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Abstract

In computer aided verification, the reachability problem is particularly relevant for
safety analyses. Given a regular tree language L, a term ¢ and a relation R, the
reachability problem consits in deciding whether there exist a positive integer n and
terms tg, t1,...,t, such that ¢ty € L, t, =t and for every 0 < i < n, (t;,t;4+1) € R.
In this case, the term ¢ is said to be reachable, otherwise it is said unreachable. This
problem is decidable for particular kinds of relations, but it is known to be undecid-
able in general, even if L is finite. Several approaches to tackle the unreachability
problem are based on the computation of an R-closed regular language containing L.
In this paper we show a theoretical limit to this kind of approaches for this problem.
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We assume that the reader is familiar with basic notions and notations on
terms and on bottom-up tree automata. For a general reference see [5,1].
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1 Introduction

In this paper we show a theoretical limit of regular fix-point techniques used
for reachability analyses.

Automatic verification of software systems is one of the most challenging re-
search problems in computer aided verification. In this context, regular model-
checking has been proposed as a general framework for analysing and verifying
infinite state systems. Thus, systems are modelled using regular representa-
tions: configurations of the systems are modelled by finite words or trees (of
unbounded size) and the dynamic of the systems is modelled by a relation R
(in practice a transducer or a (term) rewriting system). Then, safety analysis
of the system is reduced to the computation of regular languages closed under
a relation R: given a regular language L, a relation R and a regular set Lp
of bad configurations, the question is to decide whether R*(L) N L, = () where
R* is the reflexive transitive closure of R. Since R*(L) is in general neither
regular nor computable, several approaches handle restricted cases for this
problem [7,6,11,15].

However, modelling real systems leads in general out of decidable cases. In
this context, several regular fix-point automatic [4] or human guided tech-
niques [12,9,8] were developed in order to prove safety properties. The goal
of these techniques is to compute a regular language K., containing L and
which is R-closed. The language K, is an over approximation of R*(L)
(for language inclusion) and if Kower N L, = 0, then R*(L) N L, = 0. This
approach has been successfully used in order to prove safety of security pro-
tocols [10,14,13,3| or recently for static analysis of JAVA programs [2].

In this direction we cannot get away from the question to know whether this
kind of fix-point approaches can always be used to prove safety of systems in
the following sense: given the model of a system by a regular language L and a
relation R, for any language L, such that R*(L) N L, = (), does there exist an
R-closed regular language K, containing L and satisfying Kover N L, = 07
This issue can also be formalised as follows: does the following equality hold

R (L) = N K,

R*(L)CK, R(K)CK

where the intersection is restricted to regular languages?

In this paper we give a negative answer to this question.



2 Main result

Proposition 1 Let L = {f(A, A)}, R = {f(z,y) — f(M(x), h(y)), f(h(x), h(y)) —
f(z,y), f(h(x),A) — A, f(A h(z)) — A} where x and y are variables. One
has A ¢ R*(L) but

A€ N K.

LCK, R(K)CK

PROOF. Let H = {f(h*(A),h*(A)) | k € N}. First we claim that R*(L) = H.
Starting from f(A, A) and using the rule f(z,y) — f(h(x),h(y)), one has
L C H C R*(L). Moreover, H is obviously closed by the rule f(h(z), h(y)) —
f(z,y). Therefore, since the two rules f(h(x),A) — A and f(A, h(x)) — A
cannot be applied to terms in H, it follows that R*(L) = H, proving the
claim. Furthermore, A ¢ R*(L) Moreover one can easily prove that R*(L) is
not regular using classical pumping arguments.

Secondly, let Koy be a regular language such that L C Koy and R(Kqyer) C
Kover- Let also S be the regular language {f(h¥(A), h¢(A)) | k > 0, > 0}.
Since R*(L) C Kover, R*(L)NS C Kover N S. Using the claim, one has R*(L)N
S = R*(L). Consequently R*(L) C Kyer N.S. Now, it is well known that the
intersection of two regular tree languages is regular too. Thus K NS is
regular. However R*(L) is not regular. Consequently, the inclusion R*(L) C
Kover NS is strict. So let ¢ be an element of Koyer NS\ R*(L). The term ¢ is of
the form t = f(h*(A), h(A)) with k # ¢. Without loss of generality, we may
assume that k > (. Since Ky, is R-closed and using the rule f(h(z), h(y)) —
f(z,y), the term f(h*~*(A), A) is in Koye. Now the rule f(h(x), A) — A can
be applied on f(h¥=¢(A), A) . Consequently, K. being R-closed, it follows
that A € K., which concludes the proof. O

Thus, we have shown that A will be in every over-approximation computed
by a regular fix-point technique. So, we won’t be able to show it unreachable.

3 Conclusion

Undoubtedly, regular fix-point techniques mentioned previously have led to
great results as seen in introduction. Nevertheless, they are disarmed against
the problem illustrated in Proposition 1. This raises several open questions:

e Can we decide whether

R*(L) = K?

LCK, R(K)CK,K regular



o If the answer is no, does there exist decidable conditions on L and R such

that the above equality holds?

e How regular fix-point approaches may be extended in order to handle more

cases?
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