
CRAM-MD5 Challenge-Response Authentication Mecha-

nism

Protocol Purpose

CRAM-MD5 is intended to provide an authentication extension to IMAP4 that neither transfers
passwords in cleartext nor requires significant security infrastructure in order to function. To this
end, the protocol assumes a shared password (which we model, without loss of generality, as a
shared cryptographic key) between the IMAP4 server (called S in our model) and each client A.
Only a hash value of the shared password is ever sent over the network, thus precluding plaintext
transmission.

Definition Reference

RFC 2195 [KCK97]

Model Authors

Paul Hankes Drielsma, ETH Zürich, July 2004

Alice&Bob style

Alice-Bob Notation:

1. A -> S: A

2. S -> A: Ns.T.S

3. A -> S: F(SK.T)

where

Ns is a nonce generated by the server;

T is a timestamp (currently abstracted with a nonce)

SK is the shared key between A and S

F is a cryptographic hash function (MD5 in practice, but this is

unimportant for our purposes). The use of F

is intended to ensure that only a digest of the shared

key is transmitted, with T assuring freshness of the

generated hash value.

1



Model Limitations

Issues abstracted from:

• We abstract away from the timestamp T using a standard nonce.

Problems considered: 2

Attacks Found

None

Further Notes

RFC 2195 [KCK97] states that the first message from the server S begins with a ”presumptively
arbitrary string of random digits”; that is, a nonce. Unspecified, however, is what the client
should do with this nonce. It does not appear in subsequent protocol message. We therefore
presume it is intended to ensure replay protection, but our HLPSL specification at present does
not explicitly model that the client should maintain a list of nonces previously received from the
server.
——————————————————————————————————————————

HLPSL Specification

role client(A, S: agent,

SK: message,

F: function,

SND, RCV: channel (dy))

played_by A

def=

local State : nat,

T, Ns : text

const sec_SK : protocol_id

init State := 0

2



transition

1. State = 0 /\ RCV(start)

=|>

State’ := 1 /\ SND(A)

2. State = 1 /\ RCV(Ns’.T’.S)

=|>

State’ := 2 /\ SND(F(SK.T’))

/\ witness(A,S,auth,F(SK.T’))

/\ secret(SK,sec_SK,{S})

end role

——————————————————————————————————————————

role server(S : agent,

K,F: function,

SND, RCV: channel (dy))

played_by S

def=

local State : nat,

A : agent,

T, Ns : text,

Auth : message

init State := 0

transition

1. State = 0 /\ RCV(A’)

=|>

State’ := 1 /\ Ns’ := new()

/\ T’ := new()

/\ SND(Ns’.T’.S)

2. State = 1 /\ RCV(F(K(A.S).T))

=|>

State’ := 2 /\ Auth’ := F(K(A.S).T)

/\ request(S,A,auth,F(K(A.S).T))

3



end role

——————————————————————————————————————————

role session(A, S: agent,

K, F: function)

def=

local SK: message,

SNDA, SNDS, RCVA, RCVS: channel (dy)

init SK = K(A.S)

composition

client(A,S,SK,F,SNDA,RCVA)

/\ server(S,K,F,SNDS,RCVS)

end role

——————————————————————————————————————————

role environment()

def=

const a, s : agent,

k, f : function,

auth : protocol_id

intruder_knowledge = {a,s,i,f}

composition

session(a,s,k,f)

/\ session(i,s,k,f)

/\ session(a,s,k,f)

end role

——————————————————————————————————————————

goal

4



%secrecy_of SK

secrecy_of sec_SK

%Server authenticates Client on auth

authentication_on auth

end goal

——————————————————————————————————————————

environment()

References

[KCK97] J. Klensin, R. Catoe, and P. Krumviede. RFC 2195: IMAP/POP AUTHorize Extension
for Simple Challenge/Response, September 1997. Status: Proposed Standard.

5


