qg]

Equations
f(f(x, y), z)= f(x, y)

Figure 2: A sampleTimbuk speci�cation

35

3.1 Commen ts
The comments in Timbuk speci�cation �les respect the Ocaml syntax, i.e. should be openedwith
(* and closedwith *) .

3.2 Symbols
The symbols used in Timbuk are sequencesof characters that should not contain the following
characters: '(', ')', '*', '-', '=', ':', '[', ']' nor contain a comma, a spaceor one of
the reserved keyword de�ned in the following.

3.3 Alphab ets
Alphabets are sequencesof pairs of symbols associated with an arit y (a natural number). Symbols
are associated to their arit y using the ':' character. In speci�cation �les, alphabets should be
pre�xed by the Opskeyword.

3.4 Variable sets
Variable setsare sequencesof symbols that should be all distinct from the symbols of the alphabet.
In speci�cation �les, alphabets should be pre�xed by the Var keyword.

3.5 Term Rewriting Systems
Term rewriting systemsare sequencesof rewrite rules, where a rule is a pair of terms, built on the
alphabet and the variable set of the speci�cation, separatedby -> . Terms should be written in
pre�x notation. In speci�cation �les, every term rewriting systemsdeclaration should begin with
the TRSkeyword followed by a name (following the symbol syntax de�ned above).

3.6 Tree Automata
There are two di�eren t manners to de�ne tree automata in a Timbuk speci�cation �le: implicitly
by giving the (�nite) set of terms to be recognizedor explicitly by giving the set of states, the set
of �nal states and the set of transitions.

3.6.1 Implicit de�nitions

It is now possibleto de�ne a tree automaton by giving the �nite set of terms it should recognize,
i.e. its �nite language. In speci�cation �les, an implicit de�nition of an automaton consists in
the keyword Set followed by a name (following the symbol syntax de�ned above) and by a �nite
sequenceof terms built on the alphabet of the speci�cation.

3.6.2 Explicit de�nitions

TreeAutomata are de�ned explicitly using the �v e keywords States , Description , Final States ,
Prior and Transitions in that order, where Prior and Description are optional:

36

States is followed by a sequenceof state operators. Unlike in usual tree automata the state
operators we used are not necessarilyconstant symbols. One may de�ne constant states
symbols: q1:0 q2:0 ... but also some\state operators" which transform any term into
a state: q:1 prod:2 With such de�nitions, constants q1, q2 will denote states but
assuming that f(a) is a term de�ned on the speci�cation alphabet q(f(a)) , prod(f(a),
q(f(a))) , prod(q1, q2) will also be some valid states. Note that for convenience,when
constant state operators are de�ned the notation q1:0, q2:0 can be abbreviated into q1
q2. Similarly, the notation q1, q2, q3, q4, q6 can be abbreviated into q[1--6] .

Description is followed by a sequenceof state description, where a state description is a pair
composedwith a state and a string separatedby the : symbol. A description is any string
delimited by two " symbols (SeeFigure 2 for an example).

Final States is followed by a sequenceof states. A state is in fact a term rooted by a state
operator. For instance, if the declared state operators are: q1:0 q2:0 q:1 prod:2 and
f(a) is a term de�ned on the speci�cation alphabet, a valid sequenceof states can be q1 q2
q(q1) prod(f(a), q1) prod(q1, q2) .

Prior is an optional keyword followed by a sequenceof automata transitions. Those transition
will represent someprioritary transitions for approximation construction, seesection 4.2.1.
Note that prioritary transitions are supposedto be a subset of the transitions. As a con-
sequence,prioritary transitions are always added to the set of declared transitions of the
automaton. Hence,if a transition is declaredas prioritary it is not necessaryto repeat it in
the Transitions sectionsinceit will automatically be added. Syntax of transition sequences
is detailed in the next item.

Transitions is followed by a sequenceof transitions. A transition is a pair composedwith a term
(also called a con�guration) and a state separatedby -> . Timbuk only accept normalized
transitions so the term on the left-hand side of the pair should be of the form f (q1; : : : ; qn)
where f is a symbol of the alphabet declaredwith arit y n and q1; : : : ; qn are states.

In speci�cation �les, every explicit tree automata declaration should begin with the Automaton
keyword followed by a name (following the symbol syntax de�ned above).

3.7 Appro ximations
Approximations arede�ned using the three keywords Import , States , Equations and Rules. They
are all optional. However, if Import and States are present, Import should always beplacedbefore
States .

Import is followed by a sequenceof tree automaton names that should be de�ned above in the
speci�cation �le. State operators of tree automata corresponding to the namesare imported
in the current approximation and do not needto be rede�ned.

States is followed by a sequenceof state operators asfor the States keyword of the tree automata
description, seesection 3.6.2 for details.

Equations is followed by a sequenceof equationswherean equation is a pair of terms separatedby
the character =. The terms on both sidesof the equation can be built over the alphabet and
the variables of the speci�cation and the state operators, i.e. terms may contain symbols,
variables and states.

37

Rules is followed by a sequenceof normalization rules. The general form of a normalization rule
is:

[s -> x] -> [l1 -> r1 ... ln -> rn]

where s, l1 , . . . , ln are terms that may contain symbols, variables and states, and x, r1 ,
. . . , rn are either states or variables. If ri is a variable then it is equal to x. If ri is a state
built with a state operator of arit y greater to zero then any variable y of ri occurs in s or is
equal to x. Seesection 4.2.2 for useof those rules.

4 Tim buk reference manual
In this part, we assumethat the readeris familiar with term rewriting systems[1], tree automata [3]
and the tree automata completion processdescribedin [7]. Givena term rewriting systemR, s ! R t
will denote that s can be rewritten by R in one step into t. Similarly, s ! R

? t will denote that s
can be rewritten by R in zero or more steps into t. The set of R-descendants of a set of ground
terms E � T (F) is R ?(E) = f t 2 T (F) j 9s 2 E s.t. s ! ?

R tg.
Given a tree automaton A , the rewriting relation induced by the transitions of A is denoted

by ! A . The tree language recognizedby A denoted by L (A) is L (A) = f t 2 T (F) j t ! ?
A

q s.t. q is a �nal stateg.

4.1 Running Tim buk
To start a completion processand launch the Timbuk tool over a Timbuk speci�cation �le called
example.txt , simply type:

Timbuk example.txt

in a command window. The speci�cation �le should at least contain one tree automaton and
one term rewriting system. Depending on the way you obtained Timbuk, you may not be able
to directly use 'tim buk' as a standalone command and you may need to type ocamlrun timbuk
example.txt instead. Pleaserefer to the README�le of the distribution for details on how to run
the Timbuk library tools. If launching Timbuk succeeds,then Timbuk readsthe given speci�cation
�le and starts a tree automata completion with

� the �rst term rewriting of the speci�cation (let us denote it by R in the following)

� the �rst tree automaton of the speci�cation (let us denote it by A in the following)

� the �rst approximation (if it exists) of the speci�cation

The remaining tree automata of the speci�cation �le are also read and stored by Timbuk for
(later) veri�cation purpose. The general completion process[7] works by incremental completion
of automaton A into A 1, A 2, . . . Each step from A i to A i +1 is called the i + 1-th completion step.
For obtaining A i +1 from A i , onesearchesfor every term s 2 L (A i) such that s ! R t and t 62 L(A i).

Then A i +1 is built from A i by adding transitions to A i such that L (A i +1) � L (A i) and t 2 L (A i +1)
for every term t such that s 2 L (A i), s ! R t and t 62L (A i).

When completion converges,completion reaches a �xp oint A k such that for every term s 2
L (A k) such that s ! R t then t 2 L (A k). Hence,L (A k) is an over-approximation of R-descendants

of L (A), i.e. L (A k) � R ?(L (A)). In other words, A k recognizesa superset of terms reachable by

38

R from terms of L (A). In the next section, we present a collection of approximation techniques
provided by Timbuk to make completion converge. For non left-linear TRS (i.e. TRS having at
least two occurrencesof the samevariable in the left-hand side), for A k to bean over-approximation
of R ?(L (A)) it is also necessaryto check the left-linearit y condition.

Note that for someparticular casesof TRS and initial automaton A the �xp oint is not only an
over-approximation but it is exactly the set R ?(L (A)). Those exact classesand associated speci�c
completion strategy will be detailed in section 4.4.1.

4.2 Tim buk normalization and appro ximation to ols
In this section, we present various techniques implemented in Timbuk to force completion to con-
verge,i.e. to build an over-approximation of R ?(L (A)) (the set of reachable terms) when it cannot
be computed exactly. In a typical i -th completion step, recall that each rule l ! r of R is used
to build critical pairs, i.e. �nd a Q-substitution � and a state q of A i such that l � ! ?

A i
q and

r � 6! ?
A i

q. Then, the transition r � ! q is addedto A to build A i +1 . But, the transition r � ! q may
not be normalized, i.e. r � is a state (hencer � ! q is an epsilon transition) or r � = f (t 1; : : : ; tn)
and there exists at least one j 2 f 1; : : : ; ng such that t j is not a state. If the transition is not
normalized then it has to be normalized before being added to the tree automaton. Normalizing
epsilon transitions is easy and does not make completion diverge: for a transition of the form
q1 ! q2 it is enough to add the set of transitions f c ! q2 j c ! q1 2 A i g to A i . For normalizing
a transition f (t1; : : : ; tn) ! q where t j is not a state, it is necessaryto introduce a state, say qj

and replace the transition f (t1; : : : ; tn) ! q by the two transitions: f (t1; : : : ; qj ; : : : ; tn) ! q and
t j ! qj . This processhas to be continued until every transition is normalized. Depending on the
choiceof states usedfor normalization (for instancestate qj ; : : :) the addition of the new transition
will be exact or approximated. For instance, if the state qj is a new state (i.e. not occurring in
A i), then adding f (t1; : : : ; tn) ! q or the two transitions: f (t1; : : : ; qj ; : : : ; tn) ! q and t j ! qj

is similar. On the opposite, if we choose qj = q then f (t1; : : : ; q; : : : ; tn) ! q and t j ! q over-
approximate f (t1; : : : ; tn) ! q. Indeed, with the pair of transitions f (t 1; : : : ; q; : : : ; tn) ! q and
t j ! q, one can build the transition f (t1; : : : ; tn) ! q but also an in�nite set of transition of the
form f (t1; : : : ; f (t1; : : : ; tn); : : : ; tn) ! q and so on.

