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The verification of cryptographic protocols has greatly improved these last years. Automated tools such as AVISPA
provide real help in finding and characterizing attacks. The counterpart is the formal specification of the protocol, using
an appropriate language such as HLPSL. Since HLPSL is a very expressive language, this stage is complicated and
error-prone before a correct specification is eventually obtained. The verification tools of AVISPA are not designed to
detect such specification errors. Unfortunately, as long as it contains typo-like errors, the verification of a HLPSL spec-
ification is pointless. In this paper, we propose an animation tool called SPAN †. It turns a formal protocol specification
into an execution diagram, according to user choices. We show how the visualization eases the formal specification
stage in many ways: drawing of typical execution diagrams, visualization of protocol termination, understanding of
interleaved sessions, detection of unwanted side effects, etc. We also show how visualization and simulation of an
intruder helps in finding attacks that are not automatically detected by tools.
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1 Introduction
As they expand, digital transmissions require more and more security solutions. Sometimes, a straight-
forward adaptation of widely known protocols (SSL, IPSEC, PGP, . . . ) is adequate. Sometimes, a new
protocol must be designed. In this case, there are many error factors.

• The protocol is an answer to a recent security problem: all the aspects of the problem may not be
known already.

• The protocol is an answer to a critical situation: the design time may be short.

• The protocol is designed for commercial use: some details may not be published too early.

In such situations, there is an urge need for proofs, even before any public review can take place. Verification
tools such as proposed by AVISPA [ABB+05] are a good answer: they let the designers carry out the
automated formal verification on their own. Of course the designers have to learn the associated concepts
and languages, i.e. the HLPSL [CCC+04] formal specification language in the particular case of AVISPA.

Is it possible to ease the learning task and the day-to-day use of such tools? In this paper we describe
SPAN a companion tool for AVISPA. It is dedicated to the animation of HLPSL specifications of crypto-
graphic protocols. Given such specifications it draws visual transition diagrams, according to user choices.
In particular it achieves constraint solving on message patterns to determine which transitions (message
exchanges in our setting) are likely to be fired. As a result, this kind of animation requires specific software
and cannot be solved using a generic library for animating MSC like [WBL06]. Doing so, SPAN facilitates
designers work in several ways: at first during the specification stage in order to insure that the written spec-
ification leads to an acceptable transition diagram; then during the correction checking, for quickly building,

† SPAN is freely available at http://www.irisa.fr/lande/genet/span/



recording and replaying execution cases. Also when AVISPA finds attacks, SPAN makes it easy to replay
it and to find variants. At last, it allows interactive search for specific attacks which are not automatically
detected.

The remainder of the paper is organized as follows. We first recall the necessary basis about cryptographic
protocols and their flaws in Section 2, then we sum up the basics of AVISPA and HLPSL in Section 3. In
Section 4, we describe SPAN and exemplify its many ways of helping designers. Finally, Section 5 provides
some further experiments. Note that, all along the paper, we use a straightforward variant of Diffie-Hellman
protocol as a running example.

2 Cryptographic protocols and their verification
The Diffie-Hellman protocol is a key establishment protocol between two agents A and B. A simple variant
of this protocol is composed of three steps and is presented below using ”Alice & Bob” notation. The
established key is denoted by K and, in the final step, a secret sent by A to B is encoded using K.

1 - A ↪→ B : GNa

2 - B ↪→ A : GNb , A and B compute key K = (GNa)Nb = (GNb)Na

3 - A ↪→ B : {Nsecret}K

At step 1, A generates the nonce (a random number) Na and computes GNa where G is a number known
by every agent. Thus A sends the message GNa to the agent B. At step 2, the agent B also generates a number
Nb and computes GNb and K = (GNa)Nb . The former is sent to A and the latter stands for the symmetric
key shared between A and B. As soon as A receives the message GNb from B, it then computes (GNb)Na

and thus considers it as the symmetric key shared with B. Indeed, according to the algebraic properties
of the exponentiation, K = (GNa)Nb = (GNb)Na . Finally, the message {Nsecret}K is sent by A to B in
which Nsecret is a datum standing for a secret between A and B, and { }K denotes the use of a symmetric
encryption algorithm with a key K.

