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Abstract. Many security protocols fundamentally depend on the al-
gebraic properties of cryptographic operators. It is however difficult to
handle these properties when formally analyzing protocols, since basic
problems like the equality of terms that represent cryptographic mes-
sages are undecidable, even for relatively simple algebraic theories. We
present a framework for security protocol analysis that can handle al-
gebraic properties of cryptographic operators in a uniform and modular
way. Our framework is based on two ideas: the use of modular rewriting
to formalize a generalized equational deduction problem for the Dolev-
Yao intruder, and the introduction of two parameters that control the
complexity of the equational unification problems that arise during pro-
tocol analysis by bounding the depth of message terms and the operations
that the intruder can perform when analyzing messages. We motivate the
different restrictions made in our model by highlighting different ways
in which undecidability arises when incorporating algebraic properties of
cryptographic operators into formal protocol analysis.

1 Introduction

Motivation. Many security protocols fundamentally depend on the algebraic
properties of cryptographic operators [17]. For example, protocols based on
the Diffie-Hellman key-exchange, such as the Station-to-Station, IKE, and JFK
protocols, exploit the property of modular exponentiation that (gx)y mod p =
(gy)x mod p. Without this property, these protocols could not even be executed.

A number of approaches have been proposed for formally analyzing security
protocols in the presence of an active intruder. Independent of which formalism is
adopted, one of the core problems is the intruder deduction problem: given a state
of the protocol execution, can the intruder derive a given message M? Derivation
here is relative to the terms the intruder currently knows, i.e. relative to the
closure under a set of deduction rules of his initial knowledge augmented with
the messages that he has observed. The intruder deduction problem provides the
basis for solving a number of practically relevant protocol analysis problems. We
can, for instance, use it to determine whether the intruder is able to construct a
? This work was partially supported by the FET Open Project IST-2001-39252 and

the BBW Project 02.0431, “AVISPA: Automated Validation of Internet Security
Protocols and Applications”, and by the Zurich Information Security Center. This
work represents the views of the authors.



message of the form that some honest agent is expecting to receive, or whether
he is able to obtain a message that is intended to be a secret, e.g. a key shared
by two honest agents.

In this paper, we focus on the intruder deduction problem in the presence
of algebraic equations that express properties of cryptographic operators. The
underlying intruder model we employ is that of Dolev and Yao [19], in which
the intruder observes all network traffic and can generate new messages, imper-
sonating other agents, but cannot break cryptography. Although the Dolev-Yao
intruder model is very commonly used, most analysis approaches based on this
model are also based on the free algebra assumption. Under this assumption,
two terms are equal if and only if they are syntactically equal. But, as we noted
above, this is inappropriate for protocols that rely on algebraic properties.

Relaxing the free algebra assumption is however nontrivial: even for rela-
tively simple sets of equations, the most basic problem, the unifiability prob-
lem (i.e. the equality of terms under substitutions for their variables), is only
semi-decidable [4, 6, 23]. Moreover, even for those theories where unification is
decidable, the intruder deduction problem may still be undecidable [1, 2].

Solutions for the intruder deduction problem have been given for individual
algebraic theories of cryptographic operators, such as those formalizing different
properties of modular exponentiation or bitwise exclusive or [12, 13, 27]. However,
even though these approaches are specialized to particular algebraic properties,
the algorithms and correctness proofs are quite complex and usually must be
revised or completely re-designed when new properties are added. More general
approaches have been recently proposed [14, 24, 26] and we compare our work
with them in the concluding section §5.

Contributions. Our principal contribution in this paper is a framework for proto-
col analysis that is general and can handle algebraic properties of cryptographic
operators in a uniform and modular way. In doing so, we pave the way for imple-
menting analysis tools that are not specialized to particular algebraic theories
and thereby allow users to declare new operators and properties as part of the
protocol specifications. Of course, given the undecidability of the relevant prob-
lems, this goal cannot be achieved in full, without any restrictions. We now
briefly describe the main ideas and restrictions of our proposed approach.

Our framework is based on two ideas. The first idea is to use modular rewrit-
ing to formalize a generalized equational deduction problem for the Dolev-Yao
intruder. In doing so, we exploit the fact that we can distinguish two kinds
of equational theories associated with security protocols: cancellation theories
(where equations express that certain operations cancel each other out, such as
encryption and decryption with the same symmetric key) and finite equivalence
class theories (which are theories that induce finite equivalence classes for all
terms). We show how our use of modular rewriting leads to efficient solutions to
the intruder deduction problem.

The second idea is to introduce two “depth parameters” that bound the
depth of message terms and the operations that the intruder can use to analyze
messages (i.e. decompose messages based on his current knowledge, under perfect



cryptography). These bounds control the complexity of the equational unification
problems that arise, transforming undecidable problems into decidable ones.
Moreover, these bounds effectively serve as search parameters that can be used
to control the search over the space of messages.