Since,approximations aredeterminedby normalization choices,the central toolsusedin Timbuk
for building approximations are techniquesfor guiding the choiceof statesusedin the normalization
process.

4.2.1 Prioritary transitions

The prioritary transitions are a set of deterministic tree automata transitions used to simplify a
new transition to be added by bottom-up rewriting. Let f (g(a)) ! q be the new transition to
add and normalize. If the set of prioritary transitions contains a ! q1 then f (g(a)) ! q will be
normalized into f (g(q1)) ! q and a ! q1. If the set of prioritary transitions does not contain a
transition for simplifying g(q1) then normalizing cannot go further with prioritary transitions.

Prioritary transitions can either be de�ned in the speci�cation �les (see 'Prior' �eld of tree
automata explicit de�nition in section 3.6.2), interactively during completion (see manual and
manual conf strategy operators in section 4.4.1) or automatically with the 'auto prior' normaliza-
tion strategy (see'auto prior' strategy operator in section 4.4.1).

Any set of prioritary transitions can be expressedusing normalization rules (de�ned in the
next section) but prioritary transitions remain a syntactic facilit y avoiding the repetition of some

39

transitions that are already part of the automaton. Indeed,sinceprioritary transitions are generally
transitions of the initial automaton, the 'Prior' �eld of the tree automaton permits to de�ne them
onceas tree automata transitions and transitions for approximation.

4.2.2 Normalization rules

Normalization rules (or norm rules) are a sequenceof rules of the form:

[s ! x] ! [l1 ! r1 : : : ln ! rn]

where s, l1, . . . , ln are terms that may contain symbols, variables and states, and x, r 1, . . . , r n

are either statesor variables. If r i is a variable then it is equal to x. If r i is a state built with a state
operator of arit y greater to zerothen any variable y of r i occursin s or is equal to x. To normalize a
transition of the form t ! q0, we match the pattern s on t and x on q0, obtain a given substitution �
and then wenormalize t with the rewrite systemf l1� ! r1� ; : : : ; ln � ! rn � g wherer 1� ; : : : ; r n � are
necessarilystates. For example, normalizing a transition f (h(q1); g(q2)) ! q3 with approximation
rule [f (x; g(y)) ! z] ! [g(u) ! z] will give a substitution � = f x 7! h(q1); y 7! q2; z 7! q3g, an
instantiated set of rewrite rules [g(u) ! q3]. Thus, f (h(q1); g(q2)) ! q3 will be normalized into a
normalized transition g(q2) ! q3 and a partially normalized transition f (h(q1); q3) ! q3.

Normalization rules are usedin the order of the sequence:if a normalization rule doesnot apply
then the following rule is used and so on. When a normalization rule succeedsin normalizing a
transition (even partially) then the sequenceis taken back from the beginningand the normalization
processcontinueson partially normalized transitions.

Note that in dynamic mode (seesection 4.4 for details about Timbuk completion modes) the
syntax for normalization rules has beenextendedso that it is also possibleto achieve the pattern
matching under state operators. For instance, it is now possibleto de�ne a normalization rule of
the form:

[encr(pubkey(q(x)) ; m) ! qstore] ! [m ! q(secret(x))]

wherex and m arevariables,q is herea state operator of arit y 1 and secret is either a symbol or a
state operator of arit y 1. This rule will thusnormalizetransitions encr(pubkey(q(A)) ; cons(q1; q2)) !
q and encr(pubkey(q(B)) ; cons(q3; q4)) ! q respectively in encr(pubkey(q(A)) ; q(secret(A))) ! q
cons(q1; q2) ! q(secret(A)) and encr(pubkey(q(B)) ; q(secret(B))) ! q cons(q3; q4) ! q(secret(B)).
The only syntactic constraint on those normalization rules is the following: for every rule of the
form

[s ! x] ! [l1 ! r1 : : : ln ! rn]

either r i is a state constant, either it is equal to x, or it is a term of the form q(t 1; : : : ; tn) where
q is a state operator and variables of t1; : : : ; tn are either equal to x or contained in s.

Normalisation rules can be de�ned both in the speci�cation �le (see section 3.7) or during
completion in dynamic mode using the manual norm strategy operator (seesection 4.4.1) or the
(g) Timbuk command (seesection 4.3).

4.2.3 Merging rules

Merging rules are a sequenceof epsilon transitions of the form q1 ! q2 between states q1 and q2.
The meaning of such a rule is that states (and thus corresponding recognizedlanguages)q1 and q2

40

should be mergedtogether. Applying a merging rule q1 ! q2 on an automaton A 0 simply consists
in rewriting all the state labels of the tree automaton such that q1 is replaced everywhere by q2.
The resulting automaton A 0 is always such that L (A) � L (A 0).

Unlike precedingtools, merging rules can only be given interactively and are applied after that
transitions have beennormalized. A typical useof merging rules is to normalize automatically new
transitions by new states (seestrategy operator 'auto' in section 4.4.1 for details) and then give
interactively the merging rules for achieving the approximation. Note that merging rules can also
be built graphically using Tabi seesection 2.3.3.

4.2.4 Appro ximation equations

Approximation equations are a sequenceof equations of the form s = t where s and t are terms
built on symbols, statesand variables. The meaningof such a rule is that every terms matching this
equation should be merged together. In practice, terms s and t are matched over the automaton
A i of the current completion step and for every Q-substitution � and for every states q1; q2 such
that s� ! ?

A i
q1 and t� ! ?

A i
q2, a merging rule q1 ! q2 is produced and applied.

Like merging rules, equationsare applied after that transitions have beennormalized. Approxi-
mation equationscan be de�ned both in the speci�cation �le (seesection 3.7) or during completion
in dynamic mode (seesection 2.1.7).

4.3 Tim buk commands
When starting Timbuk on a valid speci�cation �le, the user is proposedthe following menu:

Completion step: 0

Do you want to:

(c)omplete one step (use Ctrl-C to interrupt if necessary)
complete (a)ll steps (use Ctrl-C to interrupt if necessary)
(m)erge some states
(s)ee current automaton
(b)rowse current automaton with Tabi
(d)isplay the term rewriting system
(i)ntersection with verif automata
intersection with (o)ther verif automata on disk
search for a (p)attern in the automaton
(v)erify linearity condition on current automaton
(w)rite current automaton, TRSand approximation to disk
(f)orget old completion steps
(e)quation approximation in gamma
(g)amma normalisation rules
(det)erminise current automaton
(u)ndo last step
(q)uit completion

The �rst line gives the current completion step. Initially the completion step number is 0. Then
the user have to type one of the following command:

41

c performsonecompletion step. The completion canbestoppedusinga CTRL-C key combination.

a performs all possiblecompletion steps. If completion convergesthen this command is going to
stop. Otherwise, the user may interrupt it using a CTRL-C key combination.

m ask for a sequenceof merging rules over states of the tree automaton. A merging rule is a pair
of states separated by -> . The sequencehas to be terminated by a dot '.' symbol. A
merging rule of the form q1 -> q2 will renameever occurrenceof the state q1 by the state
q2. The languagerecognizedby the renamedautomaton is always an over-approximation of
the languagerecognizedby the initial one.

s displays the completed automaton at the current completion step.

b browse the completed automaton at the current completion step using Tabi, if it has been in-
stalled. During browsing, merging rules can also be de�ned in a more graphical an more
intuitiv e way (seesection 2.3.3 for an example). If such rules are de�ned and applied under
Tabi, then merging is performed when leaving Tabi (seeTabi documentation in section 6).

d displays the term rewriting system usedfor completion.

i computes intersection between the completed automaton at the current completion step and
automata that were in the samespeci�cation �le.

o computes intersection between the completed automaton at the current completion step and
someother tree automata stored in an other �le.

p searches for a given pattern in the completed automaton (say A j) at the j -th completion step.
A pattern p is a term built over symbols of the alphabet, variables and states of the current
automaton. The result for pattern matching over the tree automaton is a sequenceof solu-
tions. Each solution consistsof a state q and a set of Q-substitutions � 1; : : : ; � n 2 �(Q; X)
such that for all i = 1; : : : n : p� i ! A j q.

v verify the left-linearit y condition. For non left-linear TRS, the �nal completed automaton is an
over approximation only if left-linearit y condition is satis�ed (seesection 2.1.5for an example
and see[7] for theoretical details about left-linearit y condition).

w writes the current automaton, TRS, approximation and automaton list used for intersection to
disk in Timbuk speci�cation �le syntax. This command also writes the initial automaton in
the speci�cation.

f forgets the previous completion step. This is useful, when completion steps are getting bigger
and bigger.

e is usedto consult and add approximation equations to the gamma approximation function. See
section 3.7 for details about the syntax.

g is used to consult and add normalization rules to the gamma approximation function. See
section 3.7 for details about the syntax.

det determinizesthe current completed automaton.

u undoesthe last completion step.

q quit completion

42

4.4 Tim buk mo des and command line options
When executing Timbuk the user can use several command line options which depend on the
major running mode of Timbuk. The two major modes for running Timbuk are dynamic and
static modes. There is also a variant of the static mode which is called forced static or fstatic for
short. The dynamic mode is the default completion mode of Timbuk. It can easilybe parametrized
by approximation functions, equations and strategies. The static mode is more constrained but
permits to achieve a pre-compilation of the completion and is thus more e�cien t.

Someoptions do not depend on the Timbuk running mode:

-o followed by a �le name prints all Timbuk output to that �le.

-f followed by a �le name readsall Timbuk commandsinput in that �le.

--noapprox don't care of the approximations de�ned in the speci�cation �le.