This protocol is well-known to suffer from a man in the middle attack. This attack is detailed below.
In the Dolev and Yao model [DY83], the intruder can read every message over the network. A classical
hypothesis is to consider the intruder as the network. Thus, every message is sent, first of all, to the intruder
before being transmitted to the expected agent. The notation I(A) means that the intruder pretends to be A.

1 - A ↪→ I : GNa

2 - I(A) ↪→ B : GNi

3 - B ↪→ I : GNb , B and I compute the key KIB = (GNi)Nb = (GNb)Ni

4 - I(B) ↪→ A : GNi , A and I compute the key KIA = (GNi)Na = (GNa)Ni

5 - A ↪→ I : {Nsecret}KIA

6 - I(A) ↪→ B : {Nsecret}KIB

Roughly, the intruder establishes two keys: KIA = (GNa)Ni with A at Steps 1 and 4, and KIB = (GNb)Ni

with B at Steps 2 and 3. At Step 5, the agent A sends the secret data to B using the key KIA shared with
the intruder. The intruder then extracts the secret data and forward it to B with the other key. Finally, the
intruder knows a secret shared between both A and B.

In general, safety of cryptographic protocols is not decidable. However, bounding the number of sessions
allows automatic attack detection. On the other hand, using over-approximations gives a criterion for safety
properties on protocols with an unbounded number of sessions. The tools of the AVISPA system use these
two techniques for protocol verification.

3 The AVISPA system
In the AVISPA tool [ABB+05], cryptographic protocols are specified using the High Level Protocol Spec-
ification Language (HLPSL) [CCC+04]. There exist four tools devoted to the automatic verification of
security properties over these specifications: OFMC [BMV05], CL-Atse [Tur06a], SATMC [AC05] and
TA4SP [BHK05].



3.1 The specification language HLPSL
The language HLPSL, developed in the framework of the European Union project AVISPA‡, is modular and
allows the specification of control-flow patterns, data structures and various intruder models. Its semantics
are based on Lamport’s TLA (Temporal Logic of Actions [Lam94]). In this part, we give a flavor of HLPSL
using the specification of the Diffie Hellman protocol described in Section 2.

HLPSL specifications are based on role descriptions, i.e. finite state automata, where transitions are
fired when a message is sent or received. Contrary to “Alice & Bob” notation, HLPSL imposes explicit
definition of roles, nonce generation, message sending and reception, etc. Here is the role declaration for A
in the HLPSL specification of Diffie-Hellman, where =|> stands for the transition relation and /\ stands
for usual conjunction symbol.

role alice(A,B:agent, G:text, Snd,Rcv:channel(dy)) played_by A def=
local State:nat, Na,Nsecret:text, X,K:message
init State:=1

transition
1. State=1 /\ Rcv(start) =|>

State’:=2 /\ Na’:=new() /\ Snd(exp(G,Na’))
2. State=2 /\ Rcv(X’) =|>

State’:=3 /\ K’:=exp(X’,Na) /\ Nsecret’:= new() /\ Snd({Nsecret’}_K’)
end role

As mentioned previously, the HLPSL is based on a notation à la TLA where the meaning of a primed
variable X ′ depends on the location of this variable. Indeed, if X ′ occurs in a message pattern of the left
hand side of a transition then a new value is obtained for X by matching the message pattern on received
messages. Then this value is accessible by X ′ in the same transition (see the variable X in transition 2. of
the role alice). If X ′ occurs only in the right hand side of a transition then this variable specifies a nonce.
A random value is assigned to the variable X using the instruction new() and this value is accessible by X ′

in the current transition (see transition 1 of the role alice concerning the variable Na for instance). Find
below the role for B:

role bob(B,A:agent, G:text, Snd,Rcv:channel(dy)) played_by B def=
local State:nat, Y,K:message, Nb,Nsecret:text
init State:=1

transition
1. State=1 /\ Rcv(Y’) =|>

State’:=2 /\ Nb’:=new() /\ K’:=exp(Y’,Nb’) /\ Snd(exp(G,Nb’))
2. State=2 /\ Rcv({Nsecret’}_K) =|>