Our framework is thus parameterized by algebraic theories of the two kinds
above and provides a general algorithm for the algebraic intruder deduction
problem when the depth of message terms and the analysis operations of the
intruder are bounded. Our framework allows us to identify several sub-problems
of the intruder deduction problem (e.g. the reduction of terms to their normal
forms) and provide general algorithms for them. Along the way, we also show
that the problems considered become undecidable when any of the restrictions
made in our framework are removed.

Two remarks are in order to help put into context our use of depth param-
eters. First, rather than considering specialized theories of algebraic properties
of cryptographic operators, the focus of our work is to provide a general and
flexible framework that supports a large class of such theories. However, in this
generality, many problems are undecidable unless we introduce some restric-
tions. Our work shows that bounding the term depth and the message analysis
by the intruder simplifies many of the problems that arise and turns undecidable
problems into decidable ones. Moreover, many protocol analysis methods require
bounds on messages in the first place, e.g. methods based on typed models.

Second, our algorithms are less efficient than those algorithms, when they
exist, that are specialized to particular algebraic theories, e.g. [12, 13, 27], which
usually work without bounds. Our framework is open to the integration of such
specialized algorithms, albeit under the restriction of bounded message depth.
In this way, we can benefit from research advances for specialized theories, while
being able to fall back on general algorithms when specialized ones are not
available.

Finally, we note that our framework is not biased towards a particular pro-
tocol analysis method. It can be used as a basis for handling algebraic equations
when employing different types of formalisms (such as strand spaces, process
calculi, or rewriting) or techniques (such as abstractions or the symbolic lazy
intruder technique employed in our protocol model-checker OFMC [8, 10]).

Organization. We proceed as follows. In §2 we provide background for our ap-
proach. In §3 we introduce a concrete equational theory as a running example
and give an overview of our framework, presenting the central definitions and
theorems. In §4 we focus on how the intruder can analyze messages. In §5 we
compare with related work and draw conclusions.

Due to lack of space, discussions, examples, and proofs have been shortened
or omitted; details can be found in the extended version of this paper [9].

2 Background

Messages and cryptography. As is standard, we represent protocol messages as
terms built over a finite signature Σ. We write Σn, for n ≥ 0, to denote function



symbols of arity n. Terms in Σ0 are constants (i.e. nullary function symbols) and
represent atomic messages like agent names or nonces. We define the depth of a
term t as the number of nodes in the longest path from the root to a leaf in its
tree representation, and the size of t as the number of nodes (both inner nodes
and leaves). We write T (Σ, V ) to denote the set of terms that can be generated
using symbols of Σ and variables from a set V , and we write T (Σ) for the set
of ground terms.

Algebraic properties of cryptographic operators. Most approaches to protocol
analysis follow the free algebra assumption, under which two ground terms are
equal iff they are syntactically equal. Many protocols, however, do actually de-
pend on algebraic properties of cryptographic operators, in the sense that the
properties are required for the agents to carry out the steps prescribed by their
protocol roles. Hence, unlike the practice of abstracting from the concrete be-
havior of cryptography, we cannot ignore the algebraic properties on which the
protocol to be analyzed is based. For example, as we noted above, protocols
based on the Diffie-Hellman key-exchange, such as the Station-to-Station, IKE,
and JFK protocols (see the web-page of the IETF [21]), exploit the property of
modular exponentiation that (gx)y mod p = (gy)x mod p. As another example,
note that many protocols combine two secrets into one using associative and
commutative (AC) operators like bitwise exclusive or (xor) · ⊕ ·. Given such a
composed secret, every agent who knows one of the two secrets can also find out
the other one, but no other agent can. For instance, if an agent knows x⊕ y and
x, then he can exploit the properties of ⊕ to compute y as (x⊕ y)⊕ x.

Equational Theories. The formal analysis of protocols like those above requires
explicitly reasoning about the relevant properties of the cryptographic oper-
ators employed. We address in this paper those properties that are formal-
izable by finite sets of equations of the form t ≈ s, where t, s ∈ T (Σ, V ).
For example, the property required for the Diffie-Hellman key-exchange is that
exp(exp(g, x), y)mod p ≈ exp(exp(g, y), x)mod p.

We assume that notions like substitution, matching, unification, and unifia-
bility are defined as standard, e.g. as in [4, 6]. Term positions are represented as
sequences of natural numbers, which are partially ordered by the prefix order-
ing. We define the equational theory ≈E induced by a set E of equations to be
the least congruence on the term algebra that is closed under substitution and
contains E. We define the equivalence class [t]≈E

of a term t as {s | t ≈E s}.
Given a set E of equations, we interpret terms of T (Σ,V ) in the quotient alge-
bra of the term algebra with the congruence on terms, written T (Σ, V )/≈E

. In
this algebra, two terms are equal iff they are equivalent due to ≈E . The ground
word problem for a theory E is the problem of deciding s ≈E t for arbitrary
s, t ∈ T (Σ). Note that, for brevity, we often refer to a set E of equations as a
“theory”, meaning the equational theory ≈E induced by E.

