User-Guide
for Algebraic Intruder Deductions in OFMC

Sebastian Modersheim
Information Security Group, Dep. of Computer Science, ETH Zurich, Switzerland

www.infsec.ethz.ch/ "moedersheim

February 13, 2006

OFMC is now enhanced to include the support for user-defined algebraic
theories. In a nutshell, this means that both unification of terms and intruder
deduction are performed with respect to such a theory. The implementation
is based on the framework described in [1], a copy of which is included in this
release, giving an introduction and formal definition of the problem of intruder
deduction in presence of an algebraic theory. This user-guide describes how to
use the new features in OFMC.

Please note that the state of the implementation is still preliminary, and
there may be bugs and even cryptic error messages. For all inconveniences we
want to apologize in advance.

1 OFMC’s Built-in Theory

In this section, we describe the theory and deduction rules used by OFMC when
no theory file is specified. Note that all aspects of this theory can be overridden
by custom theories. The built-in theory comprises of the following equations.

exp(exp(X1,X2),X3) =~ exp(exp(X1,X3),X2)
zor(X1,X2) =~ wzor(X2,X1)
zor(X1,zor(X2,X3)) =~ =zor(zor(X1,X2),X3)
zor(X, X) e

zor(X,e) = X

Notation: we use here the symbol zor in ASCII-Notation, as it is read by
OFMC (while in [1], we use the notation a & b). Further, we use the convention
that all variable identifiers like X1 start with an upper-case letter, while all
other identifiers start with a lower-case letter. The ~ symbol is used to denote
equivalence of terms in the algebraic theory, as opposed to = for the syntactic
equivalence of terms.

Symbol \ Arity \ Intuition \ Intruder-Accessible

nv 1 private-key of given public-key no
crypt 2 asymmetric encryption yes
scrypt 2 symmetric encryption yes
pair 2 pairing/concatenation yes
apply 2 function application yes
erp 2 exponentiation modulo fixed prime p yes
Tor 2 bitwise exclusive or yes
e 0 bit-string of zeros yes

Figure 1: Symbols of OFMC’s built-in theory

This built-in theory is sufficient to support protocols based on the Diffie-
Hellman key exchange, where exp stands for the exponentiation modulo a com-
mon prime p (which is omitted). Other uses of exponentiation, e.g. in RSA-
based encryptions, may require a different kind of theory (including the modu-
lus), which is discussed below.

zor (bitwise exclusive or) is also a commonly used primitive, and we have
thus included as part of the built-in theory the basic properties of this operation.

There are several other built-in function symbols, which are interpreted as
free symbols (i.e. there are no algebraic properties attached to them). Figure 1
lists all symbols. In this table, intruder-accessible means, whether the intruder
can build terms with this function symbol himself. For example, when he knows
two messages m and k, then he can build the message crypt(k,m), i.e. the
encryption of m using k as a key. Also, the built-in theory has explicit decryption
rules for the intruder that allow him to obtain a message m, if he knows both
crypt(k,m) and inv(k), or if he knows crypt(inv(k), m) and k, or if he knows
scrypt(k,m) and k. (Note that the built-in theory does not include the property
inv(inv(k)) = k.) For pair, we also have “decryption” rules namely that from
knowing pair(ml, m2) the intruder can derive both m1 and m2. We will explain
below how such decryption rules are specified. Also we will discuss later the
meaning of the function application operator apply and the issues of typing.

2 Running OFMC with a Custom Theory

We have included in this release an example theory file, example.thy, that
contains several alternatives and extensions of the standard theory that might
be useful in many analyses:

e Explicit decryption. While the built-in theory has special decryption rules
(that tell how an intruder can obtain the clear-text of an encryption), one
may consider explicit decryption operations. This is essential when there
is no means to check the result of the decryption (i.e. when some clear-
messages do not contain special tags that could be used for such a check).

An example of such a specification can be found in Appendix A. This is
also the basis for considering offline-guessing attacks [2].

e A more general theory of exponentiation, including also the relationship
with addition and multiplication.

e A very restricted theory of exponentiation, that is the “minimum” to
support Diffie-Hellman.

e Commitment schemes.
e Associativity of concatenation.
To start the protocol analysis with such a theory file simply call
ofmc <IF-File> -theory <Theory-File>

When the -theory option is not given, OFMC uses the built-in theory.

3 Structure of a Theory File

3.1 Disjoint Subtheories

First, a theory file is composed of several so-called disjoint subtheories, i.e. each
subtheory is concerned with a set of symbols that do not appear in any other
subtheory. For instance, the built-in theory can be split into several disjoint
subtheories, as denoted by the horizontal lines in Fig. 1.

Although one is not obliged to partition the theory into subtheories (and
rather have just one large ‘subtheory’), such a structuring is advisable for the
efficiency, whenever possible.

We will in the following use as a running example the subtheory Xor from
example. thy.

3.2 The Signature

Each subtheory begins with a description of the function (and constant) symbols
and their arities.

Signature:
e/0,
xor/2

This example declares that e is a constant symbol and zor is a binary func-
tion symbol. Currently, there are a few limitations imposed by the implemen-
tation:

e Only symbols of arity 0, 1, and 2 are allowed.

e Symbols of arity 0 and 1 may not appear in the finite theory F'.

e Symbols of arity 1 are always non-intruder-accessible, while all symbols of
arity 2 are intruder-accessible.

e There is a built-in symbol napair representing non-associative pairs (i.e.
it behaves as in a free algebra) which cannot be overloaded with algebraic
properties.

It is not difficult to work around these limitations by either artificially increasing
the arity (with dummy-arguments) or decreasing it (using additional function
symbols). However, for convenience, we will improve the implementation as
soon as possible.

3.3 Topdec

As explained in [1], the approach allows for the specification of algebraic theories
FE such that E = FUC where F is a finite theory and C'is a cancellation theory,
and the relation — ¢ p is convergent. Cancellation theories and convergence will
be considered below in this document, first let us focus on the finite theory F.
A theory is called finite iff the equivalence class of every term under F' is finite.
For instance the following two properties of zor induce a finite theory, namely
that it is AC (associative and commutative):

zor(X1,X2) =~ zor(X2,X1)
zor(X1, zor(X2, X3)) zor(zor(X1, X2), X3)

Q

OFMC does not directly allow for the specification of such a finite theory,
rather one has to specify a more algorithmic description of the theory. This
limitation can probably not be avoided even in future versions due to undecid-
ability of several questions concerning finite theories, e.g. whether a given set
of equations induces a finite theory.

What we have to specify for OFMC is a recursive algorithm for toplevel
decomposition, which is a special case of the unification problem. More precisely,
given a non-variable term ¢t = op(t1,...,t,) and an operator op’ (where op
and op’ range over all operators of the subtheory being specified), describe the
solutions for the unification problem

op(ti, ... ty) = op (X1,...,Xm)

for fresh variables Xi.

Note that in the following, we will also write T'1,...,Tn since these terms
will be meta-variables, i.e. variables of the decomposition algorithm.

For instance, if T'= zor(T1,7T2) and op’ = zor, then there are at least two
solutions:

X1 | X2
T1 | T2
T2 | T1

There may be more solutions, if 71 or T2 are themselves terms with zor at
the top. This is the point where the definition of the toplevel decomposition
is recursive: suppose 71 is not a variable term, and we already have all the
solutions for the problem

T1 = zor(Z1,22) .

Then, we have the following additional solutions of the toplevel decomposition
of T'— for every solution of Z1 and Z2:

X1 | X2
Z1 zor(Z2,T2)
zor(Z1,T2) | T1

Note that due to the recursive nature of the definition, all solutions that do not
require T2 = zor(...) are also covered, namely those that require Z1 or Z2 to be
xor-terms themselves. Also observe that equivalent solutions modulo F' do not
need to be spelled out (i.e. writing zor(Z2,T2) or zor(T2,72) does not make
a difference).

The additional solutions for the case that T'2 is of the form zor(Z1, Z2) (but
T1 is not necessarily an xor-term):

X1 | X2
zor(T1,22) | Z2
Z1 zor(T1, Z2)

Finally, there is one solution not covered by the others in the case that both
T1 = zor(Z1,Z2) and T2 = zor(Z3, Z4):
X1 | X2
zor(Z1,23) | wor(Z2,Z4)

Thus we have the following description of the topdec-algorithms for zor:

Topdec:
topdec (xor,xor(T1,T2))=
[T1,T2]
[T2,T1]
if Ti==xo0r(Z1,Z2){
[Z1,x0r(Z2,T2)]
[xor(Z1,T2),Z2]
if T2==xo0r(Z3,Z4){
[xor(Z1,Z3) ,x0r(Z2,Z4)]1}}
if T2==xor(Z1,Z2){
[xor(T1,Z1),Z2]
[Z1,xor(T1,Z2)]}

Note that the variables in the topdec(...) line and every if statement are
pattern variables, i.e. representing arbitrary subterms; we currently allow here
only linear patterns, meaning that for instance a condition like if T==f (X,X)

is not allowed. Non-linear patterns shall be introduced in a future version of
OFMC.

3.4 Cancellation Rules

Next we have the cancellation rules which must have the form [= r such that r
is either a constant or a variable that appears in [. Note that the notation here
is not commutative, so r must be really specified as the right side. For zor, we
have the properties:

Cancellation:
xor (xor (X1,X1),X2) = X2
xor(X1,X1) = e
xor(X1,e) = X1

First note that we do not have to specify the equation zor(e, X1) = X1, since
all these equations are “applied” modulo F', which includes commutativity in
the case of zor. In this light, the first equation seems redundant, i.e. it is
implied by the other two. This has to do with the notion of convergence that
we are using.

In [1], we have used the rewrite relation — ¢/ based on F-equivalence classes
of terms. Though theoretically elegant (i.e. we can use the standard notion of
convergence), it is practically difficult to work with (e.g. there is no completion
method). We have thus also foreseen the possibility to integrate the following
variant of the modular rewriting relation: ¢ —¢ r s iff thereisarule{ - r € C
and a position p in ¢ and a substitution o such that t|p ~p lo, and s = t[ro]p.
To illustrate the difference between —¢,r and —¢ r, consider the example

zor(a, vor(b,a)) —c/r zor(e,b) ,

while
zor(a, zor(b,a)) #»c,r wor(e,b) ,

if we leave out the first rule of the above equations for zor. The reason is that
there is no subterm of
zor(a, zor(b, a))

that is F-equivalent to zor(a,a). Adding this first above rule, however, the
above reduction is possible for —¢ F.

The notion of confluence of — ¢ is adapted as expected: for any t1 ~cur to,
there exist s; and so such that ¢; —>*07F s1 and to _)E',F s and s1 Xp So.
Convergence is then confluence and termination. Due to their form, cancellation
theories are always terminating.

3.5 Analysis

The analysis section describes what an intruder can derive from messages he
knows (except for the trivial fact that he can always compose more complex
messages; [1] gives a formal definition of a completely analyzed knowledge). For
instance, if the intruder knows zor(X1, X2), then we should check whether he
can generate X1. If so, he can derive X2:

Analysis:
decana(xor(X1,X2))=
[X11->[Xx2]
[xor (X1,X3)]->[x0or(X2,X3)]

The last line adds the case that the intruder knows zor(X1, X3), i.e. he
knows something that contains X1; then he can “zor-out” the X1 and obtain
zor(X2,X3).

Some remarks are in order:

e There are squared brackets around the terms since in some cases there are
several terms on the antecedent and the consequent side.

e These rules are redundant with the cancellation theory, however, OFMC
requires to specify the analysis rules (again for reasons of computability).

e Using such analysis rules, we can also specify additional derivation steps of
the intruder that are not implied by the equational theory. Note however
that OFMC may not terminate when rules are given that allow infinitely
long sequences of analysis steps; an example would be the following “anal-
ysis” rule:

decana(X) = [Y] -> [xor(X,Y)]

which actually describes a way how the intruder can build more and more
complex terms, and there is no finite fixed-point in that process.

e In the above example, one may wonder, why there is not the additional
rule

[x2]->[X1]

The reason is that unification between terms in the intruder knowledge
and the decana-rules is performed modulo F' (which implies in this case
that zor is commutative).

e Last but not least, one may wonder why we split assumptions into two
parts, rather than just specifying something like

decana(xor(X1,X2),X1) -> X2

The reason for the actual specification is the way these analysis-rules are
interpreted: every message in the intruder knowledge is checked for uni-
fication (modulo F') with the term given as the decana argument. For
every unifier, we check for the derivability (modulo F') of the additional
assumptions (in brackets left of the arrow) under the unifier. If that check
is positive (under a certain substitution), then we add to the intruder
knowledge the list of terms right of the bracket (under the unifier and the
substitutions of the derivation).

4 Dealing with the Complexity

The algebraic properties may blow up the search tree enormously. Here are few
tips for coping with the extra burden:

e Sometimes an explosion is generated by the rule normalization step, which
is performed before the analysis. You can suppress this normalization step
by the —nonorm option or alternatively let OFMC display the normalized
rules with -showrules.

e Typing can help: especially when normalization seems to be the trouble,
it can be helpful to limit things by giving types to constants and variables
involved. Note that for variables you should only give a type when the
variable stands for an atomic message in the legal protocol execution (thus
only type-flaws are potentially excluded). In the worst case, try without
certain cancellation rules and just describing analysis rules for the intruder
(i.e. no explicit decryption).

e Often one can get an overview of the complexity of the search space by
limiting (and iteratively increasing) the search depth in the tree, using
the option -d <depth>. Also, manually browsing the search tree with the
-p <path> option often gives some insight.

References

1. D. Basin, S. M&dersheim, and L. Vigano. Algebraic intruder deductions. In G. Sut-
cliffe and A. Voronkov, editors, LPAR 2005, volume 3835 of LNAI pages 549-564.
Springer-Verlag, December 2005.

2. P. Hankes Drielsma, S. Modersheim, and L. Vigano. A formalization of off-line
guessing for security protocol analysis. In F. Baader and A. Voronkov, editors,
LPAR 2004, volume 3452 of LNAI, pages 363-379. Springer, March 2005.

3. T. Wu. The Secure Remote Password Protocol. In Proc. of the 1998 Internet
Society Network and Distributed System Security Symposium, pages 97-111, 1998.

A The SRP Protocol

The SRP protocol (Secure Remote Passwords, [3]) is a challenging example for
algebraic properties, since it requires a full arithmetic theory to work. It uses
modular addition, multiplication and exponentiation, and without the necessary
properties it is not executable. In the EU project AVISPA, as part of which
OFMC and several other tools have been developed, this protocol was modeled
in a drastically simplified version, basically reducing it to a Diffie-Hellman key-
exchange.

A.1 An Arithmetic Theory

With the new theory features of OFMC, it is now possible to model the protocol
in a much more realistic way. In particular, we can model the relationship
between addition, multiplication, and exponentiation; all that is required is a
theory file with the necessary properties. We consider the following properties,
although it should be noted that, depending on the formulation of the transitions
of the honest agents, not all of them are necessary:

A+B = B+ A A+(-4) = 0
A+(B+C) = (A+B)+C A+0 = A
A-B = B-A A-(A7H) =1
A-(B-C) = (A-B)-C A1 = A
A-(B+C) = (A-B)+(4-0)
exp(ezp(A,B),C) = exp(A,B-C)
exp(A,B+C) = exp(A,B)-exp(A,C)

Note that we cannot model distributivity completely. First, it easily destroys
confluence of —p,c. Second, even when ignoring possible incompleteness due
to non-confluence, we have in topdec the requirement that the patterns written
in the ‘if’-statements must be linear, e.g. one cannot specify if T==f (X,X) etc.
This would be required to specify how ‘dividing out’ works. This restriction is
due to the current implementation. For now, we thus specify only ‘one direc-
tion’ of distributivity. However the formulation we will choose does not require
distributivity to work.

Here is the respective subtheory (part of the file arithmetic.thy:

Theory Arithmetic:

Signature:
add/2, neg/1, zero/O,
mult/2, minv/1, one/0,
exp/2

Cancellation:
add (X,neg(X))=zero
add (X, zero)=X
add(add(X,Y) ,neg(Y))=X
mult (X,minv(X))=one

mult (X, one)=X
mult (mult(X,Y) ,minv(Y))=X
Topdec:
% add is associative and commutative:
topdec(add,add(T1,T2))=
[T1,T2]
[T2,T1]
if Ti1==add(Z1,z2){
[Z1,add(Z2,T2)]
[add(Z1,T2),Z2]
if T2==add(Z3,Z4){
[add(Z1,23) ,add(Z2,24)1}}
if T2==add(Z1,Z2){
[add(T1,Z1),Z2]
[Z1,add(T1,22)1%}
%
% mult is associative and commutative:
topdec(mult,mult(T1,T2))=
[T1,T2]
[T2,T1]
if T1==mult(Z1,Z2){
[Z1,mult(Z2,T2)]
[mult(Z1,T2),Z2]
if T2==mult(Z3,Z4){
[mult(Z1,23),mult(Z2,Z4)]1}}
if T2==mult(Z1,Z2){
[mult(T1,Z1),Z2]
[Z1,mult(T1,Z2)1}
yA
% Distributivity: mult(X1,add(X2,X3))=add(mult(X1,X2) ,mult(X1,X3))
topdec(add,mult (X1,X2))=
if X2==add(X3,X4){
[mult(X1,X3) ,mult(X1,X4)1}
% The ‘‘other direction’’ we currently cannot model, here is how
% it shall look like in the future:
% topdec(mult,add(X1,X2))=

% if X1==mult(X3,X4){

% if X2==mult (X3,X5){
% [X3,mult(X4,X5)]1}}
yA

% Relation between exp,mult and add:
% exp(exp(X1,X2),X3)=exp(X1,mult(X2,X3))
% exp(X1,sum(X2,X3))=mult (exp(X1,X2),exp(X1,X3))
topdec(exp,exp(T1,T2))=
[T1,T2]
if Til==exp(Z1,Z2){

10

[Z1,mult(T2,Z2)]
[exp(Z1,T2),Z2]1}
if T2==mult(Z1,22){
[exp(T1,Z1),22]%}
topdec(mult,exp(T1,T2))=
if T2==sum(Z1,Z2){
lexp(T1,Z2),exp(T1,22)1}
Analysis:
decana(add(X1,X2)) =[X1]->[X2]
decana(mult (X1,X2))=[X1]->[X2]
decana(exp(X1,X2)) =[X2]->[X1]
decana(neg(X))=[1->[X]
decana(minv(X))=[]->[X]

Note that with such a theory, several larger protocols will just explode, so
only use this theory when you really want to go deep into arithmetic!

A.2 The Protocol Formalization

An important aspect of the protocol that we currently cannot model is the fact
that the shared passwords of Users and Hosts, denoted passwd(User,Host),
may be weak (guessable). Though foundational research in this direction has
been done, for instance [2], this is not yet implemented: it requires algebraic
properties in the first place, which had to be done first as of this release of
OFMC.

The Host additionally has, in his password file, a random value for each
User, called the salt, denoted salt (User,Host). This value is sent in clear text
during the authentication process. User and Host build a hash value, called the
verifier from salt and password, namely x=h(salt,h(User,passwd)), which is
then linked with a Diffie-Hellman key-exchange to provide authentication based
on the password without opening the door for guessing attacks.

In the following description, we may omit the parameters User and Host of
the password and salt table, when there is no danger of confusion. Moreover,
User and Host already agree on a Diffie-Hellman group g, and a modulus n.
Note that all additions, multiplications and exponentiations are modulo n.

Here is the protocol in Alice&Bob notation, with the same identifiers as in
the original RFC, but some terms rewritten according to the algebraic theory:

User — Host: User,g® — for random value a
Host — User: salt,g* +g® — for random value b
K = h(g™" * g"")
M := h(salt, g%, g* + ¢°, K)
User — Host: M
Host — User: h(g*,M,K)

Note that the original protocol contains also a value, called u in the RFC,
which is the first 32 bits of the half-key g”. As this value appears only in

11

messages that contain g” anyway, it does not make a difference whether this
value is omitted from the point of view of our formal model.

The IF file is part of this release. Here we give only one transition rule as
an example, which describes how the User receives message 2 from the Host
and forms message 3 (the dotted part in the real rule just contains dummy
messages):

step step_1 :=
state_srp_user(User,Host,1,Password,...,SET,SID).
iknows (pair(Salt,GXplusGB))

& X = h(pair(Salt,h(pair(User,Password))))

& GB = add(GXplusGB,neg(exp(g,X)))

& K = h(mult(exp(GB,A),exp(GB,X)))

& M = h(pair(Salt,pair(exp(g,A),pair(add(exp(g,X),GB),K))))
=>

state_srp_user(User,Host,2,Password,X,SALT,A,GB,K,M,SET,SID).
iknows (M) .

witness (User,Host,key,K) .

secret (K,key,Set) .contains(User,Set) .contains (Host,Set)

We have some syntactic sugar here of the form Var = Term which allows us
to form complex messages without copy-pasting and consequently loosing the
overview. The semantics of this new sugar, which is not (yet) part of the official
IF standard as of AVISPA deliverable, is simply a uniform replacement (of all
occurrences of the variable with the term) over the entire transition rule.

Observe how receiving and “parsing” of the incoming message work: accord-
ing to the protocol, the incoming message should contain the Salt as the first
component and the sum of the verifier exp(g,x) and the Hosts new half-key
exp(g,b) as the second component. However, the receiver cannot tell how this
second component was obtained, i.e. whether it is really a sum of two terms.
In fact, the idea behind the sum is that nobody can tell how it decomposes into
two summands, unless one knows one of the summands.

Therefore the rule can be understood as follows: the User first receives some
value GXplusGB (which is supposed to be a sum, but he cannot check that). He
builds the verifier exp(g,X) which depends on the salt and his password, and
then subtracts this verifier from the value GXplusGB. (This subtraction is in fact
done in our model by adding the additive inverse of the verifier.) According to
the algebraic theory, the result, called GB, reduces to a simpler term iff GXplusGB
indeed contains the verifier as a summand, otherwise term may be irreducible,
representing that the User indeed holds some random gibberish in his hands
now. It is important to note that the User cannot distinguish whether what he
received is meaningful—and this in particular crucial when considering guessing
attacks—he will simply carry on with whatever he has now as GB, and construct
the key K and the authentication message M.

The other rules can be understood similarly.

12