State’:=3
end role

Roles can be composed together in sessions where the knowledge shared between the roles, the datum G
for instance, are made explicit:

role session (A,B:agent, G:text) def=
local SND_A,RCV_A,SND_B,RCV_B:channel(dy) def=

composition
alice(A,B,G,SND_A,RCV_A) /\ bob(B,A,G,SND_B,RCV_B)

end role

The environment used for protocol execution and verification is defined, where i denotes the intruder.
The environment covers the initial knowledge of the intruder and the initial setting for the sessions, i.e. how
many sessions are run and who run them.

role environment() def=
const a,b:agent, g:text

composition
session(a,b,g,Snd,Rcv)

end role

‡ http://www.avispa-project.org/



3.2 Verification tools in AVISPA
AVISPA is a push-button tool for the automated validation of Internet security-sensitive protocols and ap-
plications. Its input is an HLPSL specification of a protocol and the verification is performed by different
back-ends that implement a variety of state-of-the-art automatic analysis techniques.

The current version of the AVISPA tool integrates four back-ends: OFMC, CL-ATSE, SATMC and
TA4SP. The On-the-fly Model-Checker (OFMC) [BMV05] performs protocol falsification and bounded ver-
ification by exploring the transition system. The Constraint-Logic-based Attack Searcher (CL-AtSe) applies
constraint solving as in [Tur06a], with some powerful simplification heuristics and redundancy elimination
techniques. The SAT-based Model-Checker (SATMC) [AC05] builds a propositional formula encoding a
bounded unrolling of the transition relation, the initial state and the set of states representing a violation of
the security properties. The propositional formula is then fed to a state-of-the-art SAT solver and any model
found is translated back into an attack. The TA4SP (Tree Automata based on Automatic Approximations
for the Analysis of Security Protocols) back-end [BHK05] approximates the intruder knowledge by using
regular tree languages and rewriting. For secrecy properties, TA4SP can show whether a protocol is flawed
(by under-approximation) or whether it is safe for any number of sessions (by over-approximation).

Among the four tools mentioned above, only OFMC and CL-ATSE can perform analysis on the Diffie-
Hellman protocol because it uses the exponentiation operator. Against this protocol, both tools return the
following attack:

SUMMARY
UNSAFE

DETAILS
ATTACK_FOUND
TYPED_MODEL

PROTOCOL
Diffie-Hellman.if

GOAL
Secrecy attack on (n2(Nsecret))

BACKEND
CL-AtSe

STATISTICS
Analysed : 0 states
Reachable : 0 states
Translation: 0.00 seconds
Computation: 0.00 seconds

ATTACK TRACE
i -> (a,3): start
(a,3) -> i: exp(g,n1(Na))
i -> (a,3): g
(a,3) -> i: {n2(Nsecret)}_(exp(g,n1(Na)))

& Secret(n2(Nsecret),set_53);
Add a to set_53; Add b to set_53;

SUMMARY
UNSAFE

DETAILS
ATTACK_FOUND

PROTOCOL
Diffie-Hellman.if

GOAL
secrecy_of_secretna

BACKEND
OFMC

STATISTICS
parseTime: 0.00s
searchTime: 0.01s
visitedNodes: 1 nodes
depth: 1 plies

ATTACK TRACE
i -> (a,3): start
(a,3) -> i: exp(g,Na(1))
i -> (a,3): g
(a,3) -> i: {Nsecret(2)}_(exp(g,Na(1)))