We say that a substitution σ is an instance of a substitution θ modulo E,
and write σ %E θ, iff there is a substitution λ such that xσ ≈E xθλ for all x ∈



domain(θ). Given a set S of substitutions, S0 is a complete set of substitutions
of S under E iff for all σ ∈ S there is a θ ∈ S0 with σ %E θ.

Definition 1. Let vars(t) denote the variables of a term t. A rewrite rule is an
equation l ≈ r, where l is not a variable and vars(l) ⊇ vars(r). In this case, we
may write l → r instead of l ≈ r. A term-rewriting system (TRS) is a set of
rewrite rules. A TRS C and an equational theory E induce a modular rewriting
relation on E-equivalence classes of terms as follows: [t]≈E

→C/E [s]≈E
iff there

are terms t′ and s′ such that t ≈E t′, t′ →C s′, and s′ ≈E s.
Let →+ and →∗ denote the transitive and the transitive-reflexive closure of

a binary relation →. Given →, we say that t is reducible (and we call t a redex)
iff t → s for some s. t1 and t2 are joinable, denoted by t1 ↓ t2, iff there is some
s such that t1 →∗ s and t2 →∗ s. t is a normal form iff it is not reducible, and s
is a normal form of t iff t →∗ s and s is a normal form. We denote the normal
form of t by t↓, when it is unique. We say that → is confluent iff t →∗ t1 and
t →∗ t2 implies that t1 ↓ t2. Finally, → is convergent iff it is confluent and
terminating.

Although →C/E is defined on equivalence classes of terms, for notational
simplicity we will also write t →C/E s, for terms s and t, rather than [t]≈E

→C/E

[s]≈E
. Employing the same convention, we will also write t↓C/E for [t]≈E

↓C/E .
Note that for a convergent relation →, every term has a unique normal form,
and hence t↓C/E is always defined.

The definition of modular rewriting works directly on E-equivalence classes,
rather than defining a special notion of convergence modulo E. However, while
theoretically appealing, this definition is algorithmically difficult to work with.
Therefore many approaches to modular rewriting employ a weaker but more
tractable variant →C,E of the relation →C/E , namely s →C,E t iff ∃(u → v) ∈
C. ∃σ. s ≈E uσ ∧ t = vσ. For →C,E , there is a completion method [7, 22], and it
is not necessary to explore the entire E-equivalence class of a term t in order to
determine if t is a redex. While we consider here the relation →C/E , we remark
that all constructions and algorithms in this paper can be adapted to →C,E as
well.

A standard result tells us that we can solve the ground word problem for
terms in the theory C ∪ E by normalizing the terms under C and checking the
results for equality modulo E. Formally, if →C/E is convergent and t1 and t2 are
ground terms, then t1 ≈C∪E t2 iff [t1]≈E

↓C/E = [t2]≈E
↓C/E .

The Dolev-Yao intruder. The standard Dolev-Yao model [19] formalizes the
abilities of an intruder who controls the communication network. The intruder
can analyze messages, decomposing them into submessages, and synthesize new
messages from their subparts. In our formalization of this, we assume we are
given a set of function symbols O ⊂ Σ that describe the ways of constructing
messages (e.g. pairing or cryptographic operations like encryption or hashing).
We also call the set O the set of intruder-accessible operators. For readability, we
will however avoid displaying the set O as an explicit parameter of the intruder
deduction problem.



Definition 2. Given a finite set of ground terms IK (for “intruder knowledge”)
and an equational theory E, we define DYE(IK ) (for “Dolev-Yao”) as the least
set that is closed under the rules

t ∈ DYE(IK )
AX (t ∈ IK ) ,

t1 ∈ DYE(IK )
t2 ∈ DYE(IK )

EQ (t1 ≈E t2) ,

t1 ∈ DYE(IK ) · · · tn ∈ DYE(IK )
op(t1, . . . , tn) ∈ DYE(IK )

OP (op ∈ O) .

The (Dolev-Yao) intruder deduction problem with respect to the equational
theory E is the problem of deciding whether t ∈ DYE(IK ) for ground terms t
and finite sets of ground terms IK .

Note that in this formalization we do not have analysis rules for decomposing
terms. For example, the decryption rule for symmetric encryption

{|m|}k ∈ DYE(IK ) k ∈ DYE(IK )
m ∈ DYE(IK )

is subsumed by the equation {|{|m|}k|}k ≈ m: whenever the intruder has {|m|}k

and k, he can compose them to construct {|{|m|}k|}k, which is equal under ≈E

to m.
The intruder deduction problem is the core deduction problem in protocol

analysis. Consider a trace of messages exchanged between honest agents and
an intruder. For each message m that is sent by the intruder in this trace, the
intruder must be able to derive m, i.e. m ∈ DYE(IK ), where E is the equational
theory considered and IK is the intruder knowledge consisting of the initial
intruder knowledge and all messages the intruder has observed so far. Note
that in many state-of-the-art approaches to protocol analysis (see [15] for an
overview), the term m may contain variables and the resulting symbolic trace
represents the set of traces that are obtained by substituting for the variables
arbitrary terms from DYE(IK ). The use of symbolic terms avoids the näıve
enumeration of all terms that the intruder can generate from his knowledge.

3 A framework for algebraic properties

While equational reasoning is a general paradigm, our focus in this paper is on
its application to security protocol analysis. Let us begin with a concrete exam-
ple: an algebraic theory formalizing relevant properties used in many protocols,
including those based on the Diffie-Hellman key-exchange.

Example 1. Let Σex = (Σ0
ex, Σ

1
ex, Σ

2
ex), where Σ0

ex is a countable set of constants;
Σ1

ex = {inv(·), ·−1}, where inv(t) and t−1 are the inverses of a message term t
for asymmetric encryption and exponentiation, respectively, and the symbols in
Σ2

ex = {{·}·, {|·|}·, 〈·,·〉, exp(·, ·), · ⊕ ·} denote asymmetric encryption {t2}t1 and
symmetric encryption {|t2|}t1 of a message t2 with a message t1, concatenation



〈t1,t2〉 of two messages t1 and t2, modular exponentiation exp(t1, t2) of a message
t1 with a message t2, and bitwise xor t1 ⊕ t2 of a message t1 with a message t2
(with identity element e). Our example theory Eex is induced by the following
equations over Σex (where the xi are variables from a set disjoint from Σex):

x1 ⊕ x2 ≈ x2 ⊕ x1 (1)
(x1 ⊕ x2)⊕ x3) ≈ x1 ⊕ (x2 ⊕ x3) (2)

exp(exp(x1, x2), x3) ≈ exp(exp(x1, x3), x2) (3)
exp(exp(x1, x2), x2

−1) ≈ x1 (4)
inv(inv(x1)) ≈ x1 (5)

(x1
−1)

−1 ≈ x1 (6)

{{x2}x1}inv(x1) ≈ x2 (7)
{{x2}inv(x1)}x1 ≈ x2 (8)

{|{|x2|}x1 |}x1 ≈ x2 (9)
x1 ⊕ x1 ≈ e (10)
x1 ⊕ e ≈ x1 (11)

We split Eex into two subtheories: Fex is induced by the equations (1)–(3), and
Cex is induced by the equations (4)–(11). ut

Note that, as is often done, we leave implicit the modulus of exponentiation in
Eex: instead of gx mod p (i.e. exp(g, x)mod p) we write simply gx (i.e. exp(g, x)),
assuming that exponentiation is always performed using the same (publicly
known) modulus. Note also that Eex does not contain redundant equations
(which are entailed by the given equations) such as e⊕ x1 ≈ x1.

3.1 Two kinds of theories

Our framework is based on modular rewriting and exploits the fact that we can
distinguish two kinds of equational theories associated with security protocols:
cancellation theories and modulo theories. Cex is an example of a cancellation
theory, which is a theory whose equations express that certain operations (such
as encryption followed by decryption with the same key) cancel each other out.
Such equations can usually be described by a convergent TRS and we can thus
apply these equations to rewrite all terms into normal form. The advantage of
separating out a convergent subtheory is that we can then neglect its equations
during subsequent equality reasoning when all terms are normalized.

Definition 3. A cancellation theory is a theory induced by cancellation rules
of the form op(t1, . . . , tn) ≈ s, with s a constant or a subterm of one of the ti.

Fex is an example of a modulo theory, which is a theory that comprises equa-
tions that cannot be oriented into terminating rewrite rules; the standard ex-
amples from rewriting are the equations for properties like associativity and/or
commutativity. It is common for these equations to form a “background theory”
used when applying other rewrite rules (such as the cancellation equations); that
is, one performs rewriting modulo the equations of a modulo theory.

Here we will not restrict ourselves to a particular modulo theory, like AC,
but rather work with a class of theories, namely finite equivalence class theories.

Definition 4. An equational theory E is a finite equivalence class (FEC) theory
if the equivalence class [t]≈E

= {t′ | t′ ≈E t} is finite for all terms t ∈ T (Σ, V ).



We can then, for example, prove that Fex is an FEC theory and Cex is a
cancellation theory. In the following, we will use C and F to denote cancellation
and FEC theories, respectively. Note also that FEC and cancellation theories
are disjoint theory classes as for a cancellation theory, there are always terms
with an infinite equivalence class.

As is standard, the equational matching problem for a theory E is the ques-
tion of whether, given a ground term t and a term s with variables, there is a
substitution σ such that t ≈E sσ. From the definition of FEC theories, we have:

Theorem 1. The equational matching problem for an FEC theory F is decid-
able. In particular, there is a terminating algorithm that returns a complete set
of matches modulo F for a given instance of the problem.

A special case of equational matching is the ground word problem (when s is
also ground), and hence this problem is also decidable for FEC theories.

As we will see below, our framework relies on the decidability of matching
for FEC theories. In contrast, the unification problem (where both terms may
contain variables) for FEC theories is undecidable. Consider the theory of dis-
tributivity and associativity D?+A+ = {x?(y+z) ≈ (x?y)+(x?z), x+(y+z) ≈
(x+y)+z}. Unifiability in this theory is undecidable as shown in [28]. As equiva-
lence classes in D?+A+ are finite, we thus have that unifiability modulo an FEC
theory is in general undecidable.

In §4 we will use the following important property of FEC theories, namely
that they cannot contain equations that introduce new variables:

Lemma 1. If l ≈ r is an equation of an FEC theory, then vars(l) = vars(r).

Hence, l ∈ V implies l = r, so that such trivial equations can be safely omitted.
We conclude this subsection by observing the relevance of these two kinds

of theories to security protocol analysis. As we will see, cancellation rules are
closely related to the analysis (e.g. decryption) of terms by the intruder and
honest agents, and therefore have a distinguished role in deductions. We will
namely define a normal form of the intruder knowledge as a state where the
applications of cancellation rules do not give him any “new” terms (in a sense
to be precisely defined later).

3.2 Restriction to a bounded variable depth model

As unifiability modulo an FEC theory is undecidable, we must introduce a re-
striction under which unification becomes decidable. We achieve this by introduc-
ing bounds on messages. There are several ways to do this, e.g. by bounding the
number of operations that the intruder can perform to synthesize new messages
from his knowledge, or by limiting the depth of terms that may be substituted
for variables in the rules formalizing the steps of a protocol execution. We take
the second approach here and bound the depth of message terms. To this end,
we first define a subset of the variable symbols with an associated depth bound,
and we then define which substitutions are permissible for these variables.



Definition 5. We call a bounded variable a variable for which only terms with
bounded depth can be substituted. Let VB ⊆ V be the set of bounded variables
such that every variable v has an associated depth bound depth(v) ∈ N. We
extend the function depth(·) to arbitrary terms as follows: depth(v) = ∞ for
v ∈ V\VB, depth(c) = 0 for c ∈ Σ0, depth(op(t1, . . . , tn)) = 1+maxn

i=1 depth(ti)
for op ∈ Σn, with n > 0. We say that a substitution σ respects the depth restric-
tions of the variables in a term t, and write respect depth(σ, t), iff depth(vσ) ≤
depth(v) for all v ∈ vars(t).

We call the bounded variable depth model (BVDM) the restricted protocol anal-
ysis model in which only substitutions are allowed that respect the depth of
variables.

The following lemma tells us that any computable function on ground terms
can be extended to a computable function on terms with bounded variables.
This will allow us, in the rest of this paper, to restrict ourselves to the ground
case while all results can be carried over to terms with bounded variables.

Lemma 2. Let f be a computable function that takes as input n terms that may
contain variables and m ground terms, and which returns a finite set of terms.
Then the following function f ′ is also computable. f ′ takes as input n terms that
may contain (arbitrary) variables and m terms that may contain only bounded
variables, and returns a finite set of terms and substitutions such that:

∀s1, . . . , sn ∈ T (Σ, V ). ∀t1, . . . , tm ∈ T (Σ,VB). ∀σ.

[ground(t1σ) ∧ . . . ∧ ground(tmσ) ∧ domain(σ) ⊆ VB∧
respect depth(〈s1, . . . , sn, t1, . . . , tm〉, σ)] =⇒

[(r, σ) ∈ f ′(s1, . . . , sn, t1, . . . , tm) ⇐⇒ rσ ∈ f(s1σ, . . . , snσ, t1σ, . . . , tmσ)] .

Lemma 2 allows us, for instance, to easily lift the matching algorithm for
FEC theories F to a unification algorithm where one of the two input terms
contains only bounded variables.

Note that the depth of messages is often bounded in protocol analysis. For
instance, many model-checking approaches bound terms to obtain a finite-state
system, e.g. [3, 25]. Moreover, when other parameters of the model are un-
bounded, like the number of sessions, then restricting the message depth is essen-
tial for decidability [20]. Note also that [11] presents an approach that similarly
bounds the depth of message terms in order to tackle the problem of algebraic
properties in intruder deductions; the approach of [11] is however specialized to
a particular algebraic theory.

3.3 Matching and unification in FEC theories in the BVDM

We have shown that for every FEC theory F , we can decide the matching prob-
lem. By Lemma 2, when the variables are bounded on one side, we can reduce an
F -unification problem to a finite number of F -matching problems, which we can
solve by Theorem 1. The algorithms that we can obtain from the constructive



proof of Theorem 1 however have poor complexity. Moreover, there exist more
efficient, specialized algorithms for some of the theories that are relevant for the
analysis of security protocols, e.g. [12, 13, 27].

We give a solution to handle F -unification efficiently in the bounded case and
which allows for the straightforward integration of existing unification algorithms
for disjoint subtheories of F . Due to lack of space, we briefly sketch this solution
here and refer to [9] for details. The basic idea is the following. In a free algebra,
every term op(t1, . . . , tn) can be decomposed into an operator and its arguments
in only one way. Modulo a theory E, however, there may be other ways to
decompose a term. For instance, in our example theory Eex, exp(exp(g, x), y) may
be decomposed into the exponentiation of exp(g, x) with y or the exponentiation
of exp(g, y) with x as these two terms are equal modulo Eex.

For FEC theories, there are only finitely many ways to decompose a ground
term, since its equivalence class is finite. For the BVDM, in [9] we show that given
a complete decomposition algorithm for an FEC theory F , we can construct
a complete one-side-bounded F -unification algorithm. The advantage of this
unification algorithm is that it does not explore the entire equivalence class of
terms, but rather just what different decompositions are possible at the topmost
level of the term.

Moreover, we can show that FEC-decomposition has a nice compositionality
property in the BVDM.1 Let the FEC theory F be composed from disjoint
subtheories F1 and F2 (i.e. subtheories that have no constant or function symbols
in common). Consider F -unifying the two terms t = op(t1, . . . , tn) and s =
op′(s1, . . . , sm). For the unification to succeed, op and op′ must belong to the
same subtheory, say F1. Then, the unification problem t ≈F s can be broken
into the “smaller” unification problems t ≈F1 op′(s′1, . . . , s

′
m) and s′j ≈F sj

for 1 ≤ j ≤ m. That is, t ≈F s can be reduced to an F1-problem together
with F -problems for the subterms (which may belong to different subtheories).
This allows us to construct an F -unification algorithm from the Fi-unification
algorithms for the disjoint subtheories Fi.

3.4 Intruder deduction modulo F

So far we have considered the problem of unification and matching modulo an
FEC theory F . We now turn to the intruder deduction problem modulo F , i.e.
whether t ∈ DYF (IK ) holds for a ground term t and a set of ground terms IK .

Lemma 3. If F is an FEC theory, then the problem t ∈ DYF (IK ) is decidable
for a term t and a set of terms IK .

In the following, we will consider the generalization of the problem t ∈
DYF (IK ), where the term t may contain variables. This is an important question
even for a model with only ground terms, since we will later consider intruder
1 Note that, as we discuss in more detail in [9], standard compositionality results for

disjoint theories, e.g. [5], are not applicable in the BVDM since that would give rise
to unbounded unification problems.



derivations modulo F ∪ C. In particular, given a set IK of ground terms, we
must decide whether there is some ground instance tσ of the left-hand-side t of
a cancellation rule of C such that tσ can be derived modulo F from IK (note
that t is here a term with unbounded variables). As shown in [9]:

Lemma 4. There is an FEC theory F such that it is undecidable for a term t
and a set of ground terms IK , whether there exists a substitution σ such that tσ
is ground and tσ ∈ DYF (IK ).

Hence, to decide the intruder deduction problem for terms with variables,
we must make further restrictions. By Lemma 2, the problem is decidable if t
contains only bounded variables.

4 Cancellation equations

We now turn to the cancellation equations such as {|{|x2|}x1 |}x1 ≈ x2. Such an
equation cannot be formalized as part of an FEC theory like Fex since all equiva-
lence classes are infinite. As introduced in §2, we will now consider rewriting for
cancellation theories C modulo an FEC theory F . Note that every cancellation
theory is a rewrite theory as every cancellation equation l ≈ r has the property
that vars(l) ⊇ vars(r).

The principal property that we require is that the modular rewriting relation
→C/F is convergent, which is the case for our example →Cex/Fex

, as we show
in [9]. As a direct consequence of our assumption that →C/F is convergent and
since we can decide matchability modulo an FEC theory F by Theorem 1, we
have that the ground word problem modulo F ∪C is decidable in our framework:

Theorem 2. Let F be an FEC theory and C a cancellation theory, and let
→C/F be convergent. Then the ground word problem for F ∪ C is decidable.

By Lemma 2, it follows that we can construct a unification algorithm modulo
F ∪ C for terms with bounded variables. In particular, this implies that the
unifiability problem modulo F ∪C for terms with bounded variables is decidable.

4.1 Cancellation as analysis

The results that we have presented so far allow us to decide, for ground terms
or terms with bounded variables, the equality of terms modulo an FEC theory
F and a cancellation theory C, as well as the intruder deduction problem in the
theory F . We now consider how to solve the intruder deduction problem in the
theory F ∪ C. In §4.2, we will see that this problem is in general undecidable,
so to obtain a decidable problem we must further restrict our model: we bound
the number of operations that the intruder can perform.

The idea that we put forth here to solve the intruder deduction problem with
respect to F ∪ C is to distinguish synthesis (or composition) and analysis (or
decomposition) of messages by the intruder. Observe that these two aspects of
intruder deduction are not completely independent; for instance, if the intruder



knows the messages {|m|}〈k1,k2〉 and k1 and k2, then he can analyze the encrypted
message, but only after synthesizing the key 〈k1,k2〉. We now define a general
notion of analysis based on an arbitrary cancellation theory C.

Intuitively, we speak of synthesis when the intruder applies the OP rule to
compose terms, excluding the case when the resulting composed term is a redex
according to the cancellation theory C (as we can then reduce it to a simpler
term). We speak of analysis when the intruder applies the OP rule to obtain
a redex whose normal form cannot be composed from his current knowledge.
We can then formalize the notion of the intruder knowledge being completely
analyzed based on the notion of cancellation rules present in our framework: we
say that the intruder has analyzed his knowledge as far as possible if, by applying
the cancellation rules, the intruder can only derive messages (except redices in
C) that he can also derive without cancellation rules. Formally:

Definition 6. Let C be a cancellation theory convergent modulo an FEC theory
F . We say that a finite set of ground terms IK is analyzed with respect to C
modulo F if t↓C/F ⊆ DYF (IK ) for each t ∈ DYF (IK ).

As an example, consider again Fex and Cex. The set IK = {{|m|}k, k} is
not analyzed with respect to Cex modulo Fex as the intruder can generate t =
{|{|m|}k|}k ∈ DYFex(IK ), and t↓Cex/Fex

= [m]≈Fex
, but m /∈ DYFex(IK ). However,

IK ′ = IK ∪ {m} is analyzed since all messages that can be obtained only by
normalizing terms in DYFex

(IK ′) are already contained in DYFex
(IK ′).

We thus have a characterization of analyzed intruder knowledge as a set
that contains all messages that can be derived under DYF∪C(·) and but not
under DYF (·). The idea is that when the set of messages known by the intruder
is analyzed, then there is no need to consider the cancellation theory in the
derivations of the intruder. Hence we can decide the intruder deduction problem
DYF∪C(·) when the intruder knowledge is analyzed:

Theorem 3. Let F be an FEC theory and C a cancellation theory, and let
→C/F be convergent. Further, let t be a ground term and IK be a finite set of
ground terms analyzed with respect to C modulo F . Then it is decidable whether
t ∈ DYF∪C(IK ).

By Lemma 2, it follows that the intruder deduction problem is decidable for
terms with bounded variables when the intruder knowledge is analyzed.

4.2 Undecidability of analysis

The previous method for solving the intruder deduction problem is restricted to
the case where the intruder knowledge is analyzed. The central question thus
is how to transform an arbitrary intruder knowledge into an analyzed one. As
we show in [9], based on the fact that unification modulo an FEC theory is
undecidable in general, it follows that it is undecidable whether a given intruder
knowledge is analyzed or not:



Theorem 4. There is an FEC theory F and a cancellation theory C, where
→C/F is convergent, such that it is undecidable whether a finite set of ground
terms IK is analyzed with respect to C modulo F . Moreover, the intruder deduc-
tion problem t ∈ DYF∪C(IK ) is also undecidable.

Note that [1, 2] have shown that the intruder deduction problem in a theory
E can be undecidable even if unification in E is decidable. Our theorem is
incomparable to this result as it does not require E to be decidable.

We thus need to make further restrictions to obtain a general procedure for
analyzing the intruder knowledge. We proceed by limiting the operations that
the intruder can perform when analyzing a single message (i.e. the number of
steps before he obtains a new redex). We define a bounded derivation of the
intruder as follows:

Definition 7. Given a finite set IK of ground terms and an algebraic theory E,
we define the k-bounded intruder model as the least set DYk

E(IK ) that is closed
under the rules

t ∈ DYk
E(IK )

AXk (t ∈ IK , k ≥ 0) ,
t1 ∈ DYk

E(IK )

t2 ∈ DYk
E(IK )

EQk (t1 ≈E t2) ,

t1 ∈ DYk
E(IK ) · · · tn ∈ DYk

E(IK )

op(t1, . . . , tn) ∈ DYk+1
E (IK )

OPk (op ∈ Σn) .

Note that, under the EQk rule, the use of an equivalence from E does not count
as a step, i.e. it does not increase the counter k.

Definition 8. Let F be an FEC theory and C a cancellation theory, and let
→C/F be convergent. Given a constant k ∈ N, we say that the intruder knowledge
IK , which is a finite set of ground terms, is k-analyzed (with respect to C modulo
F ) iff t↓C/F ⊆ DYk

F (IK ) for each t ∈ DYk
F (IK ).

Theorem 5. Let F be an FEC theory and C a cancellation theory, let →C/F

be convergent, and let k ∈ N. Then it is decidable if a finite set of ground terms
IK is k-analyzed (with respect to C modulo F ).

Note, however, that given a finite set of ground terms IK , there does not
always exist a finite superset IK ′ of ground terms that is (k-)analyzed. Con-
sider, for example, the theories F = {f(x) = g(h(x))} and C = {g(X) = X}.
Clearly, F is a FEC theory, C is a cancellation theory, and →C/F is conver-
gent. Furthermore, let O = {f} be the set of functions that the intruder can
access, and let IK be a finite set of ground terms that contains a constant c. We
then, for instance, have that h(c), h(h(c)), . . . ∈ DYF∪C(IK ). Thus, there is no
finite set IK ′ ⊇ IK such that IK ′ is analyzed. For the bounded case, observe
that g(t) ∈ DYk

F∪C(IK ∪ t) for any ground term t, k ≥ 1, and n ∈ N. Thus,
any k-analyzed superset of IK must also contain gn(c) for any n ∈ N, so it
must be infinite. Hence, to complete our framework, we must be able to check
bounded derivability without first computing an analyzed intruder knowledge.
The following theorem tells us that this is possible:



Theorem 6. Let F be an FEC theory and C a cancellation theory, let →C/F be
convergent, and let k ∈ N. Then it is decidable if a ground term t can be derived
from a finite set of ground terms IK , i.e. whether t ∈ DYk

F∪C(IK ).

Together with the fact that, by Lemma 2, all problems over terms with bounded
variables can be reduced to problems over ground terms, we have now the basis
for protocol analysis modulo algebraic theories. Namely, we can check whether a
term with bounded variables — representing the set of messages that some agent
in its current state can receive as a valid protocol message — can be derived from
a ground intruder knowledge under the bounds that we have introduced.

5 Related work and concluding remarks

We have presented a framework for security protocol analysis that can handle
algebraic properties in a uniform and modular way. It is not specialized to any
particular algebraic theory and thereby allows users to declare new operators
and properties as part of the protocol specification. Our framework is based
on the use of modular rewriting to formalize a generalized equational deduc-
tion problem for the Dolev-Yao intruder, and on bounding the depth of message
terms and the analysis operations of the intruder to control the complexity of the
equational unification problems that arise. These bounds allow us to give gen-
eral algorithms for the equational unification and intruder deduction problems.
Moreover, under these bounds, our framework is also open to the integration
of more efficient algorithms that are specialized to particular algebraic theories
(and which usually work without such bounds), e.g. [12, 13, 27].

The idea of providing a general approach for integrating equational properties
into security protocol analysis has recently attracted considerable attention. [18]
presents an approach based on standard rewriting that supports the specification
of properties like the cancellation theories of our framework. However it does
not allow for properties like AC, which are handled by our FEC theories. The
approach of [14] has aims similar to ours: to provide a general framework that
is open to the integration of existing algorithms. This approach, however, is
based on a different idea, namely ordered rewriting, and is therefore applicable
to classes of theories that are incomparable to the ones that are supported by
our framework. The approaches of [2, 16, 24, 26] are the most closely related to
ours as they also employ modular rewriting. They differ from our work in that
they are more restrictive in terms of the kinds of modulo theories that can be
considered; namely they consider a fixed modulo theory (or, similarly, assume
given a unification procedure for the modulo theory), or they require that the
unification problems are finitary. These restrictions, however, allow them to work
without the bounds required by our approach.

Our framework is not biased towards a particular analysis method, and thus
can be used as a basis for handling algebraic equations when employing different
types of formalisms or techniques for protocol analysis. As a concrete example, we
have begun integrating our framework into our protocol model-checker OFMC [8,
10]. In this integration, the message and analysis bounds become parameters of



the protocol analysis problem, along with other parameters like the number of
sessions. We can then use different search techniques (like iterative deepening)
to effectively search the resulting multi-dimensional search space.

The equational reasoning problems that we considered in this paper are in
general undecidable and hence one must introduce restrictions to regain decid-
ability. The restrictions that we have introduced are motivated by the practical
problems in security protocol analysis and we have begun investigating whether
and how they can be applied to other equational reasoning problems.
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