Version 2.0 Auﬁqu}.}s

The Timbuk tree automata library now cortains three standalonetools:

Timbuk: Copyright ¢ 2000-2003Thomas Genetand Valerie Viet Triem Tong

Taml: Copyright ¢ 2003Thomas Genet

Tabi: Copyright ¢ 2003 Thomas Genet and [Boinet Matthieu, Brouard Robert, Cud-
ennecLoic, Durieux David, Gandia Sebastien,Gillet David, Halna Frederic, Le Gall Gilles,
Le Nay Judicael,Le Roux Luka, Mallah Mohamad-Tarek, Marchais SebastienMartin Mor-
gane,Minier Francois, Stute Mathieu] { aavisu project team for french "maitrise” level (4th
University year) 2002-2003at IFSIC/Univ ersite de Rennesl.

Contents

[Timbuk library _overview| 4
L1 What iSTimbuk? o o 4
[1.2__Availability, Licenseand Installation 4
[1.3 _Note onthe implemedationl 5
[1.4 Bug report_and information 5
[L.L5 Changesfrom version1.1to version2.0 5

E_Tutorial | 7
PaTimbul 7

Rl EXACLCASE. . . . ot ottt 10
[2.1.2__Interactive approximations and prioritary transitiond 12
.13 Normalizationruled, 15
.1.4 Bigger example: cryptographic protocol L. 16
.1.5 Verifying left-linearity conditiod, 23
.1.6 Doing moreand goingfastef 24
P17 Moretricks 25
P2 Taml 27
B3 Tabl 32
P31 Basit. 32
.32 Displaymodes. 33

[2.3.3 Using Tabi to appraximate in Timbuld 34

B.1 Commend, 36
3.2 Svimbols 36
B3 Alphabets 36
B4 Variableseth. 36
3.5 _Term Rewriting SYStemMB o o v v e e 36
B.6 TreeAutomatao 36
B.6.1 Implicit denitionsl 36
B.6.2 Explicit de nitionsl, 36

BZ _ApproXimationd 37
4 Tim buk reference manuall 38
41 Running TimbuM 38
4.2 Timbuk normalization and appraximation tools 39
W21 Prioritary transitiond 39
W22 Normalizationruled 40

ingrules 40

4.2.4 _Approximation equations. 41

U3 Timbukcommands 41
k4.4 Timbuk modesand commandline options 43

45
45
46
49

49
50
50
51
51

51

1 Timbuklibrary overview

1.1 What is Timbuk?

Timbuk is a collection of tools for adieving proofs of readability over Term Rewriting
Systems(TRS for short) and for manipulating Tree Automata. The tree automata we use
here are bottom-up non-deterministic nite tree automata (NFTA for short).

The Timbuk library providesthree standalonetools and a bunch of Objective Caml [1Z]
functions for basic manipulation on Tree Automata, alphabets, terms, Term Rewriting Sys-
tems, etc. The three tools are:

Timbuk: atree automata completionenginefor readability analysisover Term Rewrit-
ing Systems

Taml: an Ocaml toplevel with basicfunctions on NFTA:

boolean operations: intersection, union, inversion, etc...
emptinessdecision

cleaning,renaming

determinisation

matching over Tree Automata

parsing, pretty printing

normalization of transitions

[t T e W e W e WY et WY et W e N i)

and somemore...
Tabi: a Tree Automata Browsing Interface for visual automata inspection

See[1] for a survey on Term Rewriting Systemsand [3] for a survey on tree automata.
For readability analysisand tree automata completion details, look at [[7].

1.2 Availabilit y, License and Installation

Timbuk is freely available, under the terms of the GNU LIBRARY GENERAL PUBLIC
LICENSE, here:

http://lwww.irisa.fr/land e/genet/tim buk/

Now, Timbuk s available for download in Ocaml sourceand windows binary les. To install

and run Timbuk, pleasereferto the README le of the distribution. For documertation on

the Timbuk, Taml and Tabi tools, seetutorial in sectiond and respective referencemanuals
in sectionsd, H and@ For documertation on the interface of Ocaml NFTA functions, see
section[d

1.3 Note on the implemen tation

Most of the functions of the library are implemerted straightforwardly without objects and
in a functional style. Howewer, we tried to dewlop this library in a modular way sud that
optimizations could be added afterward. Thus optimizations are welcomeand can even be
proposedto us for implemertation. Tabi as beendeweloped with Labltk (Ocaml with Tk
functions) in collaboration with a group of studerts in 4th year of Computer Scienceof
RennesUniversity (seeREADMIe for credits).

1.4 Bug report and information

Pleasereport commerts and bugsto Thomas.Genet@irisa.fr .

Seehttp://www.irisa.fr/lande /genet/ timbuk/ for information about Timbuk and re-
lated papers.

1.5 Changes from version 1.1 to version 2.0

BetweenTimbuk 1.1 and Timbuk 2.0, the following changeshave beendone:

Added 'Taml": a standaloneOcaml toplevel with preloadedTimbuk library functions
over tree automata, terms, term rewriting systems,etc. This replacesthe old "CAL-
CULATOR MODE" Timbuk "miml" les.

Added 'Tabi': the Tree Automata Browsing Interface for automata inspection. Tabi is
a standaloneapplication but can alsobe called from Timbuk and Taml.

Made a more robust Make le
Made a poor man's windows Make le

Added --dynamic, --static , --fstatic , -f, -0, --strat options to Timbuk, with
the following usage:

Options: --dynamic for usual completion algorithm (default)

--static to activate the static compilation of matching and
normalisation (needs a complete set of prior and
norm rules)

--fstatic to activate the static compilation of matching and

normalisation. If the set of prior and norm rules is
not complete, a transition not covered by the rules is
normalised using a single new state #qstatic#

-f file to read Timbuk commanddrom a file

-0 file output Timbuk execution trace in a file

--strat followed by keywords:

exact (exact normalisation with prioritary rules)
prior (normalisation with prioritary rules
norm_rules (normalisation ~ with approximation rules)

auto (automatic normalisation with new states)
auto_conf (similar to 'auto' but asks for confirmation first)
auto_prior (automatic normalisation with new states where

new transitions are stored as prioritary rules)
auto_prior_conf (similar to ‘auto_prior' but asks for confirmation first)

manual_norm (manual addition of normalisation rules)
manual_norm_conf(si mil ar to 'manual_norm' but asks for confirmation first)
manual (manual normalisation)

manual_conf (similar to 'manual’ but asks for confirmation first)

Added the ability to de ne appraximation equations(in speci cations and at run time)

Added the 'exact’ strategy which is always terminating and exact on somespeci c
syrtactic classeqseedocumertation)

Changedthe (w) commandsothat it writes to disk the TRS, the current completed
automaton, the initial automaton, the currernt approximation and the list of automaton
usedfor intersectionin a same le

Added the (p) Timbuk commandfor searding a pattern cortaining symbols, variables
and states, in the completedautomaton.

Added the (0) Timbuk commandfor computing intersection betweenthe completed
automaton and someexternal automaton readin a le.

Added the (m) Timbuk commandfor mergingsomestatesin the completedautomaton.

Added the (b) Timbuk commandfor browsingthe currernt completedautomaton with
Tabi. Tabi alsogivesthe ability to construct somemerging rules graphically.

Added the (f) Timbuk commandto forget somecompletion steps.
Added the (d) Timbuk commandfor displaying the current TRS usedfor completion.

Added the (e) Timbuk command for consulting/adding the current approximation
equations.

Added the (g) Timbuk commandfor consulting/adding normalization rules interac-
tively

Addedthe (det) Timbuk commandfor determinizingthe currert completedautomaton.
Added the completion step number to Timbuk.

Extended the norm_rules syntax to use normalization rules where it is possibleto
achieve matching on the state labels. For instanceit is now possibleto de ne sut a
normalization rule:

[encr(pubkey(q(x)), m) -> qgstore] -> [m -> q(secret(x))]

in dynamic made only, whereq is herea state operator of arity 1 (de ned using States
g:1 syntax).

Added the 'Import' keyword in the speci cation languageto import tree automata
state operatorsin the approximation.

Added the 'Set' keyword in the speci cation languageto de ne automata through
their nite language,i.e. nite set of terms which are compiledinto a deterministic
tree automaton.

Optimised standard completion mode (dynamic) in Timbuk.

Discardedsomebugs.

2 Tutorial

In this tutorial, we assumethat the readeris familiar with term rewriting systems|[I], tree
automata [3] aswell asthe notations and de nitions of [7]. Howeer, in the rst part of this
tutorial, basicnotions on term rewriting systemsshould be enough.

The Timbuk library was initially designedto adieve readability over Term Rewriting
Systems,i.e. givena TRS R and two termss andt we try to prove or disprovethat s! g7 t.
In Timbuk, we considera more general problem which is readability over sets of terms
rather than on coupleof terms, i.e. areterms of a setF R-reatable from terms of an initial
set E. In that case,we can de ne the set of R-descendats of a set of terms E denoted
by R?(E) = ft js2 E ands ! r? tg. Then given a secondset of terms F, it is possible

to prove for instance that all terms R-readable from E are in F (R?(E) F) or that
none of the terms of F can be R-readed from E (R?(E)\ F = ;). This last property
has someapplications in veri cation [I0, [7] where TRS are usedto model programs, E all
their possibleinitial con gurations and F a setof dangepuscon gurations not to be readed
when executingthe program from the initial con gurations.

When the setsE and F arein nite setsof termsit is necessaryusea speci ¢ represema-
tion in order to model them nitely . This is essetially the role of the tree automata. Then
computing exactly or appraximately R?(E) for anin nite setof terms represeted by a tree
automaton can be done using a tree automaton completion algorithm. This algorithm is
preciselythe core of the Timbuk tool we now presen. The aim of this tool is to producea
tree automaton recognizingR ?(E) exactly whenit is possibleand approximately otherwise,
and then to chek if R?(E)\ F = ; for veri cation purposes.

2.1 Tim buk

The Timbuk tool performstree automata completionwith regardsto aterm rewriting system
to computeexactly or appraximately R?(E). Treeautomata and term rewriting systemsare
stored in a Timbuk speci c ation le (seesection[3 for details about the syntax). Let us
begin by a simple examplewherethere is no needto cope with tree automata syrntax. Start
Timbuk on the basic.txt le cortaining a rst example,i.e. simply type:

timbuk basic.txt

in a commandwindow. Depending on the way you obtained Timbuk, you may not be
able to directly use'tim buk' asa standalonecommandand you may needto type ocamlrun
timbuk basic.txt instead. Pleasereferto the READMIE of the distribution for details on
how to run the Timbuk library tools.

If launching Timbuk succeedsthen Timbuk readsthe following basic.txt speci cation
le:

(* This is a specification file to be used with the Timbuk tutorial %)
Opsfl g:1 a0
Vars x y z

TRSR
fx) > g(f(x)

Set init
f(a)

Set checkl
f(g(f(a)))
g(f(a(a)))

Set check2
9(9(a(g(g(a(g(a(f(@))) M)

and starts completion on the TRS R and the set of terms (here a set cortaining a single
term) denotedby init . When givena nite setof terms usingthe Set constructor, Timbuk
transforms it into a tree automaton recognizing exactly this set, i.e. the setff(a) g in
our case. The other sets (and thus other tree automata) assaiated with namescheckl
and check2 will be used later for veri cation purpose. When launching Timbuk on this
speci cation, you should obtain the following output:

Completion step: 0

Do you want to:

(c)omplete one step (use Ctrl-C to interrupt if necessary)
complete (a)ll steps (use Ctrl-C to interrupt if necessary)
(m)erge some states

(s)ee current automaton

(b)rowse current automaton with Tabi

(d)isplay the term rewriting system

(Dntersection with verif automata

intersection with (o)ther verif automata on disk

search for a (p)attern in the automaton

(v)erify linearity condition on current automaton

(w)rite current automaton, TRSand approximation to disk
(Dorget old completion steps

(e)quation approximation in gamma

(gJamma normalisation rules

(det)erminise current automaton

(undo last step

(gq)uit completion

(c/a/m/s/b/d/ilo/plviwit lelg [det /ul q)?

meaning that the current completion step number is 0 and that Timbuk expect you to give one
command. For instance,type s to display the current tree automaton being completed. You should
obtain the following output:

States gterm0:0 qgterm1:0
Final States qgtermO

Transitions
a -> (qterml
f(gterml) -> qtermO

which is the tree automaton recognizingthe set of terms ff (a)g. Now it is possibleto seart for
reachable terms from ff (a)g by doing somecompletion steps. Type ¢ to achieve one completion
step. Timbuk nds a new reactable term which correspondsto a new tree automata transition to
add to the current tree automaton:

Adding transition:

g(f(qterml)) -> qtermO

Adding this transition to the tree automaton will permit to recognizethe term g(f (a)) which is
reachable from f (a) whenapplying rule f (x) ! g(f (x)). Howewer the transition g(f(qterm1)) ->
gtermO hasto be normalized rst, i.e. be transformed into an equivalent set of normalized transi-

case,the subterm f(qgterm1) is not a state. Timbuk asksif you want to give speci ¢ normalization
rules by hand to normalize this transition. Answer no n and useautomatic normalization with new
states instead, by answering y to the secondquestion. This causesTimbuk to create a new state

gnewOto normalize automatically the transition into a set of two normalized transitions equivalertﬂ
to g(f(gterml1)) -> qgtermO:

Adding transition:
g(gnewQ) -> qgtermO

already normalised!

Adding transition:
f(gterml1l) -> gnewO

already normalised!

INote that with thesetwo new transitions it is possibleto rewrite term g(f(qterm1)) into g(qnew0) and
then rewrite g(qnewO) into qterm0. Henceadding those two transitions permits to rewrite g(f(qterm1))
into gterm0 which correspondsto the transition we initially wanted to add.

9

This ends the rst completion step. Using the same normalization methodology (i.e. always
normalize with new states) it is possibleto complete step 2, step 3 and so on, but completion
doesnot terminate with this strategy. This is not really surprising sincerule f (x) ! g(f (x)) is
not terminating on term f (a) and we are incremertally adding an in nite set of descendats of
f (a). Howewer, sincethis example belongsto a speci c decidableclasﬂ we know that R’(ff (a)g)
can be exactly computed using a tree automaton (it is regular). In the next section, we achieve
the completion automatically on the same example using the exact strategy dedicated to the
speci cations of the decidableclass.

2.1.1 Exact case

First, quit Timbuk if it is still running by typing g and launch it again with the exact strategy by
typing

timbuk --strat exact basic.txt

Then either type repeatedly ¢ or type oncea for achieving completion until Timbuk succeeds
at step 3:

Automaton is complete!!

You canseethe nal completedautomaton by typing s, and write this result into a le by typing w.
Then it is possibleto ched if terms of the setscheckl and check2 are Rreadable from f(a) . This
can be done by computing an intersection betweenthe completed automaton recognizingthe set of
all Rreadable terms from f(a) (R’(init) = R(ff (a)g)) with checkl and check2. Intersections
with nite setsor other automata contained in the samespeci cation le canbe doneby typing i,
this results in:

Intersection with checkl gives (the empty automaton):

States

Final States

Transitions

for checkl, meaningthat terms of checkl are not reacable and for check2 this results in:
Intersection with check2 gives (not empty):

States g9:0 g8:0 q7:0 g6:0 g5:0 g4:.0 g3:0 g2:0 gq1:0 g0:0

Final States 9

Transitions
a->q0

2Seeexact strategy in sectionZ-Z1 for details on the decidable classes.

10

f(g0) -> g1

g(@l) -> g2
9(@2) -> g3
g(@3) > g4
g(@4) -> g5
g(g5) -> g6
g(@6) -> q7
g(@7) -> g8
g(@8) -> g9

meaning that the term of check2 is reachable from f(a) by rewriting with R Now, quit Timbuk
and try a new sample le example.txt

timbuk --strat exact example.txt

where Rdescribesthe classicalappend function on lists (the app symbol in the speci cation le)
and AOrecognizesan in nite set of terms of the form app(tl, t2) wheretl isany at list of aand
t2 isany at list of b. Automaton Probleml recognizesonly the two terms given in the de nition,
i.e. terms cons(b, cons(a, nil)) and cons(b, cons(b, cons(a, cons(a, nil)))) . Finally,
the automaton Problem2 recognizesthe languageof lists where there is at least one b followed by
an a. This exampleis alsoin one of the decidableclassesand can be automatically completedusing
a (or c) after 3 completion steps. Like in the previous example,we can verify that the intersection
betweenthe completed automaton and Probleml is empty meaningthat the two recognizedterms
are not Rreadable from terms recognizedby AQ Howeer, the languagecorresponding to Problem1
is nite and is a particular case.Thus, to really prove in the generalcasethat the append function
applied to any list of a and any list of b cannot result in any list wherethere is at leastoneb before
an a it is necessaryto compute the intersection betweenthe completed automaton and Problem2,
which is hopefully empty and thus guaranteesthe property.

Conjointly to intersections with additional tree automata, Timbuk provide another tool for
proving or disproving readhability: pattern matching over the completed tree automaton. To do
pattern matching, type p. Timbuk rst recallsthe symbols on which the pattern can be built: the
alphabet, the set of states operators and the set of variables. On our example this results in the
following output:

Alphabet=
cons:2 a0 b:0 nil:0 app:2 rev:l

States=
gnew0:0 ga:0 gb:0 gla:0 qlb:0 qf:0

Variables=
Xy z

Then Timbuk asksfor a given pattern. For instance by typing nil for the pattern to be searted,
we obtain:

Type a term and hit Return: nil

11

Solutions:
Occurence in state gla!
solution 1. Empty substitution

Occurence in state qlb!
solution 1. Empty substitution

Occurence in state qf!
solution 1. Empty substitution

Occurence in state gnewO!
solution 1. Empty substitution

which meansthat the term nil is recognizedby four di erent statesin the completed automaton,
namely gla, glb, gf and gnewQ Note that pattern matching is achieved on every terms recognized
by the automaton aswell ason all their subterms, this is why we here have seweral occurrencesof
this pattern. Now let us look for the following pattern:

cons(x, gla)

which producesthe following list of solutions:

Solutions:
Occurence in state gla!
solution 1. x <- ga

where this solution meansthat cons(ga, gla) is uniquely recognizedby gla, and there is no
other state g sud that cons(q, gla) is recognizedby the automaton. Now, if we get badk to our
veri cation problem, we can ched that with append on lists of a and lists of b, no b can occur
beforean a by looking for this simple pattern: cons(b, cons(a, y)) which resultsin the following
output:

Pattern not found!