Roughly, the attack raised by both verification tools is not the man in the middle attack described in
Section 2. In fact, this attack is even not of the man in the middle form since it only brings into play two
agents. In the constructed attack, let Alice be (a,3) and the intruder be i. Alice starts the protocol by
computing her half key exp(g,n1(Na)) in CL-ATSE (resp. exp(g,Na(1)) in OFMC) where n1(Na)

(resp. Na(1)) are freshly generated constants standing for the new value of nonce Na. Alice sends this
message on the network, i.e. to the intruder since the intruder is the network. Alice expects Bob to receive
this message from the network. However, the intruder pretends to be Bob by sending the half key, being
g, to Alice. Alice waits for a message of the form X where X is supposed to be the half key sent by Bob.
However, since she has no way of checking any structural property about X she accepts g sent by the intruder
in X. Then, Alice computes the key exp(X,n1(Na)) which is nothing else than exp(g,n1(Na)). Finally,
she composes the message containing the secret to share with Bob, encode it with exp(g,n1(Na)), and
sends it on the network (the intruder). The intruder has no difficulty to extract the secret since it already
knows exp(g,n1(Na)). In order to build the man in the middle attack given in Section 2, the intruder
can proceed in a similar way with Bob than it does with Alice. However, this particular attack has to be
constructed by hand and cannot be obtained from the verification tools.

Because of the quality of HLPSL and of the verification tools, the project has obtained very strong results
and the tools have a large community of users. However, since HLPSL specifications are far more precise



than usual “Alice & Bob” notation, they are also much more difficult to conceive and to read. In particular,
HLPSL specifications are defined role by role rather than message by message. As a result, it is sometimes
difficult for the protocol designers to figure out if the HLPSL specification they write really corresponds to
the “Alice & Bob” protocol they have in mind. This is one of the reason why AVISPA is still not broadly
used in industry. The SPAN tool was designed in order to bridge this gap and ease the formal specification
of industrial cryptographic protocols in HLPSL.

4 SPAN: an Animation tool for AVISPA
We have designed a protocol animator, named SPAN [GG06], whose role is to help to design such for-
mal specifications. SPAN can animate HLPSL specifications, i.e. interactively produce Message Sequence
Charts [HT03] (MSC for short) which can be seen as an “Alice & Bob” trace of an HLPSL specifica-
tion. SPAN is written in Ocaml and Tcl/Tk, is distributed under LGPL license and is freely available at
http://www.irisa.fr/lande/genet/span/. This tool uses some AVISPA libraries: one for HLPSL
translation, designed by Laurent Vigneron [CCC+04], and one for matching modulo xor and exponential
theories, designed by Mathieu Turuani [Tur06b]. As far as we know, SPAN [GG06] is the first tool designed
to help writing, animating, and thus understanding, HLPSL specifications. In [GGHC06], we have shown
SPAN helped for the HLPSL specification of the User Supervised Device Pairing protocol (USDP for short)
designed by THOMSON [CHKD06].

In Section 4.1, we show some of the basic features of SPAN. In Section 4.2, we show how SPAN can be
used to debug HLPSL formal specifications of protocols. In Section 4.3, once the specification corresponds
to the protocol to model, we show how SPAN can be used to experiment with the specification and try
different environment assumptions. Finally, in Section 4.4, we show how SPAN intruder mode can be used
to interactively find and build attacks over protocols defined in HLPSL. In particular, we will see that this
tool is of great interest to construct and replay a particular attack when the verification tools of AVISPA
stick to a another one.

4.1 SPAN basics
Starting from an HLPSL specification, SPAN helps in building one possible execution (a MSC drawing)
according to interactive user choices.