--approx followed by an approximation name, starts the Timbuk completion processwith the
approximation denoted by the given name rather than the �rst of the speci�cation.

All the other command line options depend on the usedtimbuk running mode.

4.4.1 Dynamic completion mode

In dynamic mode (default mode), the prioritary transitions, the normalization rules and the ap-
proximation equations can be given initially through a speci�cation �le or can be added during
completion process. Approximation strategy can also be parametrized. Here are the dynamic
mode command line options:

--dynamic usedto toggle the dynamic mode on (default mode)

--strat followed by a sequenceof normalization strategy operators (seebelow).

The --strat option permits to give explicitly the strategy to use for normalizing the new
transition. Then, each new transition producedby the completion is normalized successively using
the normalization strategy operators given in the strategy until every transition is normalized. If
the end of the strategy operator sequenceis reached and there remain some transitions to nor-
malize then the normalization processcontinuesand the strategy sequenceis reinitialized from the
beginning. The default Timbuk strategy in dynamic mode corresponds to the strategy operators
sequenceprior norm rules manual norm conf auto conf . Here are the de�nitions of the basic
normalization strategy operators. Someof theseoperators always succeed(they always manageto
normalize any set of transitions) and thus should be placed at the end of the sequence.

exact for exact normalization. This normalization strategy operator always succeeds. The au-
tomata A 1; A 2; : : : produced by completion steps recognize only terms R-reachable from
L(A), i.e. the automaton A i obtained after the i -th completion stepis not an over-approximation
(but an under-approximation) if:

� R is linear, or

� R is right-linear and R and A i satisfy the left-linearit y condition, or

� every state of A recognizesat most one term4 and R is left-linear, or

4Note that this is trivially the caseif A is de�ned using the 'Set' keyword, seesection 3.6.1.

43

� every state of A recognizesat most one term and A i and R satisfy the left-linearit y
condition.

Hence, for those classes,if completion convergeson a �xp oint A k then L (A k) = R ?(L (A)).
Furthermore, completion is guaranteed to convergeon someknown decidableclasses:

� R is either a ground TRS [5, 2].

� a right-linear and monadicTRS [15], i.e. right-hand sidesof the rulesareeither variables
or terms of the form f (x1; : : : ; xn) where f 2 F and x1; : : : ; xn are variables.

� a linear and semi-monadicTRS [4], i.e. rules are linear and their right-hand sidesare of
the form f (t1; : : : ; tn) where f 2 F and 8i = 1; : : : ; n, t i is either a variable or a ground
term.

� a \decreasing" TRS [11], where \decreasing" meansthat every right-hand side is either
a variable, or a term f (t1; : : : ; tn) where f 2 F , ar (f) = n, and 8i = 1; : : : ; n, t i is a
variable, a ground term, or a term whosevariables do not occur in the left-hand side.

� constructor-based rewrite systems [14] where the alphabet F is separated into a set
of de�ned symbols D = f f j 9l ! r 2 R s.t. Root(l) = f g and constructor symbols
C = F n D. The restriction on L (A) is the following: L (A) is the set of ground
constructor instancesof a linear term t, i.e. L (A) = f t� g where t 2 T (F ; X) is linear
and � : X 7! T (C). The restrictions on R are the following: for each rule l ! r

1. r is linear
2. for each position p 2 PosF (r) such that r jp = f (t1; : : : ; tn) and f 2 D we have that

for all i = 1: : : n, t i is a variable or a ground term
3. there is no nestedfunction symbols in r

prior for normalization with prioritary transitions. Seesection 4.2.1 for details.

norm rules for normalization with normalization rules. Seesection 4.2.2 for details.

auto automatically normalizestransitions with new states. This operator always succeeds.

auto conf sameas auto but asksfor con�rmation �rst.

auto prior automatically normalizes transitions with new states and stores the new transitions
as prioritary transitions. This operator always succeeds.Note however that if prior is not
placedbeforeauto prior in the strategy then the bene�t of adding newprioritary transitions
will be lost and auto prior will normalize every transitions with new states and thus will
behave as auto .

auto prior conf sameas auto prior but asksfor con�rmation �rst.

manual norm ask the user to give explicitly somenormalization rules. Note that if norm rules
is not placed before manual norm in the strategy then manual norm has no e�ect since
normalization rules may be added but never triggered.

manual norm conf sameas manual but asksfor con�rmation �rst.

manual ask the user to give explicitly sometransitions to normalize the transitions. The user may
also give some(normalized) prioritary transitions.

manual conf sameas manual but asksfor con�rmation �rst.

44

4.4.2 Static completion mode

In static mode (and in its variant called fstatic for forced static), only prioritary transitions and
normalization rules given in the speci�cation �le are used. In fact, the normalization strategy
in static mode is �xed and corresponds to the sequenceprior norm rules . Moreover, in static
mode, prioritary transitions and normalization rules should de�ne an approximation function that
is completewith regardsto the right-hand sidesof the rewrite rules. In other words, every possible
new transition producedduring completion by the instanciation of the right-hand side of a rewrite
rule must be normalized using the prior transitions and the normalization rules given by the user
in the speci�cation �le. If this is not the casethen Timbuk fails and returns the transition that
cannot be normalized using the user's approximation function. Note however that when Timbuk's
static completenessis too restrictiv e (your approximation is completebut Timbuk hasnot detected
it) it is possibleto simply extend it by someadditional rules (seesection 2.1.6). Furthermore, in
fstatic mode, if the approximation is not completethen it is automatically expandedfor normalizing
remaining transitions (not normalizedusinguser'srules) with a speci�c state labeledby #qstatic# .

Apart from the common command line options described at the beginning of this section, the
only static mode options are:

--static to activate the static compilation of matching and normalization (needsa complete set
of prior and norm rules).

--fstatic to activate the static compilation of matching and normalization. If the set of prior
and norm rules is not complete, a transition not covered by the rules is normalized using a
single new state #qstatic# .

Note that merging rules and approximation equations may be applied on every completed au-
tomaton in static mode, but approximation equationsare not taken into account for approximation
pre-compilation.

5 Taml reference manual
Taml is an Ocaml toplevel equipped with Timbuk functions over terms, term rewriting systemsand
tree automata.

5.1 Running Taml
To start Taml, simply type:

taml

in a commandwindow. Depending on the way you obtained Taml, you may not be able to directly
use 'taml' as a standalone command and you may need to type ocamlrun taml instead. Please
refer to the README�le of the distribution for details on how to run the Timbuk library tools. Note
that all the directives of Ocaml toplevel can be used in this particular one as #use. For instance,
it is possibleto load the tutorial �le called tutorial.ml by typing the following directive in Taml
toplevel:

#use "tutorial.ml";;

IMPORTANT: Taml has to be run in the samedirectory as the .cmo �les and the .ocamlinit �le
of the Timbuk library.

45

5.2 Basic Taml functions
First, here are all the de�ned functions. A more precisedescription is given in the following. Note
that Ocaml labelsare only usedhere for clarity of the documentation and cannot be usedat Ocaml
level. For all the functions building objects (lik e alphabets, terms, term rewriting systems, tree
automata, etc) from a string, the input syntax of the string should respect the timbuk syntax
for any of this object which is described in section 3. The �le tutorial.ml also contains several
examplesof this syntax. Seesection 2.2 for the Taml tutorial.

val browse : Automaton:t ! unit
val alphabet : string ! Alphabet:t
val varset : string ! Variable set:t
val term : Alphabet:t ! Variable set:t ! string ! Term:t
val state : string ! Automaton:state
val tree state : Alphabet:t ! Alphabet:t ! string ! Term:t
val trs : Rewrite:alphabet ! Rewrite:variable set ! string ! Rewrite:t
val automaton : Automaton:alphabet ! string ! Automaton:t
val �nite set : Automaton:alphabet ! string ! Automaton:t
val inter : Automaton:t ! Automaton:t ! Automaton:t
val union : Automaton:t ! Automaton:t ! Automaton:t
val inverse : Automaton:t ! Automaton:t
val subtract : Automaton:t ! Automaton:t ! Automaton:t
val is included : Automaton:t ! Automaton:t ! bool
val is language empty : Automaton:t ! bool
val is �nite : Automaton:t ! bool
val run : t : Automaton:term ! q : Automaton:state ! a : Automaton:t ! bool
val determinise : Automaton:t ! Automaton:t
val irr : a : Automaton:alphabet ! r : Automaton:transition table ! Automaton:t
val clean : Automaton:t ! Automaton:t
val simplify : Automaton:t ! Automaton:t
val save : Automaton:t ! aut name :string ! �le name :string ! unit
val read alphabet : string ! Alphabet:t
val read spec : string ! Speci�c ation:spec
val read automaton : string ! string ! Automaton:t
val read automaton list : string ! Automaton:t list
val read trs : string ! string ! TRS:t
val read trs list : string ! TRS:t list
val help : unit ! unit

Here is for each of thesefunctions a more detailed description.

1. Alphabets
To build an alphabet from a string

val alphabet : (s : string) ! Alphabet:t

To read an alphabet in a Timbuk speci�cation �le.

val read alphabet : (s : string) ! Alphabet:t

46

2. Variable sets
To build a variable set from a string.

val varset : (s : string) ! Variable set:t

3. Terms
To build a term on alphabet a and variable set v from a string s.

val term : (a : Alphabet:t) (v : Variable set:t) (s : string) ! Term:t

4. Term rewriting systems
To build a TRS on alphabet a, variable set v and from a string s.

val trs : (a : Alphabet:t) (v : Variable set:t) (s : string) ! Rewrite:t

To read a TRS of name n in a speci�cation �le f .

val read trs : (n : string) ! (f : string) ! Rewrite:t

To read all the TRS in speci�cation �le f .

val read trs list : (f : string) ! Rewrite:t list

5. Tree automata
To build a state from string.

val state : (s : string) ! Automaton:state

To build a (tree) state on alphabet a, state operators sop and from a string s. A tree state is a
state built on state operators of arit y greater than 0. For instance, if p is a state operator of arit y
2 and q is a state operator of arit y 0, then p(q; q) is a tree state.

val tree state : (a : Alphabet:t) (sop : Alphabet:t) (s : string) ! Automaton:state

To build an automaton on alphabet a from a string s.

val automaton : (a : Alphabet:t) (s : string) ! Automaton:t

To build an automaton on alphabet a from a string s representing the �nite of terms to berecognized
by the automaton.

val �nite set : (a : Alphabet:t) (s : string) ! Automaton:t

To read an automaton of name n in a speci�cation �le f

val read automaton : (n : string) ! (f : string) ! Automaton:t

To read all the automaton in speci�cation �le named f

val read automaton list : (f : string) ! Automaton:t list

To browseautomaton a (if Tabi is installed).

47

val browse: (a : Automaton:t) ! unit

To build the intersection automaton between a1 and a2. Sets of states are not explicitely built.
To obtain them explicitely usecleaning afterwards.

val inter : (a1 : Automaton:t) ! (a2 : Automaton:t) ! Automaton:t

To build the union automaton for a1 and a2.

val union : (a1 : Automaton:t) ! (a2 : Automaton:t) ! Automaton:t

The complement operation.

val inverse : Automaton:t ! Automaton:t

To build an automaton recognizingL(a1) - L(a2).

val subtract : (a1 : Automaton:t) ! (a2 : Automaton:t) ! Automaton:t

Is L(a1) included in L(a2)?

val is included : (a1 : Automaton:t) ! (a2 : Automaton:t) ! bool

Is L(a) empty?

val is language empty : (a : Automaton:t) ! bool

Is L(a) �nite?

val is �nite : (a : Automaton:t) ! bool

Is t recognizedinto state q in a?

val run : (t : Term:t) ! (q : State:t) ! (a : Automaton:t) ! bool

Determinisation of a tree automaton.

val determinise : Automaton:t ! Automaton:t

To build a tree automaton recognisingthe set of terms irreducible by TRS t.

val irr : (a : Alphabet:t) ! (t : Rewrite:t) ! Automaton:t

Accessibility cleaning followed by utilit y cleaning for a tree automaton.

val clean : Automaton:t ! Automaton:t

Accessibility cleaning followed by utilit y cleaning and renumbering.

val simplify : Automaton:t ! Automaton:t

To save automaton a with name n in �le named f .

val save: (a : Automaton:t) ! (n : string) ! (f : string) ! unit

6. Speci�cations
To read a full Timbuk speci�cation in �le of name s

val read spec : (s : string) ! Speci�c ation:t

48

5.3 Using all Timbuk library functions through Taml
The functions proposedby Taml at toplevel are only a part of all the Timbuk library functions. To
have an accessto the other functions dispatched in the Timbuk modules,you can call them directly
(if the module has been opened �rst, using the open Ocaml keyword) or use the usual pre�xed
notation. For instance, to call the left inner norm function of the Rewrite module, used for
normalizing a term with a term rewriting systemusing leftmost innermost strategy, onecan access
this function with the function name pre�xed by the module name:

Rewrite.left inner norm

For details on the modules and o�ered functions, have a look to section 7

6 Tabi reference manual
The aim of Tabi is to easetree automata understanding. When tree automata aregetting biggerand
bigger, Tabi helps in �guring out what is the recognizedlanguage. Tabi stands for Tree Automata
Browsing Interface: Starting from any state q of an automaton, Tabi provides an interactive and
graphical way to build someof the terms recognizedby q in the automaton. Tabi canrepresent terms
in the usual linear way (with parenthesis and comas)way as well as trees, or even in a mixture of
both representations (SeeFigure 3). Recognizedterms can bebuilt interactively by state expansion
and transition selectionor automatically using a randomized representativ e generator.

Figure 3: Tabi graphical user interface

Tabi can be used as an independent program or as a graphical interface for the Timbuk and
Taml tools. When using Tabi from Timbuk, Tabi also permits to build merging rules over terms
that are built. Tabi as been developed with Labltk (Ocaml with Tk functions) in collaboration
with a group of students in 4th year of Computer Scienceof RennesUniversity (seeREADME�le for
credits)
Note on Automaton loading: whenusingTabi from Timbuk (resp. Taml), Tabi starts on the current
completed automaton (resp. the automaton parameter of the browse function). When using Tabi

49

as a standaloneprogram, one has to open a Timbuk speci�cation �le where the �rst automaton is
read. When an automaton is loaded the Start symbol is displayed.

6.1 Mouse actions
Mo ving the mouse poin ter over a term or a state highlights it in green. If it is a term, then

the state recognizing this term is shown in red. SeeFigure 3 for an example with term
times(O; s(s(O))) and state qnew5.

Left clic k over a state q unfolds q, i.e. proposecon�gurations or terms to replace q. Clicking
on q opens a window containing a list of possible con�guration leading to q as well as a
button chooserandom. A left click on a con�guration of the list replacesq by the chosen
con�guration. Clicking on chooserandom opensa new window containing a list of randomly
generatedground terms recognizedby q. Clicking on one of these terms replacesq by the
chosenterm. Note that if q recognizesan empty languageor if the depth or time for random
search is not su�cien t to producerandom terms, an error messageis produced. SeeOptions
menu in section 6.4 for changing depth or time for random term generation.

Middle clic k over a term t folds it, i.e. replaceit by the state recognizingt.

CTRL + Left clic k over a term t changesthe whole graphical representation of t from linear
mode to tree mode. This operation doesnot a�ect the term embedding t.

SHIFT + Left clic k over a term t changes the whole graphical representation of t from tree
mode to linear mode. This operation doesnot a�ect the term embedding t.

Righ t clic k over a term t switchesfrom linear and tree mode on the top of t. This operation does
not a�ect the term embedding t nor subterms of t.

CTRL + Righ t clic k over a term t draws a blue rectangleover t and selectit for merging. After
selecting two terms t1 and t2 for merging, it is possibleto presson button Merge in order
to add a merging rule q1 ! q2 where q1 and q2 recognizerespectively t1 and t2. Note that
merging rules can only be used if Tabi has beenlaunched from Timbuk.

6.2 Buttons
+ and - Buttons are usedto increase/decreasethe zoom factor for displaying the terms.

Restart permits to restart the automata browsing from the beginning, i.e. from the Start symbol.
This is usefulwhen the automaton hasseveral �nal statesto restart browsing from a di�eren t
�nal state.

Merge builds a merging rule from to terms selectedfor merging (seeCTRL + Right Click action
in section 6.1).

Apply merge quits Tabi and apply the list of merging rules de�ned by the user to the current
automaton (Only if using Tabi from Timbuk).

Autozo om/Zo om Buttons switchesbetweenautomatic and manual zoom. When Autozoom is
selectedTabi automatically changesthe zoom factor in order to keepthe whole term visible in
the window. Note that when the zoom factor is getting to small Tabi automatically switches

50

to manual zoom. On the opposite, with the manual zoom it is possibleto focus on a smaller
part of the term.

Linear/T ree mo de Buttons switches between Linear and Tree mode (default modes) for dis-
playing terms obtained by unfolding.

6.3 File menu
Op en browsein current directory for a Timbuk speci�cation �le containing a tree automaton (See

section 3 for precisesyntax). Note that only the �rst automaton of the speci�cation �le is
taken into account.

Prin t produce a �le tabi.ps containing a postscript version of the term displayed in the Tabi
window.

Exit quits Tabi (without applying merging rules).

6.4 Options menu
Undo Undo last folding or unfolding.

Redo Redo last folding or unfolding.

Bro wsing style switchesbetweenFinal statesor All statesbrowsing style. In Final statesstyle
(default), when left-clicking on the Start symbol one is only proposed the �nal states of
the automaton, whereasin All states style all the states of the automaton are proposedfor
browsing.

See merging rules displays the merging rules already de�ned.

Random max depth changesthe upper bound for depth of terms built by random representa-
tiv esgeneration.

Random max time changesthe upper bound on time for random representativ esgeneration.

Random max term num ber changesthe upper bound on the number of representativ es to be
randomly generated.

Show history opensa window with an ordered list of the terms built during the previous steps.
When clicking on any term of the list, the selectedterm becomesthe current term.

Help displays a short help on the mouseactions.

7 How to use Ocaml functions of the Timbuk library?
Since this software is a modular library, we wanted to have a separateddocumentation for each
module. That is why we choseto generatethis documentation using ocamlweb [8]. In the following
you will �nd onesection for each main module: tree automaton, term, term rewriting systems,etc.
To seean example showing how to call those functions from Taml, have a look to section 2.2. To
seehow to import modules and call those functions from someother Ocaml code seeTaml main

51

Ocaml �le: taml.ml or Timbuk mail Ocaml �le: main.ml in the sourcedistribution. Note that
labels in function declarations are only used for clarity of the documentation and cannot be used
in functions calls as in the Ocaml syntax extension.

In terface for module Automaton

7. This is the interface for bottom-up tree automata. A bottom-up tree automata is usually
de�ned as a tuple: hF; Q; Qf ; � i where F is an alphabet of symbols, Q is a set of states, Q f a set
of �nal states and � is a set of transitions (also called a transition table). Here, the tree automata
module is de�ned w.r.t.

� a symbol type

� an alphabet type (the type of F) whosesymbols are of symbol type

� a variable type. It is usedfor de�ning variables occuring in matching on tree automata

� a con�guration type i.e. left-hand side of transitions

� a state content type which can be anything assignedto states: formulas, or simply text

� a transition type which is a term rewriting system and de�ned the type of � we use

� a state set type de�ning the type of Q and Q f we use. In fact, in practice its major role is
to assignstate contents to states.

module TreeAutomata
(Symbol type : PRINT ABLE TYPE)
(Alphabet type : ALPHABET TYPE with type symbol = Symbol type:t)
(Variable type : PRINT ABLE TYPE)
(Con�gur ation type : TERM TYPE with type symbol = Symbol type:t

and type variable = Variable type:t
and type alphabet = Alphabet type:t)

(State content : STATE CONTENT TYPE)
(Transition type : TRS TYPE with type alphabet = Alphabet type:t

and type term = Con�gur ation type:t)
(State set type : STATE SET TYPE with type state = Con�gur ation type:t

and type state content = State content:t
and type alphabet = Alphabet type:t
and type symbol = Symbol type:t) :

sig

exceptionNot a state of string
exceptionNot in folder
exceptionMultiply de�ned symbol of string
exceptionLinearity problem of string
exceptionNormalisation problem of string

type symbol = Symbol type:t

52

type alphabet = Alphabet type:t
type term = Con�gur ation type:t
type rule = Transition type:rule
type substitution = Con�gur ation type:substitution

type mini subst= (term � term)

type sol �lt =
| Empty
| Bottom
| S of mini subst
| Not of sol �lt
| And of sol �lt � sol �lt
| Or of sol �lt � sol �lt

type state = term
type state set = State set type:t

type transition table = Transition type:t
type tree automata

type t = tree automata
type ('a ; 'b) folder

8. Constructor of tree automata. The main di�erence with usual de�nitions of tree automata
is that we here use an extended de�nition of states. States are terms (gasp!). States are terms
constructed on a speci�c alphabet which is what we call state operators. This make no di�erence
with usual de�nition of states and tree automata if you consider only state operators of arit y 0
(i.e. constant state symbol) then if q, state123, q0, q1, etc... are state operators of arit y 0, then
q, state123, q0, q1, etc... are states. However, if you de�ne a state operator q of arit y 1, and qa
of arit y 0, then qa, q(qa), q(q(qa)), ... are states. In fact, you can even de�ne more complicated
states, since state operators can transform any term (constructed on the alphabet and on state
operators) into a state. For example, assumethat your alphabet F contains operators: f of arit y
2 and b of arit y 0, and your state operators contain at least q of arit y 1 and qa of arit y 0, then a,
q(qa), q(q(qa)), q(b), q(f(b,b)), q(f(qa, b)), q(q(f(q(qa), b))), etc... are states.

In most cases,state operators of arit y greater than 0 are not needed. Nevertheless,note that
to de�ne a simple tree automaton with state set Q = f q0; q2; q3g and �nal states Q f = f q2g, you
will needto de�ne state operators q0; q2; q3 of arit y 0, and to give to the make automaton function
the state operators (of alphabet type), the state set corresponding to Q and then the set of �nal
states representing Qf . However, it is much easier to use the parsing function of tree automata
or, even simpler, the parsing function of the speci�cation module, pleasehave a look to the �le
tutorial :mlml for more details.

val make automaton :
alphabet !

alphabet !
state set !

state set !
transition table !

transition table ! t

build an automaton from a �nite term list, a string label for states and an integer

53

val term set to automaton : alphabet ! term list ! string ! int ! (t � int)

9. accessorsof automata

val get alphabet : t ! alphabet
val get state ops : t ! alphabet
val get states : t ! state set
val get �nal states : t ! state set
val get transitions : t ! transition table
val get prior : t ! transition table

10. Prett yprin t of tree automata. The �rst thing to be able to do with an automaton is to display
it.

val print : t ! unit

val to string : t ! string

11. Now, we �nd the boolean operations on tree automata.
First of all, intersection of two tree automata. This function produces a tree automaton with
structured states (states that are in fact products of states) and structured state sets (symbolic
form of state set products). In order to obtain a full tree automaton with constructed state sets,
apply accessibility cleaning (de�ned in the following) on it.

val inter : t ! t ! t

union of two tree automata (by renaming and union of transition tables, state set, �nal state sets
etc...).

val union : t ! t ! t

The complement operation.

val inverse : t ! t

The automaton recognizingthe subtraction of langages:subtract L(a2) to L(a1)

val subtract : t ! t ! t

Decision of inclusion betweentwo langages:is L(a1) included in L(a2)?

val is included : t ! t ! bool

Decision of the emptynessof a languagerecognizedby a tree automaton.

val is language empty : t ! bool

Are the transitions recursive?

val is recursive : transition table ! bool

Is the recognisedlanguage�nite?

val �nite recognized language : t ! bool

12. Make a run of a tree automaton: verify if a term t rewrites into state q with regards to
transitions of automaton a. This is not the usual de�nition of a run, but the usual one can easily
be obtained from this one.

54

val run : term ! state ! t ! bool

13. The determinisation function: given a tree automaton it gives an equivalent deterministic
one.

val determinise : t ! t

14. Completion of tree automaton... in a non-deterministic way i.e., the result is a non-deterministic
tree automaton. If a deterministic one is needed,it needsto be determinised afterwards.

val make complete : t ! t

15. Construction of an automaton recognizingreducible terms. Starting from an alphabet a and
a TRS r built on a, this function constructs the tree automaton recognizingterms reducible by r .

val make red automaton :
alphabet ! Transition type:t ! t

16. Construction of an automaton recognizingirr educible terms. Starting from an alphabet a and
a TRS r built on a, this function constructs the tree automaton recognizingterms irreducible by r .
The result is a deterministic complete tree automaton, it may be cleant afterwards with simplify if
necessary.

This implements a standard algorithm that is usually not e�cien t at all. For a better e�ciency ,
usethe next function called nf opt.

val nf automaton :
alphabet ! transition table ! t

This one is usually more e�cien t than the previous one in practice. However the result is also
slightly di�eren t: the produced tree automaton is not necessarilydeterministic nor complete!

val nf opt :
alphabet ! transition table ! t

17. Cleaning of tree automata
Accessibility cleaning of tree automaton: retrievesall states that do not recognizeany term.

val accessibility cleaning : t ! t

Utilit y cleaning: retrievesall deadstates. For utilit y cleaningon an automaton with structured state
sets (obtained for example by application of an intersection operation use accessibility cleaning
before this one.

val utility cleaning : t ! t

Accessibility cleaning followed by utilit y cleaning

val clean : t ! t

Simpli�cation of tree automaton: a renumbering of the result of cleaning (accessibility + utilit y)
of the tree automaton. Useful for deciding if the langagerecognizedby an automaton a is empty.
If it is then is emtpy(simplify a) is true

val simplify : t ! t

18. State Renumbering

55

This function rewrites state labels in a tree automaton a thanks to a term rewriting system r on
states. Be careful! for state sets including states q1, q2 for example and if you use structured
states labels like q(f(q1,q2)), if q1 and q2 are to be renamedinto q3 and q4 respectively, then so is
q(f(q1,q2)) which is renamedinto q(f(q3,q4))!!

val rewrite state labels :
t ! transition table ! t

This function transforms a rewriting rule list (over states) usedfor state rewriting into an equivalent
terminating one (by building someequivalenceclasses�rst)

val simplify equivalence classes : rule list ! rule list

Automatic renumbering of a tree automaton. To apply this function on an automaton with struc-
tured state sets (obtained by intersection for example), useaccessibility cleaning before this one.

val automatic renum : t ! t

19. For saving an automaton to disk, seefunction save automaton in the module speci�cation.

Low level functions

20. Emptyness of an automaton, i.e. emptyness of its transition table. For checking of the
languageapply simplify function before) i.e., a is a tree automaton recognizingan empty langage
if and only if is empty(simplify a) is true.

val is empty : t ! bool

21. Modi�cation of �nal state set.

val modify �nal : t ! state set ! t

22. Modi�cation of prior transitions.

val modify prior : t ! transition table ! t

23. Modi�cation of state operators.

val modify state ops : t ! alphabet ! t

24. Modi�cation of state set.

val modify states : t ! state set ! t

25. Modi�cation of state operators.

val modify transitions : t ! transition table ! t

26. Construction of a state from a symbol with arit y 0. Recall that a state is a term!

val make state : symbol ! state

27. Construction of a state con�g from a state. A state con�g is a con�guration (i.e. a lhs or a
rhs of a transition) that is a state. For example: in q1 ! q2, q1 is a state con�guration.

56

val make state con�g : state ! term

28. Construction of a new transition

val new trans : symbol ! state list ! state ! rule

29. Is a con�guration a state con�guration? A state con�g is a con�guration (i.e. a lhs or a rhs
of a transition) that is a state. For example: in q1 ! q2, q1 is a state con�guration.

val is state con�g : term ! bool

30. State label of a state in a state con�guration.

val state label : term ! state

val lhs : rule ! term
val rhs : rule ! term

31. Top symbol of a transition

val top symbol :
rule ! symbol

32. Is a transition normalized? i.e. of the form f (q1; : : : ; qn) ! q0 where q1; : : : ; qn are states.

val is normalized : rule ! bool

33. Construction of the list of states of the left hand side of a transition.

val list state : rule ! state list

34. Construction of the state set formed by the states of all the transition of the transition table.

val states of transitions :
transition table ! state set

35. Normalization of epsilon transitions of the form q1! q2 with regards to a given transition
table delta.

val normalize epsilon :
state !

state !
transition table ! transition table

36. Normalization of a transitions table ltrans with new states whose labels are label^j where
j starts from i . It returns a triple with the new normalized transition table and the new state
operator alphabet as well as the integer n+1 where n is the number of the last assignednew state.
delta is simply usedto normalise epsilon transitions found in ltrans

val normalize :
transition table !

transition table !
string ! int ! transition table � int � alphabet

37. Similar to normalize but producesa deterministic set of transition

57

val normalize deterministic :
transition table !

transition table !
string ! int ! transition table � int � alphabet

38. Matching of a term (ground or with variables) on a tree automaton con�guration with regard
to a transition list (here given as a folder of transitions sorted by top symbol and right-hand side
(state).

val matching :
term !

term !
(symbol; (state; rule list) folder) folder !

substitution list

39. Puts a sol �lt (matching solution) in disjunctive normal form

val dnf : sol �lt ! sol �lt

40. checks if a list of associations is a substitution i.e., a same variable cannot be mapped to
di�eren t values. The substitution has to be given in a singleton list. The result is the empty list if
the substitution is not valid

val check subst : substitution list ! substitution list

41. Simpli�cation of matching solutions, by propagating Bottom solutions into the formula and
retrieving Bottom occuring in disjunctions and retrieving conjunctions where Bottom occurs

val simplify sol : sol �lt ! sol �lt

42. Constructs the disjointnessconstraint. This is usedto check that there is no non-linear lhs of
a rule (say f(x,x)) and no lhs of a transition (say f(q1,q2)) such that the languagerecognizedby q1
and q2 are not disjoint. The non-linear lhs are given in a list of terms l , the transitions are given
as a folder f of transitions sorted by top symbol and right-hand side (state), and the result is a list
of list of states whosedisjointnesshas to be checked.

val disjointness constraint :
term list !

(symbol; (state; rule list) folder) folder !
state list list

43. Is a term t1 rewritten into a state q (special term) by transitions contained in the folder f .

val is recognized into :
term !

state !
(symbol; (state; rule list) folder) folder ! bool

44. similar to the is recognized into but in the particular casewhere the transition is an epsilon
transition q1! q2, this consistsin verifying that all the transitions going to q1 are already going
to q2. Transitions are given into a transition table delta.

58

val is covered :
Con�gur ation type:t !

Con�gur ation type:t !
transition table ! bool

45. Parsing of a tree automaton with regards to an alphabet. For syntax, have a look to the
example:txt �le. Seealso the �le parse function of the module speci�cation speci�c ation :mli .

val parse : alphabet ! Genlex:token Stream:t ! t

end

59

In terface for module Speci�cation

46. This is the interface for speci�cations. What we call a speci�cation is a collection of term
rewriting systemsand bottom-up tree automata all de�ned on a common alphabet. Consequenlty,
this module is de�ned thanks to an alphabet type, a variable set type (used to de�ne rewrite rules),
a term rewriting systemtype and an automata type. Term rewriting systemand tree automata are
all assignedwith a name(a string) in the speci�cation. The simplestway to construct a speci�cation
is to write it in a �le and parse it thanks to the �le parse function. For a sample speci�cation
�le , pleaselook at the �le example:txt contained is the distribution.

module Speci�c ation
(Alphabet type : ALPHABET TYPE)
(Variable set type : VARIABLE SET TYPE)
(Term type : TERM TYPE with type alphabet = Alphabet type:t)
(TRS type : TRS TYPE with type alphabet = Alphabet type:t

and type variable set = Variable set type:t)
(Automata type : AUTOMA TA TYPE with type alphabet = Alphabet type:t

and type term = Term type:t)
(Gamma type : GAMMA TYPE with type variable set = TRS type:variable set

and type alphabet = TRS type:alphabet) :
sig

type alphabet = Alphabet type:t
type variable set = Variable set type:t
type trs = TRS type:t
type automaton = Automata type:t
type gamma content = Gamma type:gamma content
type spec = f alphabet : alphabet; variables : variable set;

trs list : (string � trs) list ;
automata list : (string � automaton) list ;
gamma list : (string � gamma content) list g

type t = spec
exceptionName used twice of string
exceptionNo TRS of that name of string
exceptionNo automaton of that name of string
exceptionNo approximation of that name of string
exceptionNo name of string

47. Parsing of a speci�cation in a �le of name �le name.

val �le parse : string ! spec

48. Lexer for speci�cations

val lexer : char Stream:t ! Genlex:token Stream:t

49. Get the alphabet of a speci�cation s.

60

val get alphabet : spec ! alphabet

50. Get the set of variables of a speci�cation s.

val get variables : spec ! variable set

51. Get the term rewriting system named name in the speci�cation s.

val get trs : string ! spec ! trs

52. Get the list of named term rewriting systemsof a speci�cation s.

val get list trs : spec ! (string � trs) list

53. Get the automaton named name in the speci�cation s.

val get automaton : string ! spec ! automaton

54. Get the list of named automata of a speci�cation s.

val get list automata : spec ! (string � automaton) list

55. Get the approximation named name in the speci�cation s.

val get approximation : string ! spec ! gamma content

56. Get the list of named approximation of a speci�cation s.

val get list approximation : spec ! (string � gamma content) list

57. Prett y print of a speci�cation s.

val to string : spec ! string

58. Writing a speci�cation s to a �le named �le name.

val write to disk : spec ! string ! unit

59. Saving an automaton a under the name aut name in a speci�cation �le named �le name.

val save automaton : automaton ! string ! string ! unit
end

61

In terface for module Term

60. This is the interface for terms of T (F ; X) constructed on an alphabet F and a set of variables
X

module Term
(Symbol type : PRINT ABLE TYPE)
(Alphabet type : ALPHABET TYPE with type symbol = Symbol type:t)
(Variable type : PRINT ABLE TYPE)
(Variable set type : VARIABLE SET TYPE with type variable = Variable type:t) :

sig

61. A term is either a variable, a constant, a functionnal symbol with a list of subterms, or a
special term. A special term is build on a union of the alphabet and a special alphabet.

For example, let F = f f : 2; g : 1; a : 0g an alphabet and F 0 = f prod : 2; q : 0; h : 2g a special
alphabet.

Then f (g(a); g(prod(q; h(g(q); q)))) is a term whereprod(q; h(g(q); q)) is a special subterm. The
Special () constructor is used in the implementation to separatethe special subterms in a term.

type symbol = Symbol type:t
type variable = Variable type:t
type alphabet = Alphabet type:t
type variable set = Variable set type:t
type term = (Symbol type:t ; Variable type:t) term const
type t = term

type substitution = (Variable type:t � term) list
exceptionTerms do not match of string � string
exceptionTerms do not unify of string � string
exceptionBadly formed term of string
exceptionParse error of string
exceptionUnde�ned symbol of string
exceptionBad operation on special term of string
exceptionBad operation on var of string

val equal : t ! t ! bool

62. Depth of a term, where depth of Special terms, variables and constant is 0

val depth : t ! int

63. Prett y printing of terms into strings

val to string : t ! string

val top symbol : t ! Symbol type:t

64. the direct subterms of a term

62

val list arguments : t ! t list

65. is a term a variable?

val is variable : t ! bool

66. is a term a constant?

val is constant : t ! bool

67. is a term special: its top constructor is a Special constructor

val is special : t ! bool

68. get the term t from Special(t)

val get special : t ! t

69. mapping function f1 on every symbol of term t1 and f2 on every constant, variable or special
term

val map : ((Symbol type:t ! Symbol type:t)) ! ((t ! t)) ! (t) ! t

70. get the list of the leavesof a term

val list leaves : t ! t list

71. get the list of variables of a term

val list variables : t ! Variable type:t list

72. get the list of non linear variables of a term (with no redundancy)

val list non linear variables : t ! variable list

73. renamea variable: add a string to the end of the variable

val var change: variable ! string ! variable

74. renamevariables of a term: add a string to the end of every variable name

val rename var : term ! string ! term

75. linearize a term: producesa linear version of a term t associated with the variable renamings
that have beenoperated in order to make the term linear.

val linearize : term ! (term � (variable � (variable list)) list)

76. is a term ground? i.e. with no variables. Note that a special term can be ground

val is ground : t ! bool

77. is a term linear? i.e. there is only one occurenceof each variable in the term

val is linear : t ! bool

78. get the list of all terms t such that Special (t) is a subterm of t1

63

val list special : t ! t list

79. Check the consistency of a term with regards to an alphabet. i.e. checks that for every
subterm f (s1; :::; sn) of t1 , f hasan arit y n in the alphabet a. This function returns the term itself
if it is correct, raise a Badly formed term exception if arit y of the symbol doesnot correspond to
its number of arguments, and raise a Unde�ned symbol exception if the term contains a symbol
that doesnot belong to the alphabet.

val check : Alphabet type:t ! t ! t

80. apply a substitution to a term (at every variable position in it)

val apply : substitution ! t ! t

81. returns the list of terms (s t1) (substitution s applied to t1) for every substitution s of l

val apply several : (substitution list) ! t ! t list

82. returns the list of terms (s t1) (substitution s applied to t1) for every substitution s of l and
every term t1 of lt

val apply substs on terms : (substitution list) ! t list ! t list

83. Parsing of terms w.r.t. an alphabet a and a set of variable varset

val parse :
Alphabet type:t !

Variable set type:t ! Genlex:token Stream:t ! t

84. Parsing of ground terms w.r.t. an alphabet a

val parse ground :
Alphabet type:t !

Genlex:token Stream:t ! t

85. Parsing of ground terms setsw.r.t. an alphabet a

val parse ground term set :
Alphabet type:t !

Genlex:token Stream:t ! t list

86. Verify the coherenceof a substitution: a variable must not be mapped to distinct terms.
Otherwise a Term do not match exception is raised

val coherent : substitution ! substitution

87. matching of term1 on term2, such that term2 is ground or at least with variables disjoint
from those of term1.

val matching : t ! t ! substitution

88. uni�cation of term1 on term2. No uni�cation on Special terms. Variablesof term1 and term2
are to be disjoint

64

val unify : t ! t ! substitution

89. similar functions for special terms
Check the consistencyof a term with regards to an alphabet a and a special alphabet spa i.e.
checks that for every subterm f (s1; :::; sn) of t1 , f has an arit y n in the alphabet if f (s1; :::; sn) is
a term or in spa if f (s1; :::; sn) is below a Special constructor.This function returns the term itself
if it is correct, raise a Badly formed term exception if arit y of the symbol doesnot correspond to
its number of arguments, and raise a Unde�ned symbol exception if the term contains a symbol
that doesnot belong to the alphabets.

val check special : Alphabet type:t ! Alphabet type:t ! t ! t

replacement in special terms: for every pair (t1 ; t2) of l , replaceevery Special (t1) by Special (t2)
at every Special position in t3

val replace special : ((t � t) list) ! t ! t

the map combinator on special terms

val map special : (Symbol type:t ! Symbol type:t) ! (t ! t) ! t ! t

Generalisation of substitution to special terms with any depth thanks to the combinator on terms:
Term.map special

val apply special : substitution ! term ! term

Parsing of a term with special subterms w.r.t. alphabet a and special alphabet spa.

val parse special :
Alphabet type:t !

Alphabet type:t !
Variable set type:t ! Genlex:token Stream:t ! t

Parsing of ground special terms w.r.t. alphabet a and special alphabet spa.

val parse ground special :
Alphabet type:t !

Alphabet type:t !
Genlex:token Stream:t ! t

Applying matching on term1 and term2, such that term2 is ground or at least with disjoint set of
variables. Special terms may contain variables

val matching special : t ! t ! substitution

end

65

In terface for module Rewrite

90. This is the interface for rewrite rules and rewrite systemsconstructed on an alphabet F , a
set of variables X and a set of terms T (F ; X)

module RewriteSystem
(Alphabet type : ALPHABET TYPE)
(Variable set type : VARIABLE SET TYPE)
(Term type : TERM TYPE with type variable set = Variable set type:t

and type alphabet = Alphabet type:t) :
sig

type alphabet = Alphabet type:t
type variable set = Variable set type:t
type term = Term type:t
type ruleSystem
type t = ruleSystem
type rule

exceptionVariable rhs not included in lhs of string
exceptionDoes not rewrite on top
exceptionBadly formed rule of string

91. the empty trs and other constructors

val empty : t
val new rule : term ! term ! rule
val is empty : t ! bool
val mem : rule ! t ! bool

92. adding a rule in a trs, and union of two trs

val add : rule ! t ! t
val union : t ! t ! t

93. if the rule is not in the trs we can catenate without testing membership

val add fast : rule ! t ! t

94. if trs are known to be disjoint we can catenate without testing membership for union

val union fast : t ! t ! t

95. �rst rule of a ruleSystemand remainder of the system

val �rst : t ! rule
val remainder : t ! t

nth rule of the system (in the parsing order)

66

val nth : t ! int ! rule

96. right-hand side and left-hand side of a rule

val rhs : rule ! term
val lhs : rule ! term

97. equality on rules

val rule equal : rule ! rule ! bool

98. is a rule left or right or left and right linear ?

val is ground : rule ! bool
val is left linear : rule ! bool
val is right linear : rule ! bool
val is linear : rule ! bool

99. list of non linear lhs of a ruleSystem

val non linear lhs : t ! term list

100. intersection of two trs

val inter : t ! t ! t

101. moving from list to ruleSystemand conversely

val to list : t ! rule list
val list to trs : rule list ! t

102. prett yprin t

val rule to string : rule ! string
val to string : t ! string

103. renaming every variable of a rule: adding a string to the end of every variable label

val rename rule var : rule ! string ! rule

104. renaming every variable of a rewrite system: adding a string to the end of every variable
label

val rename var : t ! string ! t

105. Checking one rule with regards to an alphabet: checks construction of lhs and rhs as well
as inclusion of var(rhs) in var(lhs)

val check rule : rule ! alphabet ! rule

106. Checking a trs with regards to an alphabet: checks construction of lhs and rhs as well as
inclusion of var(rhs) in var(lhs)

val check : t ! alphabet ! t

107. parsing of a rule, given an alphabet a variable set varset

67

val parse rule :
alphabet !

variable set ! Genlex:token Stream:t ! rule

108. parsing of a trs given an alphabet a variable set varset

val parse :
alphabet !

variable set ! Genlex:token Stream:t ! t

109. rewrite onceon top position of term t1 with any rule of trs r

val rewrite top once : t ! Term type:t ! Term type:t

110. leftmost innermost normalisation of the term t1 thanks to a trs r . Of courseTRS should
terminate!

val left inner norm : t ! Term type:t ! Term type:t

111. bottom up normalisation of term t1 thanks to trs r . Useful when the trs is a transition
table of an automaton

val bottom up norm : t ! Term type:term ! Term type:t

112. similar functions but for rules and trs built on special terms ...

val check special rule :
rule ! alphabet ! alphabet ! rule

val check special :
t ! alphabet ! alphabet ! t

val parse special rule :
alphabet !

alphabet !
variable set ! Genlex:token Stream:t ! rule

val parse special :
alphabet !

alphabet !
variable set ! Genlex:token Stream:t ! t

val parse ground special :
alphabet !

alphabet ! Genlex:token Stream:t ! t
val parse ground special rule :

alphabet ! alphabet ! Genlex:token Stream:t ! rule

val left inner norm special :
t ! Term type:t ! Term type:t

val left inner norm special system :
t ! t ! t

end

68

In terface for module Alphab et

113. This is the interface for alphabets which are setsof symbols associated with their arit y i.e.
their number of arguments

module Alphabet :
functor (Symbol type : PRINT ABLE TYPE) !

sig
type symbol = Symbol type:t
type t

exceptionSymbol not in alphabet of string
exceptionMultiply de�ned symbol of string

114. One alphabet constructor

val new alphabet : t

115. Parsing of alphabets (another constructor)

val parse : Genlex:token Stream:t ! t

116. Testing the occurrenceof a symbol in an alphabet

val occur : symbol ! t ! bool

117. Adding a symbol with its arit y in an alphabet

val add symbol : symbol ! int ! t ! t

118. Getting the arit y of a symbol in an alphabet. This function raisesthe exceptionSymbol not in alphabet(s)
where s is the string associated with the symbol if it is not in the alphabet

val get arity : symbol ! t ! int

val to list : t ! (symbol � int) list

val to string list : t ! string list

119. Testing disjointnessof two alphabets

val disjoint : t ! t ! bool

120. Construct the union of two disjoint alphabets

val union fast : t ! t ! t

121. Construct the union of two alphabets, possibly non-disjoint

val union : t ! t ! t

122. Prett y print

val to string : t ! string

end

69

In terface for module State set

123. This is the interface for state sets. Seethe automaton module for a detailed description of
the representation of states. State setsare setsof states associated with a state content which can
be of various form: formulas, text, automaton (why not?)

module State set
(Symbol type : PRINT ABLE TYPE)
(Alphabet type : ALPHABET TYPE with type symbol = Symbol type:t)
(State type : TERM TYPE with type symbol = Symbol type:t

and type alphabet = Alphabet type:t)
(State content : STATE CONTENT TYPE) :

sig
type alphabet = Alphabet type:t
type symbol = Symbol type:t
type state content = State content:t
type state = State type:t
type t

exceptionState not in state set of string
exceptionNot a state of string
exceptionStructured state sets of string

124. Is a state set structured?

val is structured : t ! bool

125. The empty state set

val empty : t

126. Add a state with no state content to a state set

val add : state ! t ! t

127. Add a state with its content

val add verb : state ! state content ! t ! t

128. Transform a list of state into a state set

val list to set : state list ! t

129. Extract the list of states from a state set

val to list : t ! state list

130. Add all states of a list to a state set

70

val add all : state list ! t ! t

131. Adds a list of states to a set s1, using their description coming from another set s2

val add all verb : state list ! t ! t ! t

132. Is a state set empty? and is a state member of a state set?

val is empty : t ! bool
val mem : state ! t ! bool

133. The �rst element of a state set and the remainder

val �rst : t ! state
val remainder : t ! t

134. prett y print

val to string : t ! string

135. prett y print in verbosemode, where the content is also printed in front of its corresponding
state

val to string verb : t ! string

136. get the state content associated to a state in a state set

val state description : state ! t ! state content

137. The default binary symbol usedfor representing product of states

val default prod symbol : symbol

138. construction of a product state from two states

val state product : state ! state ! state

139. construction of the cartesian product of two state sets(in a symbolic way i.e. the cartesian
product is not computed

val symbolic product : t ! t ! t

140. boolean operations on state sets

val inter : t ! t ! t
val union : t ! t ! t
val minus : t ! t ! t
val union disjoint : t ! t ! t

141. are all states from the list member of the state set

val all mem : state list ! t ! bool

142. produce and add to a state operator alphabet s1 all symbols labeled by str ^"k" where k
takes the valuesfrom i to j

71

val produce :
int ! int ! string ! Alphabet type:t !

Alphabet type:t

143. Parsing of symbols of state set

val parse ops : Genlex:token Stream:t ! Alphabet type:t

144. Parsing of a state set

val parse :
alphabet !

alphabet ! Genlex:token Stream:t ! t

145. Parsing of a state set with associated state contents

val parse verb :
alphabet !

alphabet ! Genlex:token Stream:t ! t
end

72

In terface for module Variable set

146. This is the interface for variable sets

module Variable set :
functor (Variable type : PRINT ABLE TYPE) !

sig
type variable = Variable type:t
type t
val empty : t
val is empty : t ! bool
val mem : variable ! t ! bool
val to string : t ! string
val to string list : t ! string list
val parse : Genlex:token Stream:t ! t

end

73

74

References
[1] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press,1998.

[2] Walter S. Brainerd. Tree generating regular systems. Information and Control, 14:217{231,
1969.

[3] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard,D. Lugiez, S. Tison, and M. Tommasi.
Tree automata techniques and applications. http://www.grappa.univ-li lle 3.fr /tat a/ ,
2002.

[4] J.L. Coquid�e, M. Dauchet, R. Gilleron, and S. V�agv•olgyi. Bottom-up tree pushdown automata
and rewrite systems. In R. V. Book, editor, Proceedings 4th Conference on Rewriting Tech-
niques and Applications, Como (Italy) , volume 488 of Lecture Notes in Computer Science,
pages287{298. Springer-Verlag, 1991.

[5] M. Dauchet and S. Tison. The theory of ground rewrite systemsis decidable. In Proceedings
5th IEEE Symposium on Logic in Computer Science, Philadelphia (Pa., USA), pages242{248,
June 1990.

[6] D.Dolev and A. Yao. On the security of public key protocols. In Proc. IEEE Transactionson
Information Theory, pages198{208, 1983.

[7] G. Feuillade, T. Genet, and V. Viet Triem Tong. Reachabilit y Analysis over Term Rewrit-
ing Systems. Technical Report RR-4970, Institut National de Recherche en Informatique et
Automatique, 2003. http://www.irisa.fr/lande /gen et/t imbuk/# papers .

[8] J.-C. Fili âtre and C. March�e. ocamlweb: a literate programming tool for Objec-
tiv e Caml. Institut National de Recherche en Informatique et Automatique, 2000.
http://www.lri.fr/~fillia tr/o camlweb/ .

[9] T. Genet. Decidable approximations of setsof descendants and setsof normal forms. In Pro-
ceedings 9th Conference on Rewriting Techniquesand Applications, Tsukuba (Japan), volume
1379of Lecture Notes in Computer Science, pages151{165. Springer-Verlag, 1998.

[10] T. Genet and F. Klay. Rewriting for Cryptographic Protocol Veri�cation. In Proceedings 17th
International Conference on Automated Deduction, Pittsburgh (Pen., USA), volume 1831 of
Lecture Notes in Arti�cial Intel ligence. Springer-Verlag, 2000.

[11] F. Jacquemard.Decidableapproximations of term rewriting systems.In H. Ganzinger,editor,
Proceedings 7th Conference on Rewriting Techniquesand Applications, New Brunswick (New
Jersey, USA), pages362{376. Springer-Verlag, 1996.

[12] X. Leroy, D. Doligez,J. Garrigue, D. R�emy, and J. Vouillon. The ObjectiveCaml systemrelease
3.00 { Documentation and user's manual. Institut National de Recherche en Informatique et
Automatique, 2000. http://caml.inria.fr/ocam l/ht mlman/ .

[13] G. Lowe. Breaking and �xing the Needham-Schroeder public-key protocol using CSP and
FDR. In Proceedings of the 2nd International Workshop on Tools and Algorithms for the
Construction and Analysis of Systems,Passau(Germany), volume 1055 of Lecture Notes in
Computer Science, pages147{166. Springer-Verlag, 1996.

75

[14] P. R�ety. Regular Setsof Descendants for Constructor-basedRewrite Systems. In Proceedings
of the 6th International Conference on Logic Programming and Automated Reasoning, Tbilisi
(Georgia), volume 1705of Lecture Notes in Arti�cial Intel ligence. Springer-Verlag, 1999.

[15] K. Salomaa. Deterministic Tree Pushdown Automata and Monadic Tree Rewriting Systems.
Journal of Computer and SystemSciences, 37:367{394,1988.

76

Index
accessibility cleaning, 17
add, 92, 126
add all , 130
add all verb, 131
add fast, 93
add symbol, 117
add verb, 127
all mem, 141
alphabet (�eld), 46
alphabet (t ype), 7, 46, 61, 90, 123, 7{ 9, 15,

16, 23, 36, 37, 45, 46, 49, 90, 105{ 108,
112, 123, 144, 145

Alphabet (module), 113
And, 7
apply, 80
apply several , 81
apply special , 89
apply substs on terms, 82
automata list (�eld), 46
automatic renum, 18
automaton (type), 46, 46, 53, 54, 59
Automaton (module), 7
Badly formed rule (exn), 90
Badly formed term (exn), 61
Bad operation on special term (exn), 61
Bad operation on var (exn), 61
bi folder add, 45
bi folder add trans list , 45
bi folder atten , 45
bi folder mem, 45
Bottom, 7
bottom up norm, 111
check, 79, 106
check rule, 105
check special , 89, 112
check special rule, 112
check subst, 40
clean, 17
coherent, 86
con�gs from symbol to state, 45
default prod symbol, 137
depth, 62
determinise, 13
disjoint , 119

disjointness constraint , 42
dnf , 39
Does not rewrite on top (exn), 90
empty, 91, 125, 146
Empty, 7
equal, 61
�le parse, 47
�nite recognized language, 11
�rst , 95, 133
folder (type), 7, 38, 42, 43, 45
folder add, 45
folder assoc, 45
folder cartesian product, 45
folder atten , 45
folder hd, 45
folder replace, 45
folder tail , 45
gamma content (t ype), 46, 46, 55, 56
gamma list (�eld), 46
get alphabet, 9, 49
get approximation , 55
get arity , 118
get automaton, 53
get �nal states, 9
get list approximation , 56
get list automata, 54
get list trs , 52
get prior , 9
get special , 68
get states, 9
get state ops, 9
get transitions, 9
get trs , 51
get variables, 50
inter , 11, 100, 140
inverse, 11
is constant, 66
is covered, 44
is empty, 20, 91, 132, 146
is empty folder, 45
is ground, 76, 98
is included, 11
is language empty, 11
is left linear , 98

77

is linear , 77, 98
is normalized, 32
is recognized into , 43
is recursive, 11
is right linear , 98
is special , 67
is state con�g , 29
is structured, 124
is variable, 65
left inner norm, 110
left inner norm special , 112
left inner norm special system, 112
lexer, 48
lhs, 30, 96
Linearity problem (exn), 7
linearize, 75
list arguments, 64
list leaves, 70
list non linear variables, 72
list special , 78
list state, 33
list to set, 128
list to trs , 101
list variables, 71
make automaton, 8
make complete, 14
make fast union, 45
make red automaton, 15
make state, 26
make state con�g , 27
map, 69
map special , 89
matching, 38, 87
matching special , 89
mem, 91, 132, 146
mini subst (t ype), 7, 7
minus, 140
modify �nal , 21
modify prior , 22
modify states, 24
modify state ops, 23
modify transitions, 25
Multiply de�ned symbol (exn), 7, 113
Name used twice (exn), 46
new alphabet, 114
new rule, 91
new trans, 28

nf automaton, 16
nf opt, 16
non linear lhs, 99
Normalisation problem (exn), 7
normalize, 36
normalize deterministic , 37
normalize epsilon, 35
Not , 7
Not a state (exn), 7, 123
Not in folder (exn), 7
No approximation of that name (exn), 46
No automaton of that name (exn), 46
No name (exn), 46
No TRS of that name (exn), 46
nth, 95
occur , 116
Or , 7
parse, 45, 83, 108, 115, 144, 146
Parse error (exn), 61
parse ground, 84
parse ground special , 89, 112
parse ground special rule, 112
parse ground term set, 85
parse ops, 143
parse rule, 107
parse special , 89, 112
parse special rule, 112
parse verb, 145
print , 10
produce, 142
remainder, 95, 133
rename rule var, 103
rename var, 74, 104
replace special , 89
Rewrite (module), 90
RewriteSystem(module), 90
rewrite state labels, 18
rewrite top once, 109
rhs, 30, 96
rule (type), 7, 90, 7, 18, 28, 30{ 33, 38, 42,

43, 45, 91{ 93, 95{ 98, 101{ 103, 105,
107, 112

ruleSystem (type), 90, 90
rule equal, 97
rule to string , 102
run , 12
save automaton, 59

78

simplify , 17
simplify equivalence classes, 18
simplify sol, 41
sol �lt (t ype), 7, 7, 39, 41
spec (type), 46, 46, 47, 49{ 58
Speci�c ation (module), 46
state (type), 7, 123, 7, 12, 26{ 28, 30, 33, 35,

38, 42, 43, 45, 126{ 133, 136, 138, 141
states of transitions, 34
state content (t ype), 123, 7, 127, 136
state description, 136
state label, 30
State not in state set (exn), 123
state product, 138
state set (t ype), 7, 8, 9, 21, 24, 34
State set (module), 123
Structured state sets (exn), 123
substitution (type), 7, 61, 7, 38, 40, 80{ 82,

86{ 89
subtract, 11
symbol (t ype), 7, 61, 113, 123, 7, 26, 28,

31, 38, 42, 43, 45, 60, 116{ 118, 123,
137

symbolic product, 139
Symbol not in alphabet (exn), 113
term (type), 7, 61, 90, 7, 8, 12, 27, 29, 30,

38, 42, 43, 45, 46, 61, 74, 75, 89, 91,
96, 99, 111

Term (module), 60
Terms do not match (exn), 61
Terms do not unify (exn), 61
term set to automaton, 8
top symbol, 31, 63
to list , 101, 118, 129
to string , 10, 57, 63, 102, 122, 134, 146
to string list , 118, 146
to string verb, 135
transitions by state, 45
transitions by state by symbol, 45
transitions by symbol, 45
transitions from symbol to state, 45
transition table (type), 7, 8, 9, 11, 16, 18,

22, 25, 34{ 37, 44
TreeAutomata (module), 7
tree automata (type), 7, 7
trs (type), 46, 46, 51, 52
trs list (�eld), 46

Unde�ned symbol (exn), 61
unify , 88
union, 11, 92, 121, 140
union disjoint , 140
union fast, 94, 120
utility cleaning, 17
variable (type), 61, 146, 7, 60, 72, 73, 75,

146
variables (�eld), 46
Variable rhs not included in lhs (exn), 90
variable set (t ype), 46, 61, 90, 46, 50, 90,

107, 108, 112
Variable set (module), 146
var change, 73
write to disk, 58

79

	Timbuk library overview
	What is Timbuk?
	Availability, License and Installation
	Note on the implementation
	Bug report and information
	Changes from version 1.1 to version 2.0

	Tutorial
	Timbuk
	Exact case
	Interactive approximations and prioritary transitions
	Normalization rules
	Bigger example: cryptographic protocol
	Verifying left-linearity condition
	Doing more and going faster
	More tricks

	Taml
	Tabi
	Basic
	Display modes
	Using Tabi to approximate in Timbuk

	Specification language reference manual
	Comments
	Symbols
	Alphabets
	Variable sets
	Term Rewriting Systems
	Tree Automata
	Implicit definitions
	Explicit definitions

	Approximations

	Timbuk reference manual
	Running Timbuk
	Timbuk normalization and approximation tools
	Prioritary transitions
	Normalization rules
	Merging rules
	Approximation equations

	Timbuk commands
	Timbuk modes and command line options
	Dynamic completion mode
	Static completion mode

	Taml reference manual
	Running Taml
	Basic Taml functions
	Using all Timbuk library functions through Taml

	Tabi reference manual
	Mouse actions
	Buttons
	File menu
	Options menu