2.1.2 Interactiv e appro ximations and prioritary transitions

When the speci cation used is outside of decidable (regular) classes,completion with the exact
strategy generally does not terminate. It is however possibleto build an under-approximation
of the reachable terms by computing n steps of completion for a given natural n. On the other
hand, Timbuk permits to build an over-appraximations of the set of reacable terms. In the
next speci cation example example2.txt , we compute an approximation of the reverse function
(symbol rev de ned by TRS R on the regular language of terms recognizedby automaton AO
i.e., rev applied to any at lists of a and b where all a's are before b's in the list. The second
automaton called Problem1 recognizesa regular languageof terms that should be unreachable from
AO by rewriting with R at lists wherethere is at least one'a’ beforea 'b' in the list. Hereis the
complete speci cation le example2.ixt :

12

(* This is a specification file to be used with the Timbuk tutorial *)
Opscons:2 a0 b:0 ni:0 app:2 rev:l
Vars x y z

TRSR
app(nil, x) -> x
app(cons(x, vy), z) -> cons(x, app(y, 2z))
rev(nil) -> nil
rev(cons(x, Yy)) -> app(rev(y), cons(x, nil))

Automaton AO

States qrev glab glb ga gb

Description grev: "rev applied to lists where a are before b"
glab: "lists where a are before b (possibly empty)"
glb : "lists of b (poss. empty)"

Final States grev

Transitions
rev(glab) -> grev nil -> glab cons(ga, glab) -> glab
cons(ga, glb) -> glab nil -> glb cons(gb, qglb) -> glb
a-> ga b -> gb

Automaton Problem1
States ga gb gany glb glab gnil
Description
gany: "Any flat list madeof a and b"
glb : "Any flat list madeof a and b, beginning with a b"
glab: "Any flat list with at least an a followed by a b"
Final States glab
Transitions
a-> ga
b -> gb
cons(ga, gany) -> gany
cons(gb, gany) -> gany
nil -> gany
cons(gb, gany) -> glb
cons(ga, glb) -> glab
cons(gb, glab) -> glab
cons(ga, glab) -> glab

Let us achieve an interactive manual completion on this example (we will seehow to automate
this processin the following): type the commandtimbuk --strat prior manual example2.txt
to use Timbuk with a normalization strategy using prioritary transitions rst and then manual
introduction of prioritary transition at a secondtime. The rst completion step gives some new
transitions and the following output:

Adding transition:
app(rev(glb),cons(ga,ni 1)) -> grev
Use key word 'States' followed by the namesof the new states ended by a dot '.'(optional) then give a sequence

of transitions ended by a dot "'

Add a star *' before transitions you want to add to the prior set. The prior transitions should be normalized!!

We are proposeda transition which hasto be normalized. First, we haveto nd statesto recognize
subterms rev(glb) and nil . Since glb recognizeslists of b, rev(glb) represens the reverse
function applied to lists of b and this should be a list of b. Thus we can recognizerev(glb) by
glb. We de ne a new state gnil to normalize nil , and give the prioritary transitions to apply
using the following syntax:

13

States gnil.
* rev(glb) -> glb

* nil -> gnil.

wherethe * symbol precedingthe transitions meansthat we want to install the following transition
in the set of prioritary transitions. Hence,in the next completion steps, if a new con guration of
the form rev(glb) appears,it will be automatically normalized into the state glb. After giving
these prioritary transitions, the transition is still not normalized. Timbuk shows the result of the
normalization processso far:

Normalization simplifies the transition into: app(glb,cons(ga,qnil)) -> grev

Adding transition:

app(glb,cons(ga,qnil)) -> grev

Oncemore, we are asked to give somerules for normalizing this transition. Sincecons(ga, qgnil)
represerts a list with one a, we can create a new state gla to normalize it:
States gla.

* cons(ga, gnil) -> gla.

and this terminates the normalization of the rst transition. There remainsa transition to normal-
ize:

Adding transition:

app(rev(glab),cons(ga,g nil)) -> qgrev

Sincethe state glab recognizesa list of a's followed by someb's, we intend rev(glab) to bea list
of b's followed by somea's, so let us normalize it by a new state called glba and introduce the
corresponding prioritary transition.

States glba.
* rev(glab) -> glba.

Then, some other transitions are automatically normalized and added, and this terminates the
rst completion step. In the following completion steps no other new states are necessaryand
it is enoughto successiely introduce the following prioritary transitions to normalize the new
transitions we are proposedand thus terminate the completion:

* app(qlb, gla) -> glba * cons(gb, gnil) -> qglb * app(gnil, qglb) -> glb

* app(qnil, qgla) -> gla * rev(gnil) -> gnil * app(gla, gla) -> gla.

Finally, from the menu it is possibleto seethe completed automaton which now cortains 37
transitions and to compute the intersection with the automaton Problems, which givesan empty
automaton meaning that applying rev to a list of a's followed by someb's cannot result into any
list where there is an 'a’ beforea'b'".

Now, save the produced completed automaton in a le named comp.txt by typing w and
then the le name comp.txt . Now you can edit this le and chedk that the whole speci cation
(TRS, completed automaton, initial automaton, additional automata usedfor veri cation as well
as the constructed approximation) are stored in this le in Timbuk syntax. Note that sincethe
approximation has beenentirely built with prioritary rules and prioritary rules are usually stored
in the completed _AQ automaton, the approximation stored in the le is empty.

14

2.1.3 Normalization rules

Normalization rules (or norm rules) are rules of the form:

[T x]! [la? rosicln b gl

wheres, 14, ..., |, are terms that may contain symbols, variables and states, and x, rq, ...,
r, are either states or variables suc that if r; is a variable then it is equalto x. To normalize a
transition of the form t! q° we match the pattern s ont and x on g° obtain a given substitution
and then we normalize t with the rewrite systemfl; ! ry ;:::;lh ! rn gwherery ;:::;rp
are necessarilystates (seesection&Z2 for details about norm rules).
Let us come bad to the previous example and achieve completion with normalization rules.
Start again Timbuk on the example2.txt le with the default Timbuk normalization strategy:

timbuk example2.txt

The default normalization strategy correspondsto the strategy operator sequenceprior norm_rules
manual_norm_conf auto _conf, meaning that any transition is rst normalized using prioritary
transitions, then using normalization rules and if it is still not normalized, the usedis asked for
normalization rules, nally he can leave the automatic normalization nish the normalization if
necessary Doing a rst step of completion, we are proposeda rst transition to normalize and
sincethere is still no prioritary transitions nor normalization rules, the strategy now considerthe
manual_norm operator:

Adding transition:
app(rev(glb),cons(ga,ni 1)) -> qgrev
Do you want to give by hand some NORMALIZATIONIes? (y/n)?

Answer y to this question. First, Timbuk recalls the current normalization rules (here no oneis
already de ned), alphabet, variables and state operators on which new rules can be built:

Do you want to give by hand some NORMALIZATIONIes? (y/n)? vy
Current normalisation rules are:

Alphabet=cons:2 a:0 b:0 ni:0 app:2 rev:l
and Variables= x y z
and States= qrev:0 glab:0 qglb:0 ga:0 gb:0

Type additionnal normalization rules using the 'States' and 'Rules’ keyword and end
by a dot '."

(use keyword 'Top' to place a rule at the beginning of the rule list)

For this example, let us use a naive approximation strategy: for every term of the form app(tl,
t2) let us normalize the two parametersof app by two distinct states, i.e. normalize term t1 by
a common state gappl and t2 by gapp2 for every possibleterms t1 and t2. This can be done by
typing interactively the following text:

15

States gappl gapp2
Rules
[app(x, y) -> z] -> [x -> gappl y -> gapp2].

where States (optional) is usedto de ne a sequencef new states(if necessary)and Rules (manda-
tory) de nes a sequenceof norm rules endedby a dot symbol. Completion continuesand proposes
a new transition to normalize: cons(ga,nil) -> qgapp2 Let us give somenew normalization rules
using the same naive strategy: we de ne two dedicated states qconsl and gcons2 recognizing
respectively the rst and secondsubterm of every term of the form cons(tl, t2) .

States gconsl gcons2
Rules
[cons(x, y) -> z] -> [x -> qconsl y -> qcons2].

This is enoughto terminate this completion step. Remaining steps are automatic and does not
needany new approximation rule construction. Finally, we obtain a tree automaton with only 24
transitions but that doesnot fulll the property we wanted to prove with automaton Probleml
(type i to ched that intersection is not empty) becauseapproximation has beentoo drastic.
Howewer, some wealer properties can be veried on this automaton, for instance that the term
cons(a, rev(cons(a, nil))) is not reachable from AO (by pattern matching). With regardsto
the property we wanted to prove initially with automaton Problem1, the approximation we gave
in sectionZT 3 is one of the simplest we could build. All we can do with normalization rules here
is to give the set of prioritary rules of sectionZZT.2 as a normalization rule:

States gnil gla glba

Rules [x -> y] -> [rev(glb) -> qglb
nil -> qgnil
rev(glab) -> glba
app(glb, gla) -> qglba
cons(gb, gnil) -> qlb
app(gnil, qglb) -> glb
app(gnil, gla) -> gla
rev(gnil) -> gnil
app(qla, gla) -> gla]

wherethe pattern [x -> y] of the left-hand side of the normalization rule matchesewery transition,
hencethe right hand sidewill beapplied on every transitions (lik e prioritary transitions). In the next
section, we give an example where normalization rules shows their e ciency when approximation
hasto be preciseon someparts and can be more drastic on the remaining ones.

2.1.4 Bigger example: cryptographic proto col

Now let usintro duce a bigger examplecoming from the cryptographic protocol veri cation domain.
This example is the corrected version of the Needham-Sbhroder Public Key (NSPK for short)
cryptographic protocol [13]. The NSPK protocol aims at mutual authentication of two agerts, an
initiator A and a responder B, separatedby an insecure network. Mutual authentication means
that, when a protocol sessionis completed between two agerts, they should be assuredof eath
other's identity. This protocol is basedon an exdiange of nonces (usually fresh random numbers

16

or time stamps) and on asymmetric encryption of messages:every agert has a public key (for
encryption) and a private key (for decryption). Every public key is supposedto be known by any
agert whereas,the private key of agert X is supposedto be only known by X . Thus,in this setting,
we supposethat messagencrypted with the public key of X can only be decrypted and read by
X. This is in fact a common hypothesis of the Dolev-Yao model [[6]. Here is a description of the
three stepsof the xed version of protocol, borrowed from [[L3:

1. Al B :fNa;Adkg
2. B AZfNA;NB;BgKA

3.A]! B :fNBgKB

In the rst step, A tries to initiate a communication with B: A createsa nonceN o and sendsto B
a messagecontaining Na aswell ashis identit y, encrypted with the public key of B: Kg. Then, in
the secondstep, B sendsbad to A a messageencrypted with the public key of A, corntaining the
nonceNp that B received, a new nonceNg, and B's identity. Finally, in the last step, A returns
the nonceNg hereceived from B. If the protocol is completed, mutual authentication of the two
agerts is ensured:

as soon as A receives the messagecortaining the nonceNa, sent badk by B at step 2., A
kelievesthat this messagewas really built and sert by B. Indeed, N was encrypted with
the public key of B and, thus, B is the only agen that is able to sendbadk N4,

similarly, when B receivesthe messagecontaining the nonceNg, sert badk by A at step 3.,
B helievesthat this messagewnasreally built and sert by A.

Another property that may be expected for this kind of protocol is con dentiality of nonces. In
particular, if noncesremain con dential, they canbe usedlater askeysfor symmetric encryption of
comnunications betweenA and B. Thus, con dentialit y of noncesis alsoof interest. In this part we
are going to focuson this last aspect: for agens respecting the protocol and whatever the intruder
may do, we expect that noncesremain con dential. The correctedversionof the Needham-Sbaroder
public key protocol is encaded in the example_nspk.txt le of the distribution.

In this speci cation le, ead agert is labeled by a unique identier. Let L gt = fA; B;0;5(0);
s(s(0));:::g be the set of agert labels, where A and B are some agers we obsene which are
supposedto be honestand fo;s(0);:::g is an in nite set of dishonestagens. For any agert label
| 2 Lagt, the term ident(l) will denote the agert whoselabel is |. The term pubkey(a) denotes
the public key of agert a and encr(k; a;c) denotesthe result of encryption of cortent ¢ by key k.
In this last term, a is a ag recording who has performed the encryption. This eld is not used
by the protocol rules but is usedfor veri cation. The term N (x;y) represens a nonce generated
by agert x for identifying a communication with y. We also use an AC binary symbol store in
order to represerts sets. For example the term store(x; store(y; z)) (equivalent modulo AC to
store(store(x; y); z) and to store(y; store(z;x)), etc.) will represen the setfx;y;zg. With regards
to this setinterpretation of terms, the store represen a set union. Like in many other approades
basedon the Dolev-Yao, the intruder is consideredas being the network itself, i.e. every message
can be read, erased,replayed, etc. In our setting the intruder/net work is thus a set of messages
represerned using the store symbol.

Starting from a set of initial requests,our aim is to compute a tree automaton recognizing an
over-approximation of all possiblesernt messagesvith any number of running protocol sessionsand

17

an active intruder. The approximation also contains someterms signaling either communication
requestsor establishedcommunications. For example, a term of the form goal(x; y) meansthat x
expect to open a communication with y. A term of the form connect(x; y; z) meansthat x believes
to have initiated a communication with y, but, in reality x communicateswith z. The encading into
the TRS is straightforward: ead step of the protocol is described thanks to a rewrite rule whose
left-hand side is a precondition on the current state (set of received messagesnd communication
requests), and the right-hand side represeits the messageto be sert (and sometimesestablished
communication) if the precondition is met. This encading is very similar to the onedetailed in [[I{].

The tree automaton AO recognizesthe initial con gurations (state gnet), i.e. any term of the
set E de ned inductiv ely as follows

Hence,initially the intruder/net work knows identit y of all the agerts, all the public keys,the private
keys of the dishonestagerts. Terms of the form goal(:::) cannot be exploited by the intruder but
are neededto initialize the protocol betweenead pair of ageris. Note that connectionrequestsof A
(resp. B) with himself are taken into accourt but can easily be discardedof initial con gurations of
the protocol analysisif they are not relevant. For this casestudy, we assumedthat such a behavior
may occur.

In the rst part of the automaton someprioritary transitions are de ned in order to force some
of the terms to be recognizeddeterministically by a unique (prioritary) state. This is used for
veri cation purposeor for ensuring left-linearity condition (see section ZZ1.5). For left-linearity
condition, for instance, since terms matched by non left-linear variables of the rewrite rules of
the protocol are agen labels, it is important that agen labels are recognizeddeterministically.
This is why the set of prioritary transitions contains transitions to force terms 0;s(0);s(s(0));:::
to be deterministically recognizedby state | label A to be deterministically recognizedby Alabel
and B label by state Blabel It is similar for nonceswhich all have some dedicated (prioritary)
deterministic states.

First, let ustry to complete the automaton AOwithout the approximation contained in the le
example_nspk.txt . This can be done by typing:

timbuk --noapprox example_nspk.txt

The rst step of completion producessometransitions which are already covered by the current
automaton and partially normalize another one, which is nally proposedto the userto nish the
normalization.
Adding transition:

store(store(gnet,gnet), gnet) -> gnet

covered by current automaton.

Adding transition:

store(gnet,store(gnet,q net)) -> gnet

18

covered by current automaton.

Adding transition:
store(gnet,gnet) -> qnet

already normalised!

Adding transition:
store(encr(privkey(llab el), o,gnet) ,pri vkey(ll abel)) -> gnet
Prior normalisation simplifies the transition into:

store(encr(privkey(llabe [),l label,q net) ,pri vkey(ll abel)) -> gnet

Adding transition:

store(encr(privkey(llab el), llab el, gnet),pr ivk ey(l label)) -> gnet

To normalize this transition, we can give somenew normalization rules. The transition we here
have to normalize is of the form store(tl, t2) -> gnet whereqgnet is the state recognizingthe
set of every messageof the intruder/net work. To normalize this transition, it is enoughto remark
that if the intruder hasthe union of stores(or messageslemeris) t1 and t2 in its knowledgethen
he reasonably has also t1 and t2 independenlly. Hence we can normalize t1 by gnet and t2
by gnet for every possibletl and t2. This can be done by adding the following normalization
rule: [store(x, y) -> gnet] -> [x -> gnet y -> gnet] meaning that for normalizing every
transition of the form store(x, Yy) -> qgnet, subterm x and subterm y will be normalized by the
state gnet. This rule can be addedduring the completion using the following syntax (rst, Timbuk
recalls the alphabets and variables on which rules can be built):

Do you want to give by hand some NORMALIZATIONIes? (y/n)? vy
Current normalisation rules are:

Alphabet=goal:2 store:2 null:0 encr:3 pubkey:1 privkey:1 N:2 cons:2 ident:l 0:0
s:1 A:0 B:0 connect:3

and Variables= xy zuvwm

and States= llabel:0 gnet:0 Alabel:0 Blabel:0 Aident:0 Bident:0 lident:0 NAB:O
NAA:0 NBB:0 NBA:0 NI:0

Type additionnal normalization rules using the 'States’ and 'Rules’ keyword and end
by a dot "

19

(use keyword 'Top' to place a rule at the beginning of the rule list)

Rules
[store(x, y) -> qgnet] -> [x -> gnet y -> gnet].

This lead to the automatic normalization of many new transitions producedby the completion.
The next new transition the useris proposedis the following:

Adding transition:

encr(pubkey(Alabel),lla bel, cons(NI ,lid ent)) -> qgnet

This meansthat the intruder hasreceiwed in its knowledge (gnet) a new term which is of the form
encr(pubkey(Alabel), X, m)i.e. a messagemencrypted with the public key of A. In this case,
it is a bad idea to normalize mwith the state gnet sinceit would directly give the secretmessage
mto the intruder though it is encrypted with the public key of A (and should remain secret, if the
protocol is correct). Normalizing mwith gnet would thus build a too big over-appraximation where
this secretis given to the intruder. On the opposite, it is possibleto de ne a particular state (say
gAcontent) for recognizingevery secretbelongingto A. It is alsonecessaryto de ne a new speci c
state gAkeyfor recognizingpubkey(Alabel) . De ning those new statesand the new normalisation
rules can be done interactively using the following syntax:

States gAcontent gAkey
Rules
[encr(pubkey(Alabel),x,y) > ozl ->
[v -> gAcontent
pubkey(Alabel) -> gAkey].

where every subterm y under an encryption with the public key of A will be normalized using
the gAcontent state. The following transition to normalize is similar to the previous one but for
B: encr(pubkey(Blabel),llabe l,co ns(NI,I ident)) -> gnet. The normalization rule to add
is thus of the sameform:

States gBcontent gBkey
Rules
[encr(pubkey(Blabel),x,y) >zl ->
[v -> gBcontent
pubkey(Blabel) -> gBkey].

Next transition is also concernedwith the public encryption of a messagebut this time with the
public key of dishonestagerts all recognizedby state llabel . Like in the previous caseswe could
add a speci ¢ state for recognizingthe encrypted messagehowever, sincethe intruder knows the
private key of those agerts it is likely to obtain the content of the encrypted messageanyway.
Hence,it is not erroneousto normalize the encrypted messagewith gnet (and put the content of
the messagalirectly in the intruder's knowledge). Here, using state gnet instead of a new dedicated
state permits to producea more compact approximation that is still correct with regardsto secrecy
properties for A and B. It is possibleto do the samewith the subterm pubkey(llabel) . Hereis
the corresponding normalization rule to add interactively:

20

Rules
[encr(pubkey(llabel), X, y) -=> z] ->
[y -> gnet
pubkey(llabel) -> gnet].

Note that in previous transitions, normalizing pubkey(Alabel) and pubkey(Blabel) would have
built atoo big approximation loosing secrecyproperties assaiatedto A and B. Indeed normalizing
pubkey(Alabel) by gnet in atransition of the form encr(pubkey(Alabel),x, m) -> gnet would
producetwo new transitions, namely: pubkey(Alabel) -> qgnet and encr(gnet,x, m) -> gnet.
The problem doesnot comefrom the rst one (sincethe intruder already hasthe public key of A)
but from the secondsince with this last transition and the transition pubkey(llabel) -> gnet
that is already in the automaton, the intruder can build the term encr(pubkey(llabel),x, m)
-> qgnet. Then, since privkey(llabel) is alsoin gnet, the intruder can apply decryption on the
last term and obtain min clear.

Adding the last normalization rule permits to end the rst completion step. In the next com-
pletion step, we are successigly proposedthe following new transitions to normalize:

cons(NI,cons(NI,Bident)) -> gnet
cons(NAA,cons(NAA,Aident)) -> gAcontent
cons(NBA,cons(NAB,Aident)) -> gBcontent

All those transitions represen structured messagesespectively stored in the intruders knowledge,
A secretmessagecortent, and B secret messagecortent. One could now de ne somenew secret
states for recognizing the (secret) subterms of those messages.However, we can also do a more
drastic approximation by using the three samestates to normalize the subterms, i.e. collapsethe
messagestructure:

Rules

[cons(x,y) -> gnet] > [y -> gnet]
[cons(x, y) -> gAcontent] -> [y -> gAcontent]
[cons(x, y) -> gBcontent] -> [y -> gBcontent]

This approximation doesnot invalidate the secrecyproperty of the protocol and make the approx-
imation more compact. Note that those three rules can be equivalently replacedby the following
normalization rule: [cons(x, Yy) -> z] -> [y -> z]. This is the last approximation rules to
give and the remaining completion steps are performed automatically within some minutes. Fi-
nally the automaton is complete. Now to prove the secrecyproperties, two steps are necessary
First, sincethe TRS used for completion is non left-linear, to guarartee that this automaton is
really an over-approximation of R?(E), it is necessaryto verify the left-linearity condition. This
condition can be automatically veri ed on the completed automaton (seesectionZZI.H for details).
The secondstep, necessaryto prove that secrecyof honest noncesis guararnteed consistsin com-
puting the intersection between the completed automaton and an automaton describing all the
possible caseswhere an honest nonce has beencaptured by the intruder. This last automaton is
the automaton Problems of the example_nspk.txt le. This automaton recognizesany term of
the form store(N, t) wheret is any term built on the alphabet and Nis any term in the set
N(A,B), N(AA), N(B,B), N(B,A), i.e. ewery possible noncesproduced by an honest agert for
an other honestagert. Typing i in the menu make Timbuk compute an intersection betweenthe

21

completedautomaton and the automaton problemsand results into an empty intersection, meaning
that those noncescannot be grabbed by the intruder.

Note that this can also be cheded using the pattern matching. Type p and then the pattern
store(N(A,B), x) for instance. This pattern hasno solution meaningthat this term is not reat-
able. For a more generalveri cation, now type p and pattern store(N(x, vy), 2z). This resultsin
the following output:

Solutions:

Occurence in state gnet!

solution 1. x <- Alabel, y <- llabel, 2z <- NI
solution 2: x <- llabel, y <- llabel, z <- NI
solution 3: x <- llabel, vy <- Blabel, z <- NI
solution 4: x <- llabel, vy <- Alabel, z <- NI
solution 5: x <- Blabel, y <- llabel, z <- NI
solution 6: x <- Alabel, y <- llabel, 2z <- lident
solution 7. x <- llabel, vy <- llabel, 2z <- lident
solution 8: x <- llabel, vy <- Blabel, z <- lident
solution 9. x <- llabel, y <- Alabel, z <- lident
solution 10: x <- Blabel, y <- llabel, 2z <- lident
solution 11. x <- Alabel, y <- llabel, 2z <- Aident
solution 12: x <- llabel, y <- llabel, 2z <- Aident
solution 13: x <- llabel, y <- Blabel, z <- Aident
solution 14: x <- llabel, y <- Alabel, z <- Aident
solution 15: x <- Blabel, y <- llabel, 2z <- Aident
solution 16: x <- Alabel, y <- llabel, z <- Bident
solution 17: x <- llabel, y <- llabel, 2z <- Bident
solution 18: x <- llabel, y <- Blabel, z <- Bident
solution 19: x <- llabel, y <- Alabel, z <- Bident
solution 20: x <- Blabel, y <- llabel, z <- Bident
solution 21: x <- Alabel, y <- llabel, 2z <- gnet
solution 22: x <- llabel, y <- llabel, 2z <- gnet
solution 23: x <- llabel, y <- Blabel, z <- gnet
solution 24: x <- llabel, vy <- Alabel, z <- gnet
solution 25: x <- Blabel, y <- llabel, z <- gnet

meaningthat noncesproducedby or producedfor a dishonestagert (x ory is assaiated to llabel)
have beencaptured but none of the fully honestones(where x and y have beenassaiated to A or
B).

Now, let ustry to ched the authentication property. Recallthat aterm of the form connect(x,y,z)
meansthat x believesto have initiated a communication with y but in reality x is communicating
with z. Type p and seart for the pattern connect(x, Yy, z) in the completed automaton. This
producesthe following output:

Solutions:

Occurence in state gnet!

solution 1. x <- Blabel, y <- llabel, 2z <- llabel
solution 2: x <- Alabel, y <- Alabel, z <- llabel
solution 3: x <- Alabel, y <- Blabel, 2z <- llabel

22

solution 4: x <- Blabel, y <- llabel, 2z <- Blabel
solution 5: x <- llabel, y <- llabel, z <- Blabel
solution 6. x <- llabel, y <- Blabel, z <- Blabel
solution 7: x <- llabel, vy <- llabel, 2z <- llabel

solution 8. x <- llabel, y <- Alabel, z <- llabel

solution 9: x <- llabel, vy <- llabel, 2z <- Alabel
solution 10: x <- llabel, y <- Blabel, 2z <- Alabel
solution 11: x <- Alabel, y <- Alabel, z <- Alabel
solution 12: x <- Alabel, y <- Alabel, z <- Blabel
solution 13: x <- Blabel, y <- Blabel, z <- Alabel
solution 14: x <- Blabel, y <- Alabel, z <- Alabel
solution 15: x <- Alabel, y <- Blabel, z <- Blabel
solution 16: x <- Alabel, y <- Blabel, z <- Alabel
solution 17: x <- llabel, y <- Alabel, z <- Alabel
solution 18: x <- Alabel, y <- llabel, 2z <- Alabel
solution 19: x <- Blabel, y <- llabel, 2z <- Alabel
solution 20: x <- llabel, y <- Blabel, z <- llabel
solution 21: x <- llabel, y <- Alabel, z <- Blabel
solution 22: x <- Alabel, y <- llabel, z <- Blabel
solution 23: x <- Blabel, y <- Alabel, z <- Blabel
solution 24: x <- Blabel, y <- Blabel, z <- Blabel
solution 25: x <- Alabel, y <- llabel, 2z <- llabel
solution 26: x <- Blabel, y <- Alabel, z <- llabel
solution 27: x <- Blabel, y <- Blabel, z <- llabel

where somesolutions are not satisfactory with regardsto authentication. For instance, solution 3
says that Athinks that heis talking to B whereasit is talking to | (any dishonestagert). In fact
this is not an error of the protocol but it is due to an approximation function which is to drastic
to prove the authentication (seesectionZI.8 for a more precise approximation function and the
proof of the authentication property).

2.1.5 Verifying left-linearit y condition

At the end of the previous successfulcompletion, by typing v in the Timbuk menu, one can verify
the left-linearity condition (see[[7] for details) on the non left-linear TRSs used for modeling the
protocol to guarantee that the completed automaton recognizesan over-appraximation of R ?(E).
On this example, after the full completion, by typing v we obtain within a few seconds:

Checking intersection: llabel ~ Alabel ... done.
Checking intersection: Alabel ~ Blabel ... done.
Checking intersection: llabel ~ Blabel ... done.

No linearity problem!

meaningthat left-linearity condition is ful lled. What Timbuk doesis that it searhiesfor every
possible state matched by non left-linear variables and provesthat if the states matched by non
linear variablesare di erent then the languagesrecognizedby those statesare disjoint. This is here
the casefor statesllabel , Alabel and Blabel . When it is not the case,it is necessaryto maodify
the normalization rules or the prioritary rules sothat those states recognizedisjoint languages.

23

2.1.6 Doing more and going faster

Once your approximation are established, it is possibleto store it directly in the speci cation le,
seeapproximation Secret in le example_nspk.txt for instance. Then it is possibleto directly
start a completion processwith the rst approximation by typing:

timbuk example_nspk.txt

In this le, there is a secondapproximation called SecAndAuththat permits to prove both
the secrecyand the authentication property which can be usedinstead of the rst onethanks to
the Timbuk option --approx SecAndAuth Howewer, sincethis completion takes sometime, and
since this set of approximation rules is known to be complete w.r.t. the completion to perform
(i.e. no manual interaction is needed)it is alsopossibleto usethe experimertal static completion
algorithm (seesection.Z2) with the --static Timbuk option:

timbuk --approx SecAndAuth--static example_nspk.txt

Type a to adieve the full completion at once. Type v to verify the left-linearity condition
(note that it is also faster in static mode), then typei and ched that honest noncesare still not
captured by the intruder. Then type p and seart for pattern connect(x, vy, z). This resultsin
the following output:

Solutions:

Occurence in state gnet!

solution 1. x <- Alabel, y <- llabel, z <- llabel

solution 2: x <- Blabel, y <- llabel, 2z <- Blabel
solution 3. x <- Blabel, y <- llabel, z <- Alabel
solution 4: x <- llabel, vy <- llabel, 2z <- llabel

solution 5: x <- llabel, vy <- Blabel, 2z <- Alabel
solution 6. x <- llabel, y <- Blabel, z <- Blabel
solution 7: x <- llabel, vy <- Alabel, 2z <- llabel

solution 8. x <- Alabel, y <- Blabel, z <- Blabel
solution 9: x <- Blabel, y <- Alabel, z <- Alabel
solution 10: x <- Alabel, y <- Alabel, z <- Alabel
solution 11: x <- Blabel, y <- Blabel, z <- Blabel
solution 12: x <- llabel, y <- Alabel, z <- Blabel
solution 13: x <- llabel, y <- Alabel, z <- Alabel
solution 14: x <- llabel, y <- Blabel, z <- llabel
solution 15: x <- llabel, y <- llabel, z <- Blabel
solution 16: x <- llabel, vy <- llabel, 2z <- Alabel
solution 17: x <- Blabel, y <- llabel, 2z <- llabel
solution 18: x <- Alabel, y <- llabel, 2z <- Alabel
solution 19: x <- Alabel, y <- llabel, 2z <- Blabel

This results shavsthat whenewer a dishonestagert is concernedby a communication, authentication
is not guaranteed: lines 2, 3,5, 7,12, 14,15, 16, 18, 19 shows ead time that x is connectto someone
elsethat he expects. On the opposite, eat time that x and y range over honest agerts, values
for y and z coincide (lines 8, 9, 10, 11). Hence, for honest agerts, this protocol guarartees the
authentication.

Remark on appro ximation de nition in static mode: When de ning approximation rules
to be usedin the static mode, note that Timbuk may considerthat your set of approximation rule

24

is not complete though you know it is. This is the casefor the le example_nspk.txt : if you
have a careful look to the approximation Secret it cortains the rules establishedin section 214
aswell asan additional at the end of the rule set: [x -> y] -> [z -> gnet] ensuringthat every
subterm that has not already been normalized by the previous rule is to be normalized by state
gnet. This is atrick to help Timbuk static completion algorithm to admit that this approximation
is complete Note that instead of completing by hand the approximation rule setit is also possible
to usethe --fstatic ~ option that automatically addsa default rule of the samekind and thus never
complains about incomplete normalization rule sets.

2.1.7 More tric ks

Syntax of normalization rulesis in fact a bit lessrestrictiv e that what is said in the previous section.
Let us retry to completethe basic.txt le:

timbuk basic.txt

During the rst completion step we are proposedto give somenormalization rules. Let usde ne
a state operator (seesection36.2 for details about state operators) and write interactively some
normalization rules in extended syntax:

States @:1
Rules [g(x) ->y] -> [x -> q(X)].

The e ect of this rule is to normalize every subterm t of a transition g(t) ! ¢°by a state
labeled by g(t). This single normalization rule permits to achieve the completion automatically
till the end. Here is a more practical example. Using this extended syntax, the normalization
rules given in section[Z14 for proving the secrecyon the NSPK cryptographic protocol, can be
abbreviated as follows (approximation called Secret2 in example_nspk.txt le):

Approximation Secret2
States g:1 secret:1 qgnet key:1 Alabel Illabel Blabel
Rules

[store(x, y) -> z] -> [x -> gnet Yy -> gnet]
[encr(pubkey(llabel), X, y) > z] >
[Yy -> dnet

pubkey(llabel) -> gnet]

(* Every messagecomponent encrypted by someoneelse than the intruder goes in a
dedicated state *)

[encr(pubkey(u), X, y) -> z] ->
[v -=> q(secret(u))
pubkey(u) -> q(key(u))]

(* In the storage states, everything is collapsed (structure of the messageis
not important) *)

[cons(x, y) -> z] > [y -> Z]

25

Recall that approximation rules are used in the order. Hence, every messageencrypted by a
dishonestagert will be normalized usingthe secondrule and every messagencrypted by an (honest)
agert Xmatched by variable u will be normalized using the third rule and states q(secret(X)) and
g(key(X)) . It is possibleto readcieve completion using this new approximation. Howewer, since
this extended syntax cannot be usedin static mode, we needto adcieve completion in dynamic
(default) mode:

timbuk --approx Secret2 example_nspk.txt

Someother tricks for building approximation are still under developmert but are already integrated
in Timbuk for testing: merging rules, approximation equationsand interactive merging with Tabi.
Merging rules (see section 233 are rules of the form gl -> g2 for merging two states in an
automaton. Sud rules can be given to Timbuk explicitly using the mcommand, or they can be
built interactively using Tabi (seesectionZ333). Approximation equationsare a third way to merge
somestates of the automaton by giving someequivalencebetweensometerms (patterns in fact).

Here is a simple example done on the processes.txt le. This example consistsof a TRS
modeling the behavior of two parallel processegourting elemers on a sharedcounter that should
not be accessedy the two processesat the sametime (see[] for details on this example). If we
start a completion with an exact normalization strategy:

timbuk --strat exact processes.txt

Then completion diverges. This comesfrom the fact in the initial languagethe number of
elemerts to be counted by processesis not bounded. Hence, the courter (built on the usual
Peano operators for naturals: o and s()) counts an in nite number of elemens. Divergenceof
completion, can easily be pruned adding interactively an approximation equation. In our case,we
achieved completion until the 6th completion step then add the following approximation equation
merging together all the naturals greater to O:

Current equations are:

Alphabet=S:4 Proc:2 cons:2 null:0 busy:0 free.0 s:1 0.0
and Variables= xy z u

Type additionnal equations and end by a dot "."

s(s(x))=s(x).
This equation permits to merge someof the states of the automaton:

State merging using approximation equations!

gnew8 -> gnew9
gnew6 -> gnew9

Then, doing another completion step permits to end the completion process.lIt is possibleto chedk
that both processehave never accessedhe counter at the sametime by verifying that the pattern
S(Proc(busy, x), Proc(busy, V), z, u) hasno solution in the automaton:

26

Alphabet=
S:4 Proc:2 cons:2 null:0 busy:0 free:0 s:1 0.0

States=
gnew9:0 gnew8:0 gnew7:0 gnew6:0 gnew5:0 gnew4:0 gnew3:0 gnew2:0 gnewl1:0 gnew0:0 g0:0
ql:0 g2:0 g3.0 g4.0

Variables=
Xyzu

Type a term and hit Return: S(Proc(busy, x), Proc(busy, y), z, u)

Pattern not found!

2.2 Taml

Start Taml by typing: taml in a command line window. Taml is an Ocaml interpreter extended
with Timbuk library functionalities (see sectionH for referencemanual of Taml and see[12] for
details about Ocaml syntax). The following tutorial is a step by step construction of TRS and
automata. Howewer, if necessarythe whole tutorial le canbe executedat onceby loading the le
in Taml, using the following Ocaml directive #use "tutorial.ml"

First, let us de ne an alphabet f by typing the following Taml commands (commands are
pre xed by the # symbol which represerts the usual Ocaml prompt, this of coursehas not to be
typed by the user):

let f= alphabet "app:2 cons:2 nil:0 a0 b:0";

Taml givesthe following output, meaningthat f hasbeenacceptedas a valid alphabet.
val f . Taml.Alphabett = app:2 cons:2 ni:0 a0 b:0

Similarly one can de ne a variable setv:

#let v=varset "x y z u";
val v . Taml.Variable_set.t =Xyzu

Now, let us de ne aterm t over the alphabet f and the variable setv asfollows:

let t= term f v "cons(a, cons(b, nil))";;
val t : Taml.Term.t = cons(a,cons(b,nil))

Since Taml embeds a complete Ocaml interpreter, it is thus possibleto use usual Ocaml syntax
facilities and alsoto combine Taml functions with usual Ocaml functions. For instance, it is possible
to de ne a speci ¢ term function specializedfor alphabet f and variable setv in the following way:

let fvterm= term f v;;
val fvterm : string -> Taml.Term.t = <fun>

27

Now it is possibleto construct a list of terms built on alphabet f and variable set v using the
specialized function fvterm as well as Ocaml List.map function (mapping a function to ewery
elemert of a list) in the following way:

let |= Listmap fvterm ['app(cons(a, nil),cons(b, cons(b, nil)))" "a"; "cons(a,nil)"];
val | ;. Taml.Term.t list = [app(cons(a,nil),cons(b ,cons(b,nil)))

a

cons(a,nil)

]

Similarly we can construct term rewriting systemsand tree automata directly in the interpreter:

#let tt= trs f v "app(nil, x) -> x app(cons(x, y), z) -> cons(x, apply, 2))";
val tt : Taml.Rewritet =

app(nil,x) -> x
app(cons(x,y),z) -> cons(x,app(y,z))

let aut= automaton f "
States ga gb gla glb qf
Final States df

Transitions
a-> ga
b->qgb
cons(ga, gla) -> gla
nil -> gla
cons(gb, qlb) -> glb
nil -> qglb

app(ala,qlo) -> qf*;;

val aut : Taml.Automaton.t =
States ga:0 gb:0 gla:0 qlb:0 gf:0

Final States df

Transitions

a-> qa

b->qgb
cons(ga,gla) -> gla
nil -> gla
cons(gb,glb) -> qlb
nil -> qlb
app(gla,glb) -> df

Now let us shaw that a given term is recognizedby a given state in a tree automaton

28

let tl= List.hd I;
val t1 : Taml.Term.t = app(cons(a,nil),cons(b, cons(b,n il)))

let s= state "gf';;
val s . Taml.Automaton.state = qf

run t1 s aut;;
- : bool = true

One can alsorewrite terms using the term rewriting systemtt and the Rewrite.left _inner _norm
function of the Timbuk library (seesectionB.3 for details on use of Timbuk functions outside of
Taml interface):

let t2= Rewrite.left_inner_norm tt tl;;
val t2 : Taml.Term.t = cons(a,cons(b,cons(b,ni 1))

It is also possibleto read automaton and TRS from a Timbuk specication le. For instance,
let us read the automata completed _AO and the TRS current _TRSin the le comp.txt which
corresponds to the completion donein sectionZT2

let tt= read_trs “"current_ TRS" "comp.txt";;
val tt : Taml.Specification.trs =
app(nil,x) -> x

app(cons(x,y),z) ~ -> cons(x,app(y.z))

rev(nil) -> nil

rev(cons(x,y)) -> app(rev(y),cons(x,nil))

let aut= read_automaton "completed AQ" "comp.txt";;
val aut : Taml.Specification.automa ton =
States glba:0 gla:0 qgnil:0 qgrev:0 glab:0 qglb:0 ga:0 gb:0

Description

grev: "rev applied to lists where a are before b"
glab: "lists where a are before b (possibly empty)”
glb: "lists of b (poss. empty)"

Final States grev

Prior

app(qla,qla) -> gla
rev(gnil) -> gnil
app(gnil,gla) -> gla
app(gnil,glb) -> glb
cons(gb,gnil) -> qglb
app(glb,gla) -> glba
rev(glab) -> glba
cons(ga,gnil) -> gla

29

nil -> gnil
rev(glb) -> qlb

Transitions

rev(glab) -> grev

nil -> glab
cons(ga,glab) -> glab
cons(ga,glb) -> glab
nil -> qlb
cons(gb,glb) -> qlb
a-> qga

b-> qgb

nil -> qrev

rev(glab) -> glba
app(glba,gla) -> grev
rev(glb) -> qlb

nil -> gnil
cons(ga,gnil) -> gla
app(glb,gla) -> qrev

cons(ga,gnil) -> grev
cons(gb,glba) -> grev

nil -> glba
app(glba,gla) -> glba
app(glb,gla) -> glba

cons(gb,gnil) -> qglb
app(gnil,glb) -> glb
app(gnil,gla) -> gla
rev(gnil) -> gnil
app(gla,qla) -> gla
app(glb,glb) -> qlb
cons(ga,gnil) -> glba
app(gnil,gla) -> glba
app(gla,gla) > glba
cons(gb,glba) -> glba
cons(gb,gla) -> glba
cons(ga,gla) -> gla
app(gnil,gla) -> qrev
app(gla,gla) -> qgrev
cons(gb,gla) -> qgrev
cons(ga,gla) -> glba
cons(ga,gla) -> qgrev

Now we can compute the automaton recognizingthe set of terms irreducible by TRS current _TRS
by typing the following command:

let aut iff= irr f tt;;
val aut_iff : Taml.Automaton.t =
States ¢2:0 g1:0 q0:0

30

Final States g0 gl g2

Transitions

b -> g2

a-> g2

nil -> ql
app(92,92) -> g2
app(a2,91) -> g2
cons(gql,gl) -> g0
cons(g2,92) -> g0
cons(g2,g1) -> g0
cons(ql,g2) -> g0
cons(gq0,g0) -> @O
cons(g2,g0) -> g0
cons(ql,g0) -> g0
cons(g0,g2) -> g0
cons(gq0,gq1) -> g0
app(g2,90) -> g2

Now, recall that in section[ZZI.2 the automaton completed _AO (stored in the Ocaml variable aut)
of the le comp.txt recognizesan over-appraximation of R?(L (AQ) where AOand Rare respectively
the automaton and the TRS de ned in le example2.txt (and such that R= current _TRS. We
can thus construct the automaton recognizing an over approximation of the set of normal forms
R(L(AQ) as follows:

let norm=inter aut aut iff;;

Howewer, the intersection automaton is very big and not cleaned(it may have someunnecessary
states). Furthermore, for e ciency reasons,our implemertation of intersection does not build

explicitly the set of states of the intersection automaton. To obtain a nalized automaton, it is

necessaryto use cleaning functions suc as simplify

let norm2=simplify norm;;
val norm2: Taml.Automaton.t =
States g7:0 g6:0 g5:0 g4:0 g3:.0 g2:.0 g1:0 g0:0

Final States g6 g7

Transitions

nil -> gl

nil -> qo0

nil -> q7

b -> g3

a->qg4
cons(g4,9g0) -> g5
cons(g4,g0) -> g6
cons(g3,q1) -> @6

31

cons(g4,00) -> g2
cons(g3,q1) -> g2
cons(g4,95) -> g2
cons(g3,05) -> g2
cons(g3,92) -> @2
cons(g3,02) -> g6
cons(g4,95) -> g5
cons(g3,05) -> g6
cons(g4,95) -> @6

This automaton represerts an over-appraximation of R(L (AQ). To have a more preciseidea of the
recognizedlanguage,one can browseit using Tabi:

browse norm2;;

Then click on the Start symbol and then on the button chooserandomto build somerandomized
represenmativ es of the language. The represertativ es are all lists where b's are always before a's
which correspondsto the de nition of the reversefunction applied on lists of a's followed by some
b's. Details on Tabi usewill be given in the next section. For the moment, just quit random and
quit Tabi. Note that in the automaton, there remainsonly constructor symbols (functional symbols
app and rev have disappeared). This provesthat de nition of reverseis completew.r.t. the lists we
have considered(see[9] for details). To concludeon this tutorial for Taml, note that Taml provides
a small online help on the most usedfunctions by typing:

help();;
2.3 Tabi
2.3.1 Basic

To start Tabi, simply typetabi in a commandline window. Then open the automaton Ad of the
example3.txt Timbuk speci cation le usingthe le browser: choosethe OpenFileitem of the File
menu and browse the directories to open the le example3.txt . After a while the Start symbol
is displayed in the Tabi window. Click on it and choosein the list the nal state to start from.
For instance, click on nal state gfl. Now we are going to browse the automaton to build some
represenativ es of the languagerecognizedby this nal state. Click with the left mousebutton on
the state gfl. A window opens. It cortains a list of con gurations (or terms) leading to this state.
Choosecon guration times(q0,q0) The state gfl is replacedby the selectedcon guration. This is
what we call unfolding of a state.

Now click on a state qO, replaceit by the unique possiblecon guration: O. Then do the same
for the other occurrenceof state g0. We have obtained a ground term recognizedby state gfl in the
tree automaton AQ. Note that moving the mousepointer over the term and its subterms displays
in red the state recognizingthe selectedsubterm.

Instead of building terms by hand, it is also possibleto produce random represenativ es. Usea
middle click over term times(O,0)to fold it bad to the state gfl. Now useleft click on gfl againto
open the con guration list window. Then instead of choosing a particular con guration, click on
button chooserandom A newwindow openscontaining alist of randomly generatedrepresettativ es

3Tabi always readsthe rst automaton of the speci cation le

32

for state gfl. In our case,this list should cortain exactly 3 represetativeswhich is in fact exactly
the languagerecognizedby gfl. Click on one of them to useit to replacestate gfl.

Now assume,that you want to restart browsing from a di erent nal state, say gnew23 This
can be done by clicking on button Restat which reinitializes the browsing from the Start symbol
seenat the beginning. Click on Start symbol and selectthe nal state gnew23 Produce a random
represenmativ e for gnew23as seenbefore. This state doesnot recognizea nite languageand the
randomly generatedterms are bigger and more numerous. Now changethe valuesfor random upper
bound for term depth, random upper bound for time and random upper bound for random term
number using respectively the items Randommax depth, Randommax time and Randommax term
number of the Optionsmenu and seethe e ect on randomizedterm generation. For instance, refold
state gnew23with a right click on the top of the term and set Randommax depth and Randommax
term number to 10. Then produce random terms for state qgnew23 Produced terms are lesserand
smaller.

Now assumethat you want to browse state gnew20which is not nal. Click on the Browsing
styleitem of the Optionsmenu, and click on the All statesbutton. Then click on the Restat button.
Now, by clicking on the start symbol, it is possibleto browseany state of the automaton sud as
gqnew20

2.3.2 Display modes

The default displaying mode you are using is autozoom (at that momert autozoom should be
selectedin the Tabi windows) meaning that Tabi tends to display the whole browsedterm as big
as possiblein the window. When the term sizeis getting bigger and bigger, the font is reducedso
that it can still be displayed in the window. When the font is getting too tiny, Tabi automatically
switchesto zoom mode where only a part of the term is displayed and one can move from a part
to another using the scrolling bars.

To show the dierent display modes we are going to browse some big terms. Let us rst
construct big terms. Setthe valuesof Randommax depth, Randommaxtime and Randommax term
number respectively to 10000,20 and 10000. Note that, to produce bigger random terms, it is not
enoughto increasethe Randommaxdepth value sinceit is only an upper bound for term depth. For
instance, if Randommaxtime is setto 10000and Randommaxterm number is setto 2, then random
generationwill stop when 2 random terms have beenproduced. Sincethis generation starts from
the smaller terms that can be produced, the set of randomly generatedterms is likely to contain
the smallest possibleterms. Similarly, it is necessaryto increasethe Randommax time value in
order to give Tabi the time necessaryto considerdeeper terms.

Now, producerandomly generatedrepresenativ esfor the state gnew20and choosethe deepest
one. This term is displayed and the font is reducedsothat it ts in the window. If the term is
too big (or the window too small) then Tabi switchesto the zoom mode. The term is displayed
in linea mode. Now hold the CTRLkey pressedand do a left click on the whole term (the term
should be entirely selected). Now the whole term is displayed in tree mode. It is also possibleto
mix both modes by switching from a mode to another on subterms. For instance, your term is
likely to contain a tall subtree built on s symbols. Hold the SHIFTkey pressedand do a left click
on the top of this subtree to switch bad its represenation into linear mode. You should obtain
something closeto Figure [There are someother ways to switch from a mode to another (see
Tabi's referencemanual in section@ for details).

The default displaying mode is the linea mode i.e. unfoldings are presered in linear mode.
The user may switch from this mode to the tree mode by clicking on the corresponding button.

33

4 autozoom 4 linear mode
Fle Options | + - % Merge | Apply merge
ws ZOOM « tree mode

By

Figure 1: An exampleof automata browsing with Tabi

Howewer, the mode only a ects the future unfoldings.

2.3.3 Using Tabi to appro ximate in Tim buk

Tabi can alsobe usedfrom Taml with the browse function and from Timbuk with the b command.

Using Tabi from Timbuk permits to gure out what is the languagerecognizedby the automaton

run under completion. Furthermore, using Tabi from Tim buk permits to de ne somemerging rules

graphically on the term structure. This can be of great help for building approximations as well

for de ning tree automata easily when you are not usedto cope with the tree automata syntax.
For instance, starts Timbuk on the basic2.txt speci cation le with the exact strategy.

timbuk --strat exact basic2.txt

Initially , the init automaton to be completed recognizesexactly the setff (f (f (a)))g and is
declaredin the following way in the basic2.txt le:

Set init
f(f(f(2)))

From this simple language,to build a tree automaton recognizingthe languagef (f ?(a)), one can
proceedin the following way. From Timbuk type b to browsethe init languagewith Tabi. Produce
a random represetativ e for the unique nal state qtermQ. The random represenativ e should also
be unique: f(f(f(a))) . Now selectthe subterm f(a) (that should be recognizedby state qterm?2),
hold the CTRLkey pressedand do a right click on this subterm. This should draw a blue rectangle
around this subterm. Proceedsimilarly with the subterm f(f(a)) that should be recognizedby
gterml This should draw a secondrectangle over this subterm. Then presson the button Mergeto
build a merging rule and on the button Apply mergeto apply the merging to the init automaton.
Applying the merging quits Tabi. Then, bad in Timbuk browseagainthe modi ed automaton by
typing b and produce somerandom represettativ es for gtermQ. the language now recognizedby
this state and automaton is now f (f ?(a)).

34

3 Specication language reference manual

In a Timbuk speci cation le, it is possibleto de ne one alphabet (mandatory) and a set of vari-
able. Those elemerts are followed by any number of Term Rewriting Systems, Tree Automata and
Approximations all of them assaiated with a distinct name. Have a look to Figure [Afor a sample
Timbuk speci cation le.

Ops
f.2 g:1 a0 b0

Vars x y z u

TRSR1
fix, y) -=> g@f(x, V)
g@ -> fla, &
gx) -> f(x, x)

Set A0

f(a, a)

f(b, b)

fa(@), 9(@)

Automaton Al
States ga q[1--4]

Description qga : "exactly a"
ql : "g*(a)"
a2 : "g(g*(a))"
g3 : "any term built on a and

Final States g4
Transitions
a -> qa
a->ql
g(ql) -> q1
g(@l) -> g2
a-> g3
f(93, ¢g3) > g3
f(92, 93) -> g4

Approximation first

Import Al

States qg

Rules
x ->yl -> [a -> qa]
[g(x)-> g2 > [x > q2]
[g(x)-> ¥l -> [x -> qg]

Equations

f(fx, y), 2= f(x, y)

Figure 2: A sampleTimbuk speci cation

35

3.1 Comments

The commeris in Timbuk speci cation les respect the Ocaml syntax, i.e. should be openedwith
(* and closedwith *) .

3.2 Symbols
The symbols used in Timbuk are sequencesof characters that should not cortain the following
characters: '(,), ™, -, =, ", T, 1" norconain a comma, a spaceor one of

the resened keyword de ned in the following.

3.3 Alphab ets

Alphabets are sequence®f pairs of symbols assaiated with an arity (a natural number). Symbols
are assaiated to their arity using the ' character. In specication les, alphabets should be
pre xed by the Opskeyword.

3.4 Variable sets

Variable setsare sequence®f symbols that should be all distinct from the symbols of the alphabet.
In speci cation les, alphabets should be pre xed by the Var keyword.

3.5 Term Rewriting Systems

Term rewriting systemsare sequence®f rewrite rules, wherea rule is a pair of terms, built on the
alphabet and the variable set of the speci cation, separatedby ->. Terms should be written in
pre x notation. In specication les, ewery term rewriting systemsdeclaration should begin with
the TRSkeyword followed by a name (following the symbol syntax de ned above).

3.6 Tree Automata

There are two di erent mannersto de ne tree automata in a Timbuk speci cation le: implicitly
by giving the (nite) set of terms to be recognizedor explicitly by giving the set of states, the set
of nal statesand the set of transitions.

3.6.1 Implicit de nitions

It is now possibleto de ne a tree automaton by giving the nite set of terms it should recognize,
i.e. its nite language. In specication les, an implicit de nition of an automaton consistsin
the keyword Set followed by a name (following the symbol syntax de ned above) and by a nite
sequenceof terms built on the alphabet of the speci cation.

3.6.2 Explicit de nitions

Tree Automata are de ned explicitly usingthe v e keywords States , Description , Final States ,
Prior and Transitions in that order, where Prior and Description are optional:

36

States is followed by a sequenceof state operators. Unlike in usual tree automata the state
operators we used are not necessarilyconstart symbols. One may de ne constart states
symbols: q1:.0 g2:0 ... but also some\state operators” which transform any term into
a state: q:1 prod:2 With sud de nitions, constarts g1, g2 will denote states but
assumingthat f(a) is a term de ned on the speci cation alphabet g(f(a)) , prod(f(a),
qg(f(@))) , prod(gl, g2) will alsobe somevalid states. Note that for convenience,when
constart state operators are de ned the notation g1:0, g2:0 can be abbreviated into gl
g2. Similarly, the notation g1, g2, g3, g4, g6 can be abbreviated into q[1--6]

Description is followed by a sequenceof state description, where a state description is a pair
composedwith a state and a string separatedby the : symbol. A description is any string
delimited by two " symbols (SeeFigure [A for an example).

Final States is followed by a sequenceof states A state is in fact a term rooted by a state
operator. For instance, if the declared state operators are: q1:.0 g2:0 g:1 prod:2 and
f(a) is aterm de ned on the speci cation alphabet, a valid sequenceof statescanbe gl g2

q(ql) prod(f(a), ql) prod(ql, 0q2).

Prior is an optional keyword followed by a sequenceof automata transitions. Those transition
will represen someprioritary transitions for approximation construction, seesection ALZ1
Note that prioritary transitions are supposedto be a subset of the transitions. As a con-
sequence,prioritary transitions are always added to the set of declared transitions of the
automaton. Hence,if a transition is declaredas prioritary it is not necessaryto repeat it in
the Transitions sectionsinceit will automatically be added. Syntax of transition sequences
is detailed in the next item.

Transitions s followed by a sequenceof transitions. A transition is a pair composedwith a term
(also called a con guration) and a state separatedby ->. Timbuk only accept normalized

In speci cation les, ewvery explicit tree automata declaration should begin with the Automaton
keyword followed by a name (following the symbol syntax de ned above).

3.7 Appro ximations

Approximations are de ned usingthe three keywords Import , States , Equations and Rules. They
are all optional. Howevwer, if Import and States are presen, Import should always be placedbefore
States .

Import is followed by a sequenceof tree automaton namesthat should be de ned above in the
speci cation le. State operators of tree automata corresponding to the namesare imported
in the current approximation and do not needto be rede ned.

States is followed by a sequenceof state operators asfor the States keyword of the tree automata
description, seesection36.2 for details.

Equations is followed by a sequenceof equationswhere an equation is a pair of terms separatedby
the character =. The terms on both sidesof the equation can be built over the alphabet and
the variables of the speci cation and the state operators, i.e. terms may contain symbols,
variables and states.

37

Rules is followed by a sequenceof normalization rules. The generalform of a normalization rule
is:
[s > x] =>1 ->rl .. In -> mj
wheres, I1 , ..., In areterms that may cortain symbols, variables and states, and x, rl,
..., In are either states or variables. If ri is a variable then it is equalto x. If ri is a state

built with a state operator of arity greaterto zerothen any variable y of ri occursin s or is
equalto x. SeesectionE.Z2 for use of those rules.

4 Tim buk reference manual

In this part, we assumethat the readeris familiar with term rewriting systems[I], tree automata [3]
and the tree automata completion processdescribedin [[7]. Givenaterm rewriting systemR,s! g t
will denotethat s can be rewritten by R in onestepinto t. Similarly, s! r? t will denotethat s
can be rewritten by R in zero or more stepsinto t. The set of R-descendats of a set of ground
termsE T(F)isR?(E)=ft2T(F)j9s2 E st. s! 2 tg.

Given a tree automaton A, the rewriting relation induced by the transitions of A is denoted
by I a. The tree language recognizedby A denoted by L(A) isL(A) = ft 2 T(F) j t! Z
gs.t. gisa nal stateg.

4.1 Running Tim buk

To start a completion processand launch the Timbuk tool over a Timbuk speci cation le called
example.txt , simply type:

Timbuk example.txt

in a command window. The speci cation le should at least contain one tree automaton and
one term rewriting system. Depending on the way you obtained Timbuk, you may not be able
to directly use'timbuk' as a standalone command and you may needto type ocamirun timbuk
example.txt instead. Pleaserefer to the READMEe of the distribution for details on how to run
the Timbuk library tools. If launching Timbuk succeedsthen Timbuk readsthe given speci cation
le and starts a tree automata completion with

the rst term rewriting of the speci cation (let us denoteit by R in the following)
the rst tree automaton of the speci cation (let us denoteit by A in the following)

the rst approximation (if it exists) of the speci cation

The remaining tree automata of the speci cation le are also read and stored by Timbuk for
(later) veri cation purpose. The general completion process|[7] works by incremertal completion
of automaton A into A1, Ao, ...Each stepfrom A; to Aj+1 is calledthe i + 1-th completion step.
For obtaining Aj+1 from A;, onesearhesfor everyterm s2 L(A;) suththat s! g tandt 62 (A;).
Then Aj:1 is built from A; by adding transitions to A; such that L(Aj+1) L(Aj)andt2 L(Aj+1)
for every term t such that s2 L(A;j), s! r t andt 62 (A;).

When completion corverges, completion reaches a xp oint Ay suc that for every term s 2
L(Ak) suchthat s! g tthent 2 L(Ak). Hence,L(Ay) is an over-appraximation of R-descendats

of L(A), i.e. L(Ax) R?(L(A)). In other words, Ay recognizesa superset of terms reachable by

38

R from terms of L(A). In the next section, we presen a collection of approximation techniques
provided by Timbuk to make completion corverge. For non left-linear TRS (i.e. TRS having at
leasttwo occurrencesof the samevariable in the left-hand side), for A to be an over-appraximation
of R?(L(A)) it is also necessaryto ched the left-linearity condition.

Note that for someparticular casesof TRS and initial automaton A the xp oint is not only an
over-appraximation but it is exactly the setR?(L (A)). Those exact classesand assiated speci ¢
completion strategy will be detailed in section 21

4.2 Tim buk normalization and appro ximation to ols

In this section, we present various techniquesimplemented in Timbuk to force completion to con-
verge,i.e. to build an over-appraximation of R?(L(A)) (the setof reachable terms) whenit cannot
be computed exactly. In a typical i-th completion step, recall that ead rule | ! r of R is used
to build critical pairs, i.e. nd a Q-substitution and a state q of A; suc that | ! Zi g and
r 6!,1i g. Then, the transition r ! gisaddedto A to build Aj+1. But, the transition r ! gmay
not be normalized, i.e. r is a state (hencer ! qis an epsilontransition) orr = f(ty;:::;tn)

normalized then it hasto be normalized before being added to the tree automaton. Normalizing
epsilon transitions is easy and does not make completion diverge: for a transition of the form
! it is enoughto add the set of transitions fc! qgxjc! o 2 Ajgto A;. For normalizing
atransition f(t;:::;th) ! g wheret; is not a state, it is necessaryto introduce a state, say ¢
and replacethe transition f (tq;:::;ty) ! g by the two transitions: f (ty;:::;q;:::;ty) ! gand
tj ! q. This processhasto be cortinued until ewery transition is normalized. Depending on the
choice of states usedfor normalization (for instance state g;;:::) the addition of the new transition
will be exact or approximated. For instance, if the state g; is a new state (i.e. not occurring in
Aj), then adding f (t1;:::;ty) ! qor the two transitions: f (t;:::;qg;:::ty) ! gandt ! g
is similar. On the opposite, if we chooseq; = qthen f (ty;:::;q;:::5ty) ! gandt; ! qover-
approximate f (t1;:::;tn) ! @ Indeed, with the pair of transitions f (ty;:::;q;:::;ty) ! qand

form f (t1;:::;f (ty;:::tn);i;ty) Y gandsoon.

Since,approximations are determined by normalization choices,the certral toolsusedin Tim buk
for building approximations are techniguesfor guiding the choice of statesusedin the normalization
process.

4.2.1 Prioritary transitions

The prioritary transitions are a set of deterministic tree automata transitions usedto simplify a
new transition to be added by bottom-up rewriting. Let f(g(a)) ! q be the new transition to
add and normalize. If the set of prioritary transitions contains a! q; then f(g(a)) ! q will be
normalized into f (g(w)) ! qanda! . If the setof prioritary transitions doesnot contain a
transition for simplifying g(a.) then normalizing cannot go further with prioritary transitions.

Prioritary transitions can either be de ned in the speci cation les (see'Prior' eld of tree
automata explicit de nition in section .62, interactively during completion (see manual and
manual_conf strategy operatorsin sectiondZ4) or automatically with the ‘auto _prior' normaliza-
tion strategy (see'auto_prior' strategy operator in sectiondLZ.7J).

Any set of prioritary transitions can be expressedusing normalization rules (de ned in the
next section) but prioritary transitions remain a syntactic facility avoiding the repetition of some

39

transitions that are already part of the automaton. Indeed, sinceprioritary transitions are generally
transitions of the initial automaton, the 'Prior' eld of the tree automaton permits to de ne them
onceas tree automata transitions and transitions for approximation.

4.2.2 Normalization rules

Normalization rules (or norm rules) are a sequenceof rules of the form:

[T x]!' [la! ro:iicln !t org]

wheres, |4, ..., |, areterms that may corntain symbols, variablesand states,and x, rq, ..., I'y
are either statesor variables. If r; is a variable then it is equalto x. If r; is a state built with a state
operator of arity greaterto zerothen any variabley of r; occursin s or is equalto x. To normalize a
transition of the formt ! % we match the pattern s ont and x on g°, obtain a given substitution
and then we normalizet with the rewrite systemfly ! rqy ;30 ! r, gwherery ;:::;r, are
necessarilystates. For example, normalizing a transition f (h(q.);g(ep)) ! oz with approximation
rule [f (x;o(y)) ' z]! [g(u) ! 2z] will give a substitution = fx 7! h(qu);y 7! p;z 7! 0gg, an
instantiated set of rewrite rules [g(u) ! qg]. Thus, f (h(q);g(x)) ! o will be normalized into a
normalized transition g(gz) ! o and a partially normalized transition f (h(qy);) ! .

Normalization rules are usedin the order of the sequenceif a normalization rule doesnot apply
then the following rule is used and so on. When a normalization rule succeedsn normalizing a
transition (even partially) then the sequencas takenbad from the beginningand the normalization
processcontinueson partially normalized transitions.

Note that in dynamic mode (seesectionE4 for details about Timbuk completion modes) the
syntax for normalization rules has beenextendedsothat it is also possibleto achieve the pattern
matching under state operators. For instance, it is now possibleto de ne a normalization rule of
the form:

[encr(pubkey(g(x));m) ! gstore]! [m! q(secret(x))]

wherex and m arevariables, qis herea state operator of arity 1 and secret is either a symbol or a
state operator of arity 1. This rule will thus normalizetransitions encr(pubkey(q(A)); cons(qs; ip)) !
g and encr(pubkey(q(B)); cons(az; qs)) ! q respectively in encr(pubkey(g(A)); g(secret(A))) ! q

consg(qr;) ! qg(secret(A)) and encr(pubkey(q(B)); g(secret(B))) ! qcons(gs;qs) ! q(secret(B)).
The only syntactic constraint on those normalization rules is the following: for every rule of the

form

[T x]! [la? roiicln b gl

Normalisation rules can be de ned both in the specication le (see section[34) or during
completion in dynamic mode using the manual_norm strategy operator (seesection &LZ7) or the
(g) Timbuk command (seesectiond3d).

4.2.3 Merging rules

Merging rules are a sequenceof epsilon transitions of the form g1 ! @ betweenstates g; and .
The meaning of such a rule is that states (and thus corresponding recognizedlanguages)q: and g

40

should be mergedtogether. Applying a mergingrule ¢; ! ¢ on an automaton A° simply consists
in rewriting all the state labels of the tree automaton such that q; is replaced everywhere by op.
The resulting automaton A°is always sud that L(A) L(A9.

Unlik e precedingtools, merging rules can only be given interactively and are applied after that
transitions have beennormalized. A typical useof merging rules is to normalize automatically new
transitions by new states (see strategy operator 'auto’' in section EZ41 for details) and then give
interactively the merging rules for achieving the approximation. Note that merging rules can also
be built graphically using Tabi seesection[Z-3:3

4.2.4 Appro ximation equations

Approximation equations are a sequenceof equations of the form s = t wheres and t are terms
built on symbols, statesand variables. The meaningof such a rule is that every terms matching this
equation should be mergedtogether. In practice, terms s and t are matched over the automaton
A; of the current completion step and for every Q-substitution and for every states qi1; ¢ such
thats | 2 qandt ! 3 o, amergingrule qu! o is producedand applied.

Like merging rules, equationsare applied after that transitions have beennormalized. Approxi-
mation equationscanbe de ned both in the speci cation le (seesection34) or during completion
in dynamic mode (seesectionZ17).

4.3 Tim buk commands
When starting Timbuk on a valid speci cation le, the useris proposedthe following menu:

Completion step: 0
Do you want to:

(c)omplete one step (use Ctrl-C to interrupt if necessary)
complete (a)ll steps (use Ctrl-C to interrupt if necessary)
(m)erge some states

(s)ee current automaton

(b)rowse current automaton with Tabi

(d)isplay the term rewriting system

(Dntersection with verif automata

intersection with (o)ther verif automata on disk

search for a (p)attern in the automaton

(v)erify linearity condition on current automaton

(W)rite current automaton, TRSand approximation to disk
(Norget old completion steps

(e)quation approximation in gamma

(gJamma normalisation rules

(det)erminise current automaton

(undo last step

(q)uit completion

The rst line givesthe current completion step. Initially the completion step number is 0. Then
the user have to type one of the following command:

41

¢ performsonecompletion step. The completion canbe stoppedusinga CTRL-C key combination.

a performs all possiblecompletion steps. If completion convergesthen this command is going to
stop. Otherwise, the user may interrupt it usinga CTRL-C key combination.

m ask for a sequenceof merging rules over states of the tree automaton. A merging rule is a pair
of states separatedby ->. The sequencehasto be terminated by a dot '.' symbol. A
merging rule of the form g1 -> g2 will rename ever occurrenceof the state gl by the state
g2. The languagerecognizedby the renamedautomaton is always an over-appraximation of
the languagerecognizedby the initial one.

s displays the completed automaton at the current completion step.

b browsethe completed automaton at the current completion step using Tabi, if it has beenin-
stalled. During browsing, merging rules can also be de ned in a more graphical an more
intuitiv e way (seesectionZ3.3 for an example). If suc rules are de ned and applied under
Tabi, then merging is performed when leaving Tabi (seeTabi documertation in sectiong).

d displays the term rewriting systemusedfor completion.

i computes intersection between the completed automaton at the current completion step and
automata that werein the samespeci cation le.

0 computes intersection between the completed automaton at the current completion step and
someother tree automata stored in an other le.

p searhesfor a given pattern in the completed automaton (say Aj) at the j-th completion step.
A pattern pis a term built over symbols of the alphabet, variables and states of the current
automaton. The result for pattern matching over the tree automaton is a sequenceof solu-
tions. Each solution consistsof a state g and a set of Q-substitutions 1;:::; 1 2 (Q;X)
sucdh that foralli= 1:iin:p ! A q

v verify the left-linearity condition. For non left-linear TRS, the nal completed automaton is an
over approximation only if left-linearity condition is satis ed (seesection[ZT.3for an example
and see[/] for theoretical details about left-linearity condition).

w writes the current automaton, TRS, approximation and automaton list usedfor intersection to
disk in Timbuk speci cation le syntax. This command also writes the initial automaton in
the speci cation.

f forgets the previous completion step. This is useful, when completion steps are getting bigger
and bigger.

e is usedto consult and add approximation equationsto the gammaapproximation function. See
sectionZ4 for details about the syntax.

g is used to consult and add normalization rules to the gamma approximation function. See
sectionf34 for details about the syntax.

det determinizesthe current completed automaton.
u undoesthe last completion step.

g quit completion

42

4.4 Tim buk modes and command line options

When executing Timbuk the user can use seweral command line options which depend on the
major running mode of Timbuk. The two major modes for running Timbuk are dynamic and
static modes. There is also a variant of the static mode which is called forced static or fstatic for
short. The dynamic mode is the default completion mode of Timbuk. It can easily be parametrized
by approximation functions, equations and strategies. The static mode is more constrained but
permits to achieve a pre-compilation of the completion and is thus more e cien t.

Someoptions do not depend on the Timbuk running mode:

-0 followed by a le name prints all Timbuk output to that le.
-f followed by a le namereadsall Timbuk commandsinput in that le.
--noapprox don't care of the approximations de ned in the speci cation le.

--approx followed by an approximation name, starts the Timbuk completion processwith the
approximation denoted by the given name rather than the rst of the speci cation.

All the other command line options depend on the usedtimbuk running mode.

4.4.1 Dynamic completion mode

In dynamic mode (default mode), the prioritary transitions, the normalization rules and the ap-
proximation equations can be given initially through a speci cation le or can be added during
completion process. Approximation strategy can also be parametrized. Here are the dynamic
mode command line options:

--dynamic usedto toggle the dynamic mode on (default mode)
--strat followed by a sequenceof normalization strategy operators (seebelow).

The --strat option permits to give explicitly the strategy to use for normalizing the new
transition. Then, ead new transition producedby the completion is normalized successiely using
the normalization strategy operators given in the strategy until ewvery transition is normalized. If
the end of the strategy operator sequenceis reached and there remain sometransitions to nor-
malize then the normalization processcontinuesand the strategy sequencas reinitialized from the
beginning. The default Timbuk strategy in dynamic mode corresponds to the strategy operators
sequenceprior norm_rules manual_norm_conf auto _conf. Here are the de nitions of the basic
normalization strategy operators. Someof these operators always succeed(they always manageto
normalize any set of transitions) and thus should be placed at the end of the sequence.

exact for exact normalization. This normalization strategy operator always succeeds. The au-
tomata A1;A»;::: produced by completion steps recognizeonly terms R-reacable from
L(A), i.e. the automaton A obtained after the i-th completion stepis not an over-appraximation
(but an under-approximation) if:

R is linear, or
R isright-linear and R and A; satisfy the left-linearity condition, or
ewvery state of A recognizesat most onetermd and R is left-linear, or

“Note that this is trivially the caseif A is de ned using the 'Set' keyword, seesectionE6.1

43

every state of A recognizesat most one term and A; and R satisfy the left-linearity
condition.

Hence, for those classes,f completion corvergeson a xp oint A then L(Ay) = R?(L(A)).
Furthermore, completion is guaranieed to converge on someknown decidableclasses:

R is either a ground TRS [5, ().
aright-linear and monadic TRS [19], i.e. right-hand sidesof the rules are either variables

term.

a\decreasing" TRS [11], where\decreasing" meansthat ewvery right-hand side is either
a variable, or aterm f (t1;:::;t,) wheref 2 F, ar(f) = n,and 8i = 1;:::;n, tj isa
variable, a ground term, or a term whosevariables do not occur in the left-hand side.
constructor-based rewrite systems [14] where the alphabet F is separatedinto a set
of dened syminls D = ff jOl! r 2 R s.t. Root(l) = f g and constructor symbols
C = F nD. The restriction on L(A) is the following: L(A) is the set of ground
constructor instancesof a linear term t, i.e. L(A) = ft g wheret 2 T(F;X) is linear

and : X 7! T(CQ). The restrictions on R are the following: for ead rule | ! r
1. r is linear
2. for eath position p 2 Posg (r) such that rj, = f (t1;:::;ty) andf 2 D we have that
forall i = 1:::n, t; is a variable or a ground term

3. there is no nestedfunction symbolsin r

prior for normalization with prioritary transitions. Seesection 2 for details.
norm_rules for normalization with normalization rules. Seesection .22 for details.

auto automatically normalizestransitions with new states. This operator always succeeds.
auto _conf sameasauto but asksfor con rmation rst.

auto _prior automatically normalizes transitions with new states and stores the new transitions
as prioritary transitions. This operator always succeeds.Note howewver that if prior is not
placedbeforeauto _prior in the strategy then the bene t of adding new prioritary transitions
will be lost and auto _prior will normalize every transitions with new states and thus will
behare asauto.

auto _prior _conf sameasauto _prior but asksfor con rmation rst.

manual_norm ask the user to give explicitly some normalization rules. Note that if norm_rules
is not placed before manual_norm in the strategy then manual_norm has no e ect since
normalization rules may be added but never triggered.

manual_norm.conf sameas manual but asksfor con rmation rst.

manual ask the userto give explicitly sometransitions to normalize the transitions. The user may
also give some(normalized) prioritary transitions.

manual_conf sameas manual but asksfor con rmation rst.

44

4.4.2 Static completion mode

In static mode (and in its variant called fstatic for forced static), only prioritary transitions and
normalization rules given in the specication le are used. In fact, the normalization strategy
in static mode is xed and corresponds to the sequenceprior norm_rules . Moreover, in static
mode, prioritary transitions and normalization rules should de ne an approximation function that
is completewith regardsto the right-hand sidesof the rewrite rules. In other words, every possible
new transition producedduring completion by the instanciation of the right-hand side of a rewrite
rule must be normalized using the prior transitions and the normalization rules given by the user
in the speci cation le. If this is not the casethen Timbuk fails and returns the transition that
cannot be normalized using the user's approximation function. Note however that when Timbuk's
static completenesss too restrictiv e (your approximation is complete but Timbuk hasnot detected
it) it is possibleto simply extend it by someadditional rules (seesection[ZT8). Furthermore, in
fstatic mode, if the approximation is not completethen it is automatically expandedfor normalizing
remaining transitions (not normalized using user'srules) with a speci ¢ state labeledby #qstatic# .

Apart from the common command line options described at the beginning of this section, the
only static mode options are:

--static to activate the static compilation of matching and normalization (needsa complete set
of prior and norm rules).

--fstatic to activate the static compilation of matching and normalization. If the set of prior
and norm rules is not complete, a transition not covered by the rules is normalized using a
single new state #qstatic# .

Note that merging rules and approximation equationsmay be applied on every completed au-
tomaton in static mode, but approximation equationsare not taken into accourt for approximation
pre-compilation.

5 Taml reference manual

Taml is an Ocaml toplevel equipped with Timbuk functions over terms, term rewriting systemsand
tree automata.

5.1 Running Taml

To start Taml, simply type:
taml

in a commandwindow. Depending on the way you obtained Taml, you may not be able to directly
use'taml’ as a standalone command and you may needto type ocamlrun taml instead. Please
refer to the READMEe of the distribution for details on how to run the Timbuk library tools. Note
that all the directives of Ocaml toplevel can be usedin this particular one as#use. For instance,
it is possibleto load the tutorial le called tutorial.ml by typing the following directive in Taml
toplevel:

#use "tutorial.ml";;

IMPORTANT: Taml hasto berun in the samedirectory asthe .cmo les and the .ocamlinit e
of the Timbuk library.

45

5.2 Basic Taml functions

First, here are all the de ned functions. A more precisedescription is given in the following. Note
that Ocaml labelsare only usedherefor clarity of the documertation and cannot be usedat Ocaml
level. For all the functions building objects (like alphabets, terms, term rewriting systems, tree
automata, etc) from a string, the input syntax of the string should respect the timbuk syntax
for any of this object which is described in sectionl@ The le tutorial.ml also cortains seeral
examplesof this syntax. Seesection[Zd for the Taml tutorial.

val browse : Automaton:t ! unit

val alphalet : string ! Alphalet:t

valvarset : string ! Variable_set:t

valterm : Alphalet:it ! Variable_setit ! string! Term:t
val state : string ! Automaton:state

val tree_state : Alphatet:t ! Alphaket:t ! string! Term:t

valtrs : Rewrite:alphatet ! Rewrite:variable_set | string ! Rewrite:t

val automaton : Automaton:alphalet ! string ! Automaton:t

val nite _set : Automaton:alphaket ! string ! Automaton:t

valinter : Automaton:t ! Automaton:t ! Automaton:t

valunion : Automaton:t ! Automaton:t ! Automaton:t

valinverse : Automaton:t ! Automaton:t

val subtract : Automaton:t ! Automaton:it ! Automaton:t

valis_included : Automaton:t ! Automaton:t ! bool

val is_language.empty : Automaton:t ! bool

valis_nite : Automaton:t ! bool

valrun : t:Automaton:term ! q:Automaton:state ! a:Automaton:t ! bool
val determinise : Automaton:t ! Automaton:t

valirr : a:Automaton:alphaket ! r : Automaton:transition _table ! Automaton:t
valclean : Automaton:it ! Automaton:t

val simplify : Automaton:t ! Automaton:t

val save : Automaton:t ! aut_name:string ! le _name:string ! unit

val read_alphalet : string ! Alphatet:t

valread_spec : string ! Speci c ation:spec

val read_automaton : string ! string ! Automaton:t
val read_automaton_list : string ! Automaton:t list
valread_trs : string ! string! TRS:t
valread_trs_list : string ! TRS:t list

valhelp : unit ! unit

Hereis for ead of these functions a more detailed description.

1. Alphabets
To build an alphabet from a string

val alphalet : (s: string) ! Alphalet:t

To read an alphabet in a Timbuk speci cation le.
val read_alphalet : (s: string) ! Alphatet:t

46

2. Variable sets
To build a variable set from a string.

valvarset: (s: string) ! Variable_set:t

3. Terms
To build a term on alphabet a and variable setv from a string s.

valterm : (a: Alphatet:it) (v: Variable_setit) (s: string) ! Term:t

4. Term rewriting systems
To build a TRS on alphabet a, variable setv and from a string s.

valtrs : (a: Alphalet:t) (v: Variable_setit) (s: string) ! Rewrite:t

Toread a TRS of namen in a speci cation le f.
valread_trs : (n: string) ! (f : string) ! Rewrite:t

To read all the TRS in speci cation le f.
valread_trs_list : (f : string) ! Rewrite:t list

5. Treeautomata
To build a state from string.

valstate: (s: string) ! Automaton:state

To build a (tree) state on alphabet a, state operators sop and from a string s. A tree state is a
state built on state operators of arity greater than 0. For instance, if p is a state operator of arity
2 and q is a state operator of arity 0, then p(q;q) is a tree state.

val tree_state : (a: Alphalet:t) (sop: Alphatet:t) (s: string) ! Automaton:state

To build an automaton on alphabet a from a string s.
val automaton: (a: Alphalet:it) (s: string) ! Automaton:t

To build an automaton on alphabet a from a string s represerting the nite of termsto berecognized
by the automaton.

val nite _set: (a: Alphalet:t) (s: string) ! Automaton:t

To read an automaton of namen in a speci cation le f
val read_automaton: (n: string) ! (f : string) ! Automaton:t

To read all the automaton in speci cation le namedf
val read_automaton_list : (f : string) ! Automaton:t list

To browseautomaton a (if Tabi is installed).

47

val browse: (a: Automaton:t) ! unit

To build the intersection automaton betweenal and a2. Sets of states are not explicitely built.
To obtain them explicitely use cleaning afterwards.

valinter : (al: Automaton:it) ! (a2: Automaton:it) ! Automaton:t

To build the union automaton for al and a2.
valunion : (al: Automaton:it) ! (a2: Automaton:it) ! Automaton:t

The complemern operation.
val inverse : Automaton:t ! Automaton:t

To build an automaton recognizingL(al) - L(a2).
val subtract : (al: Automaton:t) ! (a2 : Automaton:t) ! Automaton:t

Is L(al) included in L(a2)?
valis_included : (al: Automaton:t) ! (a2 : Automaton:t) ! bool

Is L(a) empty?

val is_language.empty : (a: Automaton:t) ! bool
IsL(a) nite?
valis_nite : (a: Automaton:t) ! bool

Is t recognizedinto state g in a?
valrun : (t: Term:t) ! (q: Statet) ! (a: Automaton:t) ! bool

Determinisation of a tree automaton.
val determinise : Automaton:t ! Automaton:t

To build a tree automaton recognisingthe set of terms irreducible by TRS t.
valirr : (a: Alphaket:it) ! (t: Rewrite:t) ! Automaton:t

Accessibility cleaning followed by utilit y cleaning for a tree automaton.
val clean : Automaton:t ! Automaton:t

Accessibility cleaning followed by utilit y cleaning and renumbering.
val simplify : Automaton:t ! Automaton:t

To save automaton a with namen in le namedf.
valsave: (a: Automaton:it) ! (n: string) ! (f : string) ! unit

6. Speci cations
To read a full Timbuk speci cation in le of names

valread_spec : (s: string) ! Specic ation:t

48

5.3 Using all Timbuk library functions through Taml

The functions proposedby Taml at toplevel are only a part of all the Timbuk library functions. To

have an accesdo the other functions dispatched in the Timbuk modules, you can call them directly

(if the module has been opened rst, using the open Ocaml keyword) or use the usual pre xed

notation. For instance, to call the left _inner _norm function of the Rewrite module, used for

normalizing a term with a term rewriting systemusing leftmost innermost strategy, one can access
this function with the function name pre xed by the module name:

Rewrite.left _inner _norm

For details on the modules and o ered functions, have a look to section[d

6 Tabi reference manual

The aim of Tabi is to easeree automata understanding. When tree automata are getting biggerand
bigger, Tabi helpsin guring out what is the recognizedlanguage. Tabi stands for Tree Automata
Browsing Interface: Starting from any state q of an automaton, Tabi provides an interactive and
graphical way to build someof the terms recognizedby g in the automaton. Tabi canrepresen terms
in the usual linear way (with parenthesis and comas)way aswell astrees, or even in a mixture of
both represenations (SeeFigure). Recognizedterms canbebuilt interactively by state expansion
and transition selectionor automatically using a randomized represenativ e generator.

- + autozoom & linear mode
File Options + - ;E‘f.ﬁ:‘% Merge : Apply merge
4 zoom = tree mode

P W
s(s(Q)) plus

/\ qnew5

s(s(q0)) | fimes

EWE =

Figure 3: Tabi graphical userinterface

Tabi can be used as an independert program or as a graphical interface for the Timbuk and
Taml tools. When using Tabi from Timbuk, Tabi also permits to build merging rules over terms
that are built. Tabi as beendeweloped with Labltk (Ocaml with Tk functions) in collaboration
with a group of students in 4th year of Computer Scienceof RennesUniversity (seeREADME for
credits)

Note on Automaton loading: whenusing Tabi from Timbuk (resp. Taml), Tabi starts on the current
completed automaton (resp. the automaton parameter of the browse function). When using Tabi

49

as a standalone program, one hasto open a Timbuk speci cation le wherethe rst automaton is
read. When an automaton is loaded the Start symbol is displayed.

6.1 Mouse actions

Mo ving the mouse pointer over a term or a state highlights it in green. If it is a term, then
the state recognizing this term is shovn in red. SeeFigure B for an example with term
times (O; s(s(0))) and state gnew>s.

Left click over a state g unfolds q, i.e. proposecon gurations or terms to replace g. Clicking
on g opens a window cortaining a list of possible con guration leading to q as well as a
button chooserandom A left click on a con guration of the list replacesq by the chosen
con guration. Clicking on chooserandom opensa new window cortaining a list of randomly
generatedground terms recognizedby g. Clicking on one of these terms replacesq by the
chosenterm. Note that if g recognizesan empty languageor if the depth or time for random
seart is not su cien t to produce random terms, an error messagds produced. SeeOptions
menu in section[64 for changing depth or time for random term generation.

Middle click over aterm t foldsit, i.e. replaceit by the state recognizingt.

CTRL + Left click over a term t changesthe whole graphical represenation of t from linear
mode to tree mode. This operation doesnot a ect the term enbeddingt.

SHIFT + Left click over a term t changesthe whole graphical represenation of t from tree
mode to linear mode. This operation doesnot a ect the term embedding t.

Righ t click over aterm t switchesfrom linear and tree mode on the top of t. This operation does
not a ect the term embeddingt nor subterms of t.

CTRL + Right click overaterm t draws a blue rectangleovert and selectit for merging. After
selectingtwo terms t1 and t, for merging, it is possibleto presson button Mergein order
to add a mergingrule g1 ! @ where qu and @ recognizerespectively t; and t,. Note that
merging rules can only be usedif Tabi has beenlaunched from Tim buk.

6.2 Buttons

+ and - Buttons are usedto increase/decreasehe zoom factor for displaying the terms.

Restart permits to restart the automata browsing from the beginning, i.e. from the Start symbol.
This is usefulwhenthe automaton hasseweral nal statesto restart browsingfrom a di erent
nal state.

Merge builds a merging rule from to terms selectedfor merging (seeCTRL + Right Click action
in sectionB.1).

Apply merge quits Tabi and apply the list of merging rules de ned by the userto the current
automaton (Only if using Tabi from Tim buk).

Autozo om/Zo om Buttons switchesbetweenautomatic and manual zoom. When Autozoom is
selectedTabi automatically changesthe zoom factor in order to keepthe whole term visible in
the window. Note that whenthe zoom factor is getting to small Tabi automatically switches

50

to manual zoom. On the opposite, with the manual zoom it is possibleto focuson a smaller
part of the term.

Linear/T ree mode Buttons switches between Linear and Tree mode (default modes) for dis-
playing terms obtained by unfolding.

6.3 File menu

Open browsein current directory for a Tim buk speci cation le containing a tree automaton (See
section[3 for precisesyntax). Note that only the rst automaton of the speci cation le is
taken into accour.

Prin t produce a le tabi.ps conaining a postscript version of the term displayed in the Tabi
window.

Exit quits Tabi (without applying merging rules).

6.4 Options menu

Undo Undo last folding or unfolding.
Redo Redolast folding or unfolding.

Bro wsing style switchesbetweenFinal statesor All statesbrowsing style. In Final statesstyle
(default), when left-clicking on the Start symbol one is only proposedthe nal states of
the automaton, whereasin All statesstyle all the states of the automaton are proposedfor
browsing.

See merging rules displays the merging rules already de ned.

Random max depth changesthe upper bound for depth of terms built by random represena-
tives generation.

Random max time changesthe upper bound on time for random represertativ es generation.

Random max term number changesthe upper bound on the number of represenativesto be
randomly generated.

Show history opensa window with an orderedlist of the terms built during the previous steps.
When clicking on any term of the list, the selectedterm becomesthe current term.

Help displays a short help on the mouseactions.

7 How to use Ocaml functions of the Timbuklibrary?

Since this software is a modular library, we wanted to have a separateddocumertation for eadh
module. That is why we choseto generatethis documertation using ocamiweb [g]. In the following
you will nd onesectionfor ead main module: tree automaton, term, term rewriting systems,etc.
To seean example shaving how to call those functions from Taml, have a look to sectionZ2 To
seehow to import modules and call those functions from someother Ocaml code seeTaml main

51

Ocaml le: taml.ml or Timbuk mail Ocaml le: main.ml in the sourcedistribution. Note that
labelsin function declarations are only usedfor clarity of the documertation and cannot be used
in functions calls asin the Ocaml syntax extension.

Interface for module Automaton

7. This is the interface for bottom-up tree automata. A bottom-up tree automata is usually
de ned asatuple: hF;Q;Q¢; 1 whereF is an alphabet of symbols, Q is a set of states, Q¢ a set
of nal statesand is a setof transitions (also called a transition table). Here, the tree automata
module is de ned w.r.t.

a symbol type

an alphabet type (the type of F) whosesymbols are of symbol type

a variable type. It is usedfor de ning variables occuring in matching on tree automata
a con guration typei.e. left-hand side of transitions

a state content type which can be anything assignedto states: formulas, or simply text
a transition type which is a term rewriting systemand de ned the type of we use

a state set type de ning the type of Q and Q; we use. In fact, in practice its major role is
to assignstate contents to states.

module TreeAutomata

(Symiwl _type : PRINT ABLE _TYPE)

(Alphatet_type : ALPHABET _TYPE with type symiol = Symlol _type:t)

(Variable_type : PRINT ABLE _TYPE)

(Con guration _type : TERM _TYPE with type syminl = Symtwl _type:t

and type variable = Variable_type:t
andtype alphalet = Alphalet_type:t)
(State_content : STATE _.CONTENT _TYPE)
(Transition _type : TRS_TYPE with type alphalet = Alphatet _type:t
andtype term = Con guration _type:t)

(State_set_type . STATE _SET _TYPE with type state = Con guration _type:t
and type state_content = State_content:t
and type alphalet = Alphalet_type:t
andtype symtol = Symiwl _type:t) :

sig

exceptionNot _a_state of string

exceptionNot _in _folder

exceptionMultiply _de ned _symtwol of string

exceptionLinearity _problem of string

exceptionNormalisation _problem of string

type symtol = Symiwml _type:t

52

type alphalet = Alphalet_type:t

type term = Con gur ation _type:t

typerule = Transition _type:rule

type substitution = Con gur ation _type:substitution

type mini _subst=(term term)

typesol_It =
| Empty
| Bottom
| S of mini _subst
| Not of sol_ It
| And of sol_ It sol_ It
| Or of sol_ It sol_ It

type state = term
type state_set = State_set_type:t

type transition _table = Transition _type:t
type tree_automata

typet = tree_automata
type (‘a; 'b) folder

8. Constructor of tree automata. The main di erence with usual de nitions of tree automata
is that we here use an extended de nition of states. States are terms (gasp!). States are terms
constructed on a speci ¢ alphabet which is what we call state operators. This make no di erence
with usual de nition of states and tree automata if you consider only state operators of arity 0
(i.e. constart state symbol) then if q, state123,q0, g1, etc... are state operators of arity 0, then
g, statel23,q0, g1, etc... are states. Howeer, if you de ne a state operator q of arity 1, and ga
of arity 0, then ga, q(ga), q(q(ga)), ... are states. In fact, you can even de ne more complicated
states, since state operators can transform any term (constructed on the alphabet and on state
operators) into a state. For example, assumethat your alphabet F contains operators: f of arity
2 and b of arity 0, and your state operators cortain at least q of arity 1 and ga of arity 0, then a,
a(qa), a(q(ga)), a(b), q(f(b,b)), a(f(ga, b)), a(a(f(a(qa), b))), etc... are states.

In most cases,state operators of arity greater than 0 are not needed. Nevertheless,note that
to de ne a simple tree automaton with state set Q = fq0;g2;g3g and nal states Qs = fg2g, you
will needto de ne state operators q0; g2; g3 of arity 0, and to give to the make_automaton function
the state operators (of alphabet type), the state set corresponding to Q and then the set of nal
states represerting Q. Howewer, it is much easierto use the parsing function of tree automata
or, even simpler, the parsing function of the speci cation module, pleasehave a look to the le
tutorial :mIlml for more details.

val make_automaton :
alphalet !
alphatet !
state_set !
state_set !
transition _table !
transition _table ! t

build an automaton from a nite term list, a string label for states and an integer

53

val term _set_to_automaton : alphaket ! termlist! string! int ! (t int)

9. accessorof automata

val get_alphalet : t ! alphalet

val get_state_ops : t ! alphalet
valget_states : t | state_set

val get_nal _states : t ! state_set

val get_transitions : t ! transition _table
val get_prior : t ! transition _table

10. Prettyprint of tree automata. The rst thing to be able to do with an automaton is to display
it.

valprint : t ! unit

valto_string : t ! string
11. Now, we nd the boolean operations on tree automata.
First of all, intersection of two tree automata. This function producesa tree automaton with
structured states (states that are in fact products of states) and structured state sets (symbolic

form of state set products). In order to obtain a full tree automaton with constructed state sets,
apply accessibiliy cleaning (de ned in the following) on it.

valinter :t ! t ! t

union of two tree automata (by renaming and union of transition tables, state set, nal state sets
etc...).

valunion : t ! t ! t

The complemert operation.
valinverse : t ! t

The automaton recognizingthe subtraction of langages:subtract L(a2) to L(al)
valsubtact : t ! t ! t

Decision of inclusion betweentwo langages:is L(al) included in L(a2)?
valis_included : t ! t ! ool

Decision of the emptynessof a languagerecognizedby a tree automaton.
valis_languageempty : t ! bool

Are the transitions recursive?
valis_recursive : transition _table ! bool

Is the recognisedlanguage nite?
val nite _recognized _language : t ! bool

12. Make a run of a tree automaton: verify if a term t rewrites into state g with regards to

transitions of automaton a. This is not the usual de nition of a run, but the usual one can easily
be obtained from this one.

54

valrun : term ! state ! t ! bool
13. The determinisation function: given a tree automaton it gives an equivalent deterministic
one.
val determinise : t ! t
14. Completion of tree automaton... in anon-deterministic way i.e., the result is a non-deterministic
tree automaton. If a deterministic oneis needed,it needsto be determinised afterwards.
val make_complete : t ! t
15. Construction of an automaton recognizingreducible terms. Starting from an alphabet a and
a TRS r built on a, this function constructs the tree automaton recognizingterms reducible by r.
val make_red _automaton :

alphalet ! Transition_type:t ! t

16. Construction of an automaton recognizingirr educible terms. Starting from an alphabet a and
a TRS r built on a, this function constructs the tree automaton recognizingterms irreducible by r.
The result is a deterministic complete tree automaton, it may be cleart afterwards with simplify if
necessary

This implemernts a standard algorithm that is usually not e cien t at all. For a better e ciency,
usethe next function called nf _opt.

val nf _automaton :
alphalet ! transition_table ! t

This one is usually more e cient than the previous one in practice. Howewer the result is also
slightly dierent: the producedtree automaton is not necessarilydeterministic nor complete!

val nf _opt :
alphalet ! transition_table ! t
17. Cleaning of tree automata
Accessibility cleaning of tree automaton: retrievesall statesthat do not recognizeany term.
val accessibility_cleaning : t ! t

Utilit y cleaning: retrievesall deadstates. For utilit y cleaningon an automaton with structured state
sets (obtained for example by application of an intersection operation use accessibility _cleaning
beforethis one.

val utility _cleaning : t ! t
Accessibility cleaning followed by utilit y cleaning
valclean : t ! t

Simpli cation of tree automaton: a renumbering of the result of cleaning (accessibility + utilit y)
of the tree automaton. Useful for deciding if the langagerecognizedby an automaton a is empty.
If it is then is_emtpy(simplify a) is true

val simplify : t ! t

18. State Renumbering

55

This function rewrites state labelsin a tree automaton a thanks to a term rewriting systemr on
states. Be careful! for state setsincluding states g1, g2 for example and if you use structured
states labelslike q(f(gl,92)), if g1 and g2 are to be renamedinto q3 and g4 respectively, then sois
q(f(q1,92)) which is renamedinto q(f(g3,94))!!

val rewrite _state_lakels :
t | transition_table ! t

This function transforms a rewriting rule list (over states) usedfor state rewriting into an equivalent
terminating one (by building someequivalenceclassesrst)

val simplify _equivalen@_classes : rule list ! rule list

Automatic renumbering of a tree automaton. To apply this function on an automaton with struc-
tured state sets (obtained by intersection for example), use accessibility _cleaning beforethis one.

val automatic_renum : t ! t
19. For saving an automaton to disk, seefunction save_automaton in the module speci cation.

Low level functions

20. Emptynessof an automaton, i.e. emptyness of its transition table. For cheding of the
languageapply simplify function before)i.e., a is a tree automaton recognizingan empty langage
if and only if is_empty(simplify a) is true.

valis_empty : t ! bool

21. Modication of nal state set.

valmaodify_nal : t ! state_set ! t

22. Modication of prior transitions.

val modify _prior : t ! transition_table ! t

23. Modication of state operators.

val modify _state_ops : t ! alphalet ! t

24. Modication of state set.

val modify _states : t | state_set ! t

25. Modication of state operators.

val modify _transitions : t ! transition_table ! t

26. Construction of a state from a symbol with arity 0. Recall that a state is a term!

val make_state : symiol ! state

27. Construction of a state con g from a state. A state con g is a con guration (i.e. alhs or a
rhs of a transition) that is a state. For example:in gl! @2, gl is a state con guration.

56

val make_state_cong : state ! term

28. Construction of a new transition

val new_trans : symiol ! statelist ! state ! rule

29. Is acon guration a state con guration? A state con g is a con guration (i.e. alhs or arhs
of a transition) that is a state. For example:in g1! @2, gl is a state con guration.

valis_state_cong : term ! bool

30. State label of a state in a state con guration.

val state_lakel : term | state
vallhs : rule ! term
valrhs : rule ! term

31. Top symbol of a transition
val top_symiwl
rule ! symiol
32. Is atransition normalized? i.e. of the form f (q1;:::;gn) ! g°whereql;:::;gn are states.

valis_normalized : rule ! bool

33. Construction of the list of states of the left hand side of a transition.

val list _state : rule ! state list

34. Construction of the state set formed by the states of all the transition of the transition table.

val states_of _transitions :
transition _table ! state_set

35. Normalization of epsilon transitions of the form ql! g2 with regardsto a given transition
table delta.

val normalize_epsilon :
state !
state !
transition _table ! transition _table

36. Normalization of a transitions table Itrans with new states whose labels are lakel®) where
j starts from i. It returns a triple with the new normalized transition table and the new state
operator alphabet aswell asthe integer n+1 where n is the number of the last assignednew state.
delta is simply usedto normalise epsilon transitions found in Itrans

val normalize :
transition _table !
transition _table !
string ! int ! transition_table int alphaket

37. Similar to normalize but producesa deterministic set of transition

57

val normalize_deterministic :
transition _table !
transition _table !
string ! int ! transition_table int alphaket

38. Matching of aterm (ground or with variables) on a tree automaton con guration with regard
to a transition list (here given as a folder of transitions sorted by top symbol and right-hand side
(state).

val matching :
term !
term !
(symiml; (state; rule list) folder) folder !
substitution list

39. Puts asol_It (matching solution) in disjunctive normal form
valdnf : sol_It ! sol_lIt
40. chedks if a list of assaiations is a substitution i.e., a same variable cannot be mapped to

di erent values. The substitution hasto be givenin a singleton list. The result is the empty list if
the substitution is not valid

val check_subst : substitution list ! substitution list
41. Simpli cation of matching solutions, by propagating Bottom solutions into the formula and
retrieving Bottom occuring in disjunctions and retrieving conjunctions where Bottom occurs

val simplify _sol : sol_It ! sol_lt
42. Constructs the disjointnessconstraint. This is usedto ched that there is no non-linear lhs of
arule (say f(x,x)) and no |hs of a transition (say f(q1,q2)) sud that the languagerecognizedby gl
and g2 are not disjoint. The non-linear lhs are given in a list of terms |, the transitions are given

asa folder f of transitions sorted by top symbol and right-hand side (state), and the result is a list
of list of states whosedisjointnesshasto be cheded.

val disjointness_constraint

term list !
(symlol; (state; rule list) folder) folder !
state list list

43. Is aterm t1 rewritten into a state q (special term) by transitions corntained in the folder f.

val is _recognized _into
term !
state !
(symiol; (state; rule list) folder) folder ! bool

44, similar to the is _recognized _into but in the particular casewhere the transition is an epsilon

transition ql! g2, this consistsin verifying that all the transitions goingto gl are already going
to g2. Transitions are given into a transition table delta.

58

val is_covered :
Con gur ation _type:t !
Con gur ation _type:t !
transition _table ! bool

45. Parsing of a tree automaton with regardsto an alphabet. For syntax, have a look to the
exampletxt le. Seealsothe le _parse function of the module speci cation speci ¢ ation:mli.
val parse : alphalet ! Genlextoken Stream:t ! t

end

59

Interface for module Speci cation

46. This is the interface for speci cations. What we call a speci cation is a collection of term
rewriting systemsand bottom-up tree automata all de ned on a common alphabet. Consequenly,
this module is de ned thanks to an alphabet type, a variable settype (usedto de ne rewrite rules),
aterm rewriting systemtype and an automata type. Term rewriting systemand tree automata are
all assignedwith a name (a string) in the speci cation. The simplestway to construct a speci cation
is to write it in a le and parseit thanks to the le _parse function. For a sample speci cation
le , pleaselook at the le exampletxt corntained is the distribution.

module Sgeci ¢ ation
(Alphatet_type : ALPHABET _TYPE)
(Variable_set_type : VARIABLE _SET _TYPE)
(Term_type : TERM _TYPE with type alphalet = Alphalet _type:t)
(TRS _type : TRS_TYPE with type alphatet = Alphalet _type:t
and type variable_set = Variable_set_type:t)
(Automata_type : AUTOMATA_TYPE with type alphalet = Alphalet _type:t
andtype term = Term_type:t)
(Gamma_type : GAMMA _TYPE with type variable_set = TRS _type:variable_set
andtype alphalet = TRS _type:alphalet) :
Sig

type alphalet = Alphalet_type:t
type variable_set = Variable_set_type:t
typetrs = TRS _type:t
type automaton = Automata_type:t
type gamma_content = Gamma_type:gamma._content
type spec = falphalet : alphalet; variables: variable_set;

trs_list : (string trs) list;

automata_list : (string automaton) list;

gamma_list : (string gamma_content) listg

typet = spec
exceptionName_useal _twice of string
exceptionNo_TRS _of _that_name of string
exceptionNo_automaton_of _that _name of string
exceptionNo _approximation _of _that _name of string
exceptionNo_name of string

47. Parsing of a speci cation in a le of name le _name.

val le _parse : string ! spec

48. Lexer for speci cations

val lexer : char Stream:t | Genlex:token Stream:t

49. Get the alphabet of a speci cation s.

60

val get_alphalet : spc ! alphalet

50. Get the set of variables of a speci cation s.

val get_variables : spec ! variable_set

51. Get the term rewriting systemnamedname in the speci cation s.
valget_trs : string ! spec ! trs
52. Get the list of namedterm rewriting systemsof a speci cation s.

valget_list_trs : spec ! (string trs) list

53. Get the automaton named name in the speci cation s.

val get_automaton : string ! spec ! automaton

54. Get the list of named automata of a speci cation s.

val get_list _automata : spec ! (string automaton) list

55. Get the approximation named name in the speci cation s.

val get_approximation : string ! spc ! gamma.content

56. Get the list of named approximation of a speci cation s.

val get_list _approximation : spec ! (string gamma_content) list

57. Pretty print of a speci cation s.
valto_string : spec ! string
58. Writing a speci cation s to a le named le _name.

val write _to_disk : spec ! string ! unit

59. Saving an automaton a under the name aut_name in a speci cation le named le _name.

val save_automaton : automaton ! string ! string ! unit
end

61

Interface for module Term

60. This is the interfacefor terms of T (F ; X) constructed on an alphabet F and a set of variables
X

module Term
(Symiwol _type : PRINT ABLE _TYPE)
(Alphatet_type : ALPHABET _TYPE with type symol = Symlwol _type:t)
(Variable_type : PRINTABLE _TYPE)
(Variable_set_type : VARIABLE _SET _TYPE with type variable = Variable_type:t) :

sig

61. A term is either a variable, a constart, a functionnal symbol with a list of subterms, or a
specialterm. A special term is build on a union of the alphabet and a special alphabet.

For example,let F = ff : 2;g: 1;a: Og an alphabet and F°= fprod: 2;q: O;h : 2g a special
alphabet.

Then f (g(a); g(prod(q; h(g(ag);) is aterm whereprod(g; h(g(qg); q)) is a special subterm. The
Special () constructor is usedin the implementation to separatethe special subtermsin a term.

type symtol = Symiwml _type:t

type variable = Variable_type:t

type alphalet = Alphalet_type:t

type variable_set = Variable_set_type:t

typeterm = (Symlol_type:t; Variable_type:t) term _const
typet = term

type substitution = (Variable_type:t term) list
exceptionTerms_do_not _match of string string
exceptionTerms_do_not _unify of string string
exceptionBadly _formed _term of string
exceptionParse_error of string

exceptionUnde ned _symtol of string
exceptionBad _operation _on_special _term of string
exceptionBad _operation _on_var of string

valequal : t ! t ! bool

62. Depth of aterm, where depth of Special terms, variables and constart is 0

valdepth : t ! int

63. Pretty printing of terms into strings
valto_string : t ! string

valtop_symiml : t ! Symiwol_type:t

64. the direct subtermsof a term

62

val list _arguments : t ! t list

65. is aterm a variable?

valis_variable : t ! bool

66. is aterm a constart?

valis_constant : t ! bool

67. is aterm special: its top constructor is a Special constructor
valis_special : t ! bool
68. getthe term t from Special(t)

valget_special : t ! t

69. mapping function f1 on every symbol of term t1 and f2 on every constart, variable or special
term

valmap : ((Symiol_type:it ! Symhol_typeit)) ' ((t ! t)) ! (t) ! t

70. getthe list of the leavesof a term

vallist_leaves : t | t list

71. getthe list of variables of a term

val list _variables : t | Variable_type:t list

72. getthe list of non linear variables of a term (with no redundancy)

val list_non_linear _variables: t ! variable list

73. renamea variable: add a string to the end of the variable

val var _change: variable ! string ! variable

74. renamevariables of a term: add a string to the end of every variable name

valrename.var : term ! string ! term

75. linearize aterm: producesa linear version of a term t assaiated with the variable renamings
that have beenoperated in order to make the term linear.

val linearize : term ! (term (variable (variable list)) list)

76. is aterm ground? i.e. with no variables. Note that a special term can be ground

valis_ground : t ! bool

77. is aterm linear? i.e. there is only one occurenceof eadt variable in the term

valis_linear : t ! bool

78. getthe list of all terms t sud that Special (t) is a subterm of t1

63

vallist _special @ t !t list

79. Ched the consistencyof a term with regardsto an alphabet. i.e. chedks that for ewvery
subterm f (s1;:::;;sn) of t1, f hasan arity n in the alphabet a. This function returns the term itself
if it is correct, raise a Badly _formed _term exceptionif arity of the symbol doesnot correspond to
its number of argumerts, and raise a Unde ned _symlol exception if the term contains a symbol
that doesnot belongto the alphabet.

val chek : Alphaket_typeit ' t ! t

80. apply a substitution to a term (at every variable position in it)

val apply : substitution ! t ! t

81. returns the list of terms (s t1) (substitution s applied to t1) for every substitution s of |
val apply_sevenl : (substitution list) ' t ! t list

82. returns the list of terms (s t1) (substitution s applied to t1) for every substitution s of | and

every term t1 of It

val apply_substs.on_terms : (substitution list) ! tlist! t list

83. Parsing of terms w.r.t. an alphabet a and a set of variable varset

val parse :
Alphalet _type:t !
Variable_set_typeit ! Genlextoken Stream:t ! t
84. Parsing of ground terms w.r.t. an alphabet a

val parse_ground :
Alphalet_type:t !
Genlextoken Stream:t !t
85. Parsing of ground terms setsw.r.t. an alphabet a

val parse_ground_term _set :
Alphalet_type:t !
Genlextoken Stream:t !t list

86. Verify the coherenceof a substitution: a variable must not be mapped to distinct terms.
Otherwise a Term_do_not_match exception is raised

val coherent : substitution ! substitution
87. matching of term1 on term2, suc that term2 is ground or at least with variables disjoint
from those of term1.

valmatching : t ! t ! substitution

88. unication ofterml onterm2. No unication on Specialterms. Variablesof terml1 and term2
are to be disjoint

64

valunify : t ! t ! substitution

89. similar functions for special terms

Ched the consistencyof a term with regardsto an alphabet a and a special alphabet s i.e.
cheds that for every subterm f (s1;:::;sn) of t1, f hasan arity n in the alphabet if f (s1;:::;sn) is
aterm or in spa if f (s1;:::;sn) is below a Special constructor.This function returns the term itself
if it is correct, raise a Badly _formed _term exceptionif arity of the symbol doesnot correspond to
its number of argumerts, and raise a Unde ned _symlol exception if the term contains a symbol
that doesnot belongto the alphabets.

val chek_special : Alphalet_type:it ! Alphaket_typeit | t ! t

replacemen in special terms: for every pair (t1; t2) of |, replace every Syecial (t1) by Special (t2)
at every Special position in t3

val replae_special : ((t t)ylist) ' t 1 t
the map combinator on special terms
val map_special ;. (Symbol _type:it ! Symiol _type:t) ! (! t) ! t ! t

Generalisation of substitution to special terms with any depth thanks to the combinator on terms:
Term.map_special

val apply_special : substitution ! term ! term
Parsing of a term with special subtermsw.r.t. alphabet a and special alphabet sa.

val parse_special
Alphalet_type:t !
Alphalet _type:t !
Variable_set_type:it | Genlextoken Stream:t ! t

Parsing of ground special terms w.r.t. alphabet a and special alphabet spa.

val parse_ground_special
Alphalet_type:t !
Alphalet _type:t !
Genlextoken Stream:t !t

Applying matching on terml and term2, such that term2 is ground or at least with disjoint set of
variables. Special terms may cortain variables

val matching_special : t ! t ! substitution

end

65

Interface for module Rewrite

90. This is the interface for rewrite rules and rewrite systemsconstructed on an alphabet F, a
set of variables X and a setof terms T (F; X)

module RewriteSystem

(Alphalet _type : ALPHABET _TYPE)

(Variable_set_type : VARIABLE _SET _TYPE)

(Term_type : TERM _TYPE with type variable_set = Variable_set_type:t

and type alphalet = Alphalet_type:t) :

sig

type alphalet = Alphalet_type:t

type variable_set = Variable_set_type:t

typeterm = Term_type:t

type ruleSystem

typet = ruleSystem

type rule

exceptionVariable_rhs_not _included _in _lhs of string
exceptionDoes_not _rewrite _on_top
exceptionBadly _formed _rule of string

91. the empty trs and other constructors

valempty : t

valnew_rule : term ! term ! rule
valis_empty : t ! bool
valmem : rule ' t ! bool

92. adding arule in atrs, and union of two trs
valadd : rule !' t ! t
valunion : t ! t ! t
93. if the rule is not in the trs we can catenate without testing membership

valadd_fast : rule !' t ! t

94. if trs are known to be disjoint we can catenate without testing membership for union

valunion_fast : t ! t ! t

95. rst rule of aruleSystemand remainder of the system

val rst : t ! rule
valremainder : t ! t

nth rule of the system (in the parsing order)

66

valnth : t ! int! rule

96. right-hand side and left-hand side of a rule

valrhs : rule ! term
vallhs : rule ! term

97. equality on rules

valrule_equal : rule ! rule ! bool

98. is arule left or right or left and right linear ?

valis_ground : rule ! bool
valis_left _linear : rule ! hbool
val is_right _linear : rule ! bool
valis_linear : rule ! bool

99. list of non linear Ihs of a ruleSystem

valnon_linear_lhs : t | term list

100. intersection of two trs

valinter :t ! t ! t

101. moving from list to ruleSystemand conversely
valto_list : t ! rule list
vallist _to_trs : rule list | t
102. prettyprint
valrule _to_string : rule ! string
valto_string : t ! string
103. renaming every variable of a rule: adding a string to the end of every variable label
valrename_rule _var : rule ! string ! rule
104. renaming every variable of a rewrite system: adding a string to the end of every variable
label
valrenamevar : t ! string! t
105. Cheding one rule with regardsto an alphabet: cheds construction of Ihs and rhs as well
asinclusion of var(rhs) in var(lhs)
valcheck_rule : rule ! alphalet ! rule
106. Cheding a trs with regardsto an alphabet: cheds construction of lhs and rhs as well as
inclusion of var(rhs) in var(lhs)
valchek : t ! alphaket ! t

107. parsing of a rule, given an alphabet a variable set varset

67

val parse_rule :
alphalet !
variable_set | Genlexitoken Stream:t ! rule

108. parsing of a trs given an alphabet a variable set varset

val parse :
alphalet !
variable_set ! Genlexitoken Stream:t ! t

109. rewrite onceon top position of term t1 with any rule of trs r

val rewrite_top_once : t ! Term_type:t | Term_type:t

110. leftmost innermost normalisation of the term t1 thanks to a trs r. Of course TRS should
terminate!

valleft_inner _norm : t ! Term_type:it | Term_type:t

111. bottom up normalisation of term t1 thanks to trs r. Useful when the trs is a transition
table of an automaton

val bottom_up_norm : t ! Term_typeiterm ! Term_type:t

112. similar functions but for rules and trs built on special terms ...

val check_special _rule
rule ! alphalet ! alphaket ! rule
val check _special
t | alphalet ! alphaket ! t
val parse_special _rule
alphalet !
alphalet !
variable_set ! Genlextoken Stream:t ! rule
val parse_special
alphalet !
alphalet !
variable_set ! Genlextoken Stream:t ! t

val parse_ground_special

alphalet !
alphalet ! Genlextoken Stream:t ! t
val parse_ground_syecial _rule :
alphalet ! alphalet ! Genlextoken Stream:t ! rule

val left _inner _norm _special
t ! Term_typeit ! Term_type:t

val left _inner _norm _special _system :
t! ot ot

end

68

Interface for module Alphab et

113. This is the interface for alphabets which are sets of symbols assaiated with their arity i.e.
their number of argumerts

module Alphalet :
functor (Symiol _type : PRINTABLE _TYPE) !
sig
type symol = Symhwl _type:t
type t
exceptionSymlol _not _in _alphalet of string
exceptionMultiply _de ned _symhol of string
114. One alphabet constructor
val new_alphatet : t

115. Parsing of alphabets (another constructor)
val parse : Genlextoken Stream:t ! t

116. Testing the occurrenceof a symbol in an alphabet
valoccur : symmol ! t ! bool

117. Adding a symbol with its arity in an alphabet

valadd_symtol : symlol ! int! t ! t
118. Getting the arity of asymbol in an alphabet. This function raisesthe exception Symiml _not _in _alphalet(s)
where s is the string assaiated with the symbol if it is not in the alphabet

valget_arity : symlol ! t ! int

valto_list : t ! (symiwl int) list

valto_string_list : t ! string list

119. Testing disjointnessof two alphabets
valdisjoint : t ! t ! bool
120. Construct the union of two disjoint alphabets

valunion_fast : t ! t ! t

121. Construct the union of two alphabets, possibly non-disjoint

valunion :t ! t ! t

122. Pretty print
valto_string : t ! string
end

69

Interface for module State _set

123. This is the interface for state sets. Seethe automaton module for a detailed description of
the represertation of states. State setsare sets of states assaiated with a state content which can
be of various form: formulas, text, automaton (why not?)

module State_set
(Symiwl _type : PRINT ABLE _TYPE)
(Alphatet_type : ALPHABET _TYPE with type syminl = Symiwl _type:t)
(State_type : TERM _TYPE with type syminl = Symiwl _type:t
and type alphalet = Alphalet_type:t)
(State_content : STATE _CONTENT _TYPE) :
sig
type alphalet = Alphalet_type:t
type symtol = Symiwml _type:t
type state_content = State_content:t
type state = State_type:t

type t

exceptionState_not _in _state_set of string
exceptionNot _a_state of string
exceptionStructured _state_sets of string

124. Is a state set structured?

val is_structured : t ! bool

125. The empty state set

valempty : t

126. Add a state with no state cortent to a state set

valadd : state ! t ! t

127. Add a state with its content

val add_verb : state | state_content ! t ! t

128. Transform a list of state into a state set

val list _to_set : statelist | t

129. Extract the list of states from a state set

valto_list : t ! state list

130. Add all statesof alist to a state set

70

valadd_all : statelist! t ! t

131. Adds alist of statesto a set s1, using their description coming from another set s2

val add_all _verb : statelist! t ! t I t

132. Is a state setempty? and is a state member of a state set?
valis_empty : t ! bool
valmem : state ! t ! bool
133. The rst elemen of a state set and the remainder
val rst : t | state
valremainder : t ! t
134. pretty print
valto_string : t ! string
135. pretty print in verbosemode, where the content is also printed in front of its corresponding
state

valto_string_verb : t ! string

136. getthe state corntent assaiated to a state in a state set

val state_description : state ! t ! state_content

137. The default binary symbol usedfor represerting product of states

val default_prod _symtol : symlol

138. construction of a product state from two states

val state_product : state ! state ! state

139. construction of the cartesian product of two state sets(in a symbolic way i.e. the cartesian
product is not computed

val symipolic_product : t ! t ! t

140. boolean operations on state sets

valinter :t ! t ! t
valunion : t ! t ! t
valminus : t ! t ! t
valunion_disjoint : t ! t ! t

141. are all statesfrom the list menmber of the state set

valall_mem : statelist! t ! bool

142. produce and add to a state operator alphabet s1 all symbols labeled by str~"k" where k
takesthe valuesfrom i to |

71

val produce :
int! int! string! Alphalet_type:t !
Alphalet _type:t
143. Parsing of symbols of state set

val parse_ops : Genlextoken Stream:t ! Alphalet_type:t

144. Parsing of a state set

val parse :
alphalet !
alphalet ! Genlextoken Stream:t ! t

145. Parsing of a state set with assaiated state contents

val parse_verb :
alphalet !
alphalet ! Genlextoken Stream:t ! t
end

72

Interface for module Variable _set

146. This is the interface for variable sets

module Variable_set :

functor (Variable_type : PRINT ABLE _TYPE) !
sig

type variable = Variable_type:t

type t

valempty : t

valis_empty : t ! bool

valmem : variable ! t ! bool

valto_string : t ! string

valto_string_list : t ! string list

val parse : Genlextoken Stream:t | t
end

73

74

References

[1] F. Baaderand T. Nipkow. Term Rewriting and All That. Cambridge University Press,1998.

[2] Walter S. Brainerd. Tree generating regular systems. Information and Control, 14:217{231,
1969.

[3] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard,D. Lugiez, S. Tison, and M. Tommasi.
Tree automata technigues and applications. http://www.grappa.univ-i lle 3.fr /tat a/,
2002.

[4] J.L. Coquide, M. Dauchet, R. Gilleron, and S. Vagvelgyi. Bottom-up tree pushdowvn automata
and rewrite systems. In R. V. Book, editor, Proceedings 4th Conferene on Rewriting Tech-
niques and Applications, Como (Italy) , volume 488 of Lecture Notes in Computer Sciene,
pages287{298. Springer-Verlag, 1991.

[5] M. Dauchet and S. Tison. The theory of ground rewrite systemsis decidable. In Proceedings
5th IEEE Sympsium on Logic in Computer Sciene, Philadelphia (Pa., USA), pages242{248,
June 1990.

[6] D.Dolev and A. Yao. On the security of public key protocols. In Proc. IEEE Transactionson
Information Theory, pages198{208, 1983.

[7] G. Feuillade, T. Genet, and V. Viet Triem Tong. Readability Analysis over Term Rewrit-
ing Systems. Tednical Report RR-4970, Institut National de Rederche en Informatique et

Automatique, 2003. http://www.irisa.fr/lande /genet/t imbuk/# papers .

[8] J.-C. Fili‘atre and C. Marche. ocamlweb: a literate programming tool for Objec-
tive Caml. Institut National de Rederche en Informatique et Automatique, 2000.
http://www.Iri.fr/~fillia tr/o cantweb/ .

[9] T. Genet. Decidable approximations of sets of descendats and sets of normal forms. In Pro-
ceedings 9th Conference on Rewriting Techniquesand Applications, Tsukuba (Japan), volume
13790f Lecture Notesin Computer Sciene, pages151{165. Springer-Verlag, 1998.

[10] T. Genetand F. Klay. Rewriting for Cryptographic Protocol Veri cation. In Proceedings 17th
International Conferencee on Automated Deduction, Pittsburgh (Pen., USA), volume 1831 of
Lecture Notesin Arti cial Intelligence. Springer-Verlag, 2000.

[11] F. Jacquemard. Decidable approximations of term rewriting systems.In H. Ganzinger, editor,
Proceedings 7th Conferenae on Rewriting Techniquesand Applications, New Brunswick (New
Jersey, USA), pages362{376. Springer-Verlag, 1996.

[12] X. Leroy, D. Doligez,J. Garrigue, D. Reny, and J. Vouillon. The Objective Caml systemrelease
3.00{ Documertation and user's manual. Institut National de Rederche en Informatique et
Automatique, 2000. http://caml.inria.fr/ocam I/ht miman/ .

[13] G. Lowe. Breaking and xing the Needham-Sbroeder public-key protocol using CSP and
FDR. In Proceadings of the 2nd International Workshop on Tools and Algorithms for the
Construction and Analysis of Systems,Passau(Germany), volume 1055 of Lecture Notes in
Computer Sciene, pagesl147{166. Springer-Verlag, 1996.

75

[14] P. Rety. Regular Setsof Descendats for Constructor-based Rewrite Systems. In Proceedings
of the 6th International Conference on Logic Programming and Automated Reasoning, Thilisi
(Georgia), volume 17050f Lecture Notes in Arti cial Intelligence. Springer-Verlag, 1999.

[15] K. Salomaa. Deterministic Tree Pushdowvn Automata and Monadic Tree Rewriting Systems.
Journal of Computer and SystemScienes 37:367{394,1988.

76

Index

accessibility _cleaning, [I7 disjointness_constraint ,
add, B2 1276l dnf,
add_all, [I30 Does_not _rewrite _on_top (exn), B0
add_all _verb, 3T empty, O], 25 146l
add_fast, B3 Empty, [
add_symiol, [II7 equal, [BI
add_verb, [IZ7 le _parse, H1
all_mem, [1Z7] nite _recognized _language [T
alphatet (eld), rst , BY 33
alphatet (type), [4, 26l B1, B0l 123 [KQ, I35, folder (type), [38 B2 B3 23
(18, 23 39, 34, 23 48, &9, 90, TUS{[108, folder _add,
12 1723 [1Z44 1243 folder_assa,
Alphaket (module), [TI3] folder _cartesian_product,
And, [folder_ atten ,
apply, folder_hd,
apply_seveal, folder_replae,
apply_special, BY folder _tail ,
apply_substs on_terms, [BZ] gamma_content (type), Egl 48, B3 B8
automata_list (eld), gamma_list (eld),
automatic_renum, [18] get_alphalet, B A9
automaton (type), E6, E38 B3 B4 L3 get_approximation, [B5l
Automaton (module), [@ get_arity, [II8l
Badly _formed _rule (exn), get_automaton, B3]
Badly _formed _term (exn), &I get_ nal _states,
Bad _operation _on_special _term (exn), EII get_list _approximation,
Bad _operation _on_var (exn), &Il get_list _automata,
bi_folder _add, get_list _trs, B2
bi _folder_add_trans_list, get_prior, [
bi_folder _ atten , get_special,
bi _folder_mem, get_states, @
Bottom, [1 get_state_ops,
bottom_up_norm, [LIT] get_transitions,
check, [9) 106 get_trs,
check_rule, [I05 get_variables,
check _special, B9 T2 inter, [T, [I0OQ), 201
check_special _rule, [IIZ inverse, [I1]
check_subst, E0 is_constant, B8
clean, [I7 is_coverd, HEZ
coherent, is_empty,
con gs _from_symol _to _state, is_empty_folder,
default_prod _symtol, 37 is_ground, [76] @8
depth, is_included, [Tl
determinise, [13 is_language empty, [I1
disjoint, [II9 is_left _linear, @8]

77

is_linear, [77 B8l
is_normalized, [BZ]

is _recognized _into ,
is_recursive, [T

is_right _linear,
is_special, B7
is_state_con g,
is_structured, [[Z4]
is_variable,

left_inner _norm, [II0]
left_inner _norm _special, [IIZ]
left _inner _norm _special _system
lexer, H8

lhs, [30, B4l

Linearity _problem (exn), [
linearize,

list _arguments

list _leaves [0

list _non_linear _variables,
list _special

list _state,

list _to_set, [1Z8

list _to_trs, [1OT]

list _variables, [Tl
make_automaton, B
make_complete, [I4
make_fast_union, H5
make_red _automaton,
make_state, [Z&
make_state_cong, 1
map,

map_special, B9l
matching, 38| B17
matching_sypecial, [BY
mem, BT, 37, 146l

mini _subst (type), [[2
minus, [IZ40

maodify _ nal , I

moadify _prior ,

modify _states,

modify _state_ops,
madify _transitions,
Multiply _de ned_symtol (exn), [1 II3
Name_used _twice (exn),
new_alphatet, [I14]
new_rule,

new_trans,

nf _automaton,

nf _opt,

non_linear _lhs,

Normalisation _problem (exn), [1

normalize,

normalize_deterministic, B7

normalize_epsilon,

Not, [1

Not_a_state (exn), [, 23]

Not _in _folder (exn), [1

No_approximation _of _that _name (exn),

No_automaton_of _that _name (exn),

No_name (exn),

No_TRS _of _that _name (exn),

nth,

occur, [IT6]

Or, [

parse, M3l B3] M08 [T, T44], [T46I

Parse_error (exn), EII

parse_ground,

parse_ground_special ,

parse_ground_special _rule, IIZ

parse_ground_term _set,

parse_ops,

parse_rule, U7

parse_special,

parse_special _rule, [TIZ]

parse_verb,

print, [0

produce,

remainder, Q5] 133

rename_rule_var, [I03]

rename_var, [74, 104

replae_special, [BY

Rewrite (module), 90

RewriteSystem (module), 90

rewrite _state_labels, 18

rewrite _top_once, 109

rhs, 30, 96

rule (type), 7, 90, 7, 18, 28, 30{33, 38, 42,
43, 45, 91{93, 95{98, 10103 105
107, 112

ruleSystem (type), 90, 90

rule_equal, 97

rule _to_string, 102

run, 12

save_automaton, 59

simplify, 17

simplify _equivalen@_classes 18

simplify _sol, 41

sol_1It (type), 7,7, 39 41

spec (type), 46, 46, 47, 4958

Speci ¢ ation (module), 46

state (type), 7,123,7, 12, 26{28, 30, 33, 35,
38, 42, 43, 45, 126{133 136, 138 141

states_of _transitions, 34

state_content (type), 123, 7, 127, 136

state_description, 136

state_lakel, 30

State_not_in _state_set (exn), 123
state_product, 138

state_set (type), 7,8, 9, 21, 24, 34
State_set (module), 123
Structured _state_sets (exn), 123

substitution (type),
86{ 89

subtract, 11

symiol (type), 7, 61, 113, 123, 7, 26, 28,
31, 38, 42 43 45, 60, 116118 123
137

symlolic_product, 139

Symiwl_not_in _alphalet (exn), 113

term (type), 7, 61, 90, 7, 8, 12, 27, 29, 30,
38, 42, 43, 45, 46, 61, 74, 75, 89, 91,
96, 99, 111

Term (module), 60

Terms_do_not_match (exn),

Terms_do_not_unify (exn),

term_set_to_automaton, 8

top_symtol, 31, 63

to_list, 101, 118, 129

to_string, 10, 57, 63, 102, 122, 134, 146

to_string _list, 118, 146

to_string _verb, 135

transitions_by_state, 45

transitions_by_state_by_symtwol,

transitions_by_symiwl, 45

transitions_from_symlol _to_state, 45

transition _table (type), 7, 8, 9, 11, 16, 18
22, 25 3437, 44

TreeAutomata (module), 7

tree_automata (type), 7,7

trs (type), 46, 46, 51, 52

trs_list (eld), 46

7, 61, 7, 38, 40, 80{82

61
61

45

79

Unde ned_symhtol (exn), 61

unify, 88

union, 11,92, 121, 140

union _disjoint, 140

union _fast, 94, 120

utility _cleaning, 17

variable (type), 61, 146, 7, 60, 72, 73, 75,
146

variables (eld), 46

Variable_rhs_not_included _in _lhs (exn), 90

variable_set (type), 46, 61, 90, 46, 50, 90,
107, 108 112

Variable_set (module),

var_change 73

write _to_disk, 58

146

	Timbuk library overview
	What is Timbuk?
	Availability, License and Installation
	Note on the implementation
	Bug report and information
	Changes from version 1.1 to version 2.0

	Tutorial
	Timbuk
	Exact case
	Interactive approximations and prioritary transitions
	Normalization rules
	Bigger example: cryptographic protocol
	Verifying left-linearity condition
	Doing more and going faster
	More tricks

	Taml
	Tabi
	Basic
	Display modes
	Using Tabi to approximate in Timbuk

	Specification language reference manual
	Comments
	Symbols
	Alphabets
	Variable sets
	Term Rewriting Systems
	Tree Automata
	Implicit definitions
	Explicit definitions

	Approximations

	Timbuk reference manual
	Running Timbuk
	Timbuk normalization and approximation tools
	Prioritary transitions
	Normalization rules
	Merging rules
	Approximation equations

	Timbuk commands
	Timbuk modes and command line options
	Dynamic completion mode
	Static completion mode

	Taml reference manual
	Running Taml
	Basic Taml functions
	Using all Timbuk library functions through Taml

	Tabi reference manual
	Mouse actions
	Buttons
	File menu
	Options menu