Figure 1: Basic animation of Diffie-Hellman HLPSL specification

For instance, on the HLPSL specification of Diffie-Hellman protocol of Section 3.1, we can run SPAN
and interactively construct the following MSC (see Figure 1). In the right hand-side frame, SPAN displays
the messages already sent. Note that, SPAN displays terms that correspond to instantiated executions.
For instance, the generic role alice from the HLPSL specification of Section 3.1 is instantiated by agent
(alice,3). Similarly, message patterns are instantiated by constant values: exp(G, Na) is instantiated
by exp(g, nonce-1) where nonce-1 is a fresh constant value standing for the nonce computed by agent
(alice, 3) for this step of the protocol. In the left-hand side frame, SPAN displays the possible transitions
(here message sending) to trigger by a double-click. In this particular case, there is only one transition to
trigger which corresponds to the third step of the protocol. There may be also zero transitions to trigger if
the protocol is finished or if there was a mistake in the specification so that the protocol cannot be executed
to its end.



During normal simulation, only useful transitions are presented to the user. A useful transition corre-
sponds to a message that can be sent and received. As a result, the user is not overflowed with too many
choices between the transitions to trigger. On the opposite, during intrusion simulation, even non useful
transitions are presented to the user since the intruder is able to receive any message. The user may pur-
posely choose a transition, not useful w.r.t. protocol evolution, just to improve the intruder knowledge. For
instance, on the following simple HLPSL specification:

role alice(A:agent, Snd,Rcv:channel(dy)) played_by A def=
local Hello:message

transition
1. Rcv(start) =|>

Snd(Hello)
end role

role environment() def=
local Snd,Rcv:channel(dy)
const a:agent

composition
alice(a,Snd,Rcv) /\ alice(a,Snd,Rcv)

end role
environment()

Figure 2 and Figure 3 show respectively the execution of this protocol under normal simulation (there is
no useful transition since there is no reception in any role) and under intruder simulation (the intruder can
receive any message).

Figure 2: Basic animation without intruder, only useful transitions are displayed

Figure 3: Basic animation with the intruder, the intruder may take advantage of any message

4.2 Debugging HLPSL specifications using SPAN
Although much effort was made on the expressiveness, precision and formal semantics of the HLPSL
language, writing a specification in this language is still hard. This is mainly due to the fact that the only
way to experiment with a specification is to apply one of the verification tools (OFMC, CL-AtSe, SATMC
or TA4SP) whose role is to find attacks on a specific verification model. However, before searching for
attacks, the user wants to figure out if the formal HLPSL specification corresponds to what is expected of
the protocol. In particular, the user wonders if the HLPSL specification can be run from the beginning to
the end, at least for most typical execution cases.

Animating an HLPSL specification makes it possible to find errors in a wrong specification of a protocol.
Many specification errors fall out of the scope of the verification tools. This is due to the fact that these tools



do not focus on the execution of the specification but rather on their robustness against a specific intruder
model, i.e. Dolev-Yao model with some arithmetic properties for exp and xor symbols. With regards to the
specification text itself, the verification essentially consists of type checking. We give here some examples
of common errors made in the specification. All these errors cannot be found by the verification tools but
they can be detected using the SPAN animation. These bugs are very dangerous since they may result into
trivially safe protocols w.r.t. the verification tools. This is due to the fact that, since the protocol can only
be run partially, the intruder does not have enough knowledge to build an attack, and the protocol may be
trivially safe. The errors are categorized by the section they belong to in the HLPSL specification.

Environment
The environment definition may be incomplete. For instance, a session may be missing in the environment
definition. This is a simple bug that may occur especially when the number of sessions concerned by the
basic protocol execution is huge. This can easily be detected in SPAN because of a missing role in the chart.

Sessions
The session definition may be incorrect or incomplete w.r.t. the protocol to model. The completeness
problem of sessions is similar to the previous point and can similarly be detected. However, a more tricky
bug is, for instance, an error made while declaring the shared (or known) keys in the session declaration.
Here is a part of a possible session declaration for the Needham-Schroeder public key protocol [NS78]
where roles alice and bob are supposed to know Ka and Kb the public keys of each principals. A
common error is to make the following typo in the HLPSL specification and write ii) instead of i):

i) alice(A,B,Ka,Kb,SA,RA) /\ bob(A,B,Ka,Kb,SB,RB)
ii) alice(A,B,Ka,Kb,SA,RA) /\ bob(A,B,Kb,Kb,SB,RB)

In ii), Ka has been accidentally replaced by a Kb. Such bugs, are easily shown by animating the
protocol with SPAN: while animating the protocol, some transitions cannot be triggered. On this example,
since role bob does no longer know Ka it is no longer able to send any message ciphered with this key,
and thus the protocol animation is stopped before sending such messages. Note that, using SPAN’s variable
monitoring, it is possible to display the value of the variables and figure out that the value of variable Ka,
which is set to constant kb, is not correct. On Figure 4, one can see that after the first step of the protocol
there are no transition to trigger although this protocol has three steps and that the value of variable Ka for
role bob is not correct.

Figure 4: Finding and fixing a bug in an HLPSL specification using variable monitoring

This bug here result into a specification of the Needham-Schroeder protocol which becomes trivially safe.
Indeed, since the first message is the only one that can be exchanged in this erroneous version, the usual
man in the middle attack on this protocol cannot be built by the intruder.

Roles
The transitions or the message structure may be incorrectly defined. Defining HLPSL transitions is an error-
prone task and SPAN can help in detecting many bugs. For instance, assume that we wrote Snd(exp(Na’,G))
instead of Snd(exp(G,Na’)) in the first transition of role alice in specification of Section 3.1. This



error is not detected by verification tools but can be shown while animating the protocol: after the second
transition of the protocol, there is no transition to trigger although the protocol is not finished. Further-
more, it is possible to see on the messages labeling the MSC that they do not have a similar structure:
exp(nonce-1,g) for the first and exp(g,nonce-2) for the second one (see Figure 5). The fact
that no third transition can be fired means that the third message may be sent but nobody can receive
it. This is due to the fact that A and B disagree on the key K. Thus, the message likely to be sent by
A is of the form {Nsecret}_exp(exp(G, Nb), Na) whereas B waits for a message of the form
{Nsecret}_exp(exp(Na,G),Nb), and of course (GNb)Na 6= (NG

a )Nb .

Figure 5: Detecting the bug on message structure (exp)

The last example we propose deals with typos made on primed variables which is a problem really hard
to detect in HLPSL specification without animation. For instance, assume that we made the following
common mistake when writing the HLPSL specification of the role A: we forget the prime for the variable
X in the second transition:

2. State=2 /\ Rcv(X) =|>
State’:=3 /\ K’:= exp(X,Na) /\ Nsecret’:=new() /\ Snd({Nsecret’}_K’)

Without the prime notation, the semantics of this transition is different: the agent A waits for a message
that should correspond exactly to X where X is supposed to have been defined before. In this erroneous
specification, since X has not been initialized then A cannot receive such a message. However, this specifi-
cation is correct w.r.t. HLPSL semantics and thus the verification tools are not able to detect this problem.
Similarly, this may result in a protocol specification which is declared as safe although it does not model
the protocol we want to specify. Running SPAN on this example brings to light the problem: after the first
step of the protocol no transitions can be triggered like it is shown on Figure 6.

Figure 6: Detecting the bug on primed variables

4.3 Explaining, tuning and experimenting with HLPSL specifications
While using SPAN to develop a formal specification for an industrial protocol [GGHC06], it appears that
animation of HLPSL specifications can also be of great interest during the design of the protocol itself.
Instead of short-lived, laborious and intricate drawings on a black board, designing protocol specification
using HLPSL and SPAN reveals to be very efficient. Using HLPSL and animation at early stages of devel-
opment is a convenient way of explaining and justifying the choices made during the protocol development.

Furthermore, it also permits to rapidly consider and play with different environment assumptions or
different execution of the protocol. This is the case for instance, with the animation of non-deterministic
protocols or the animation of deterministic protocols for multiple sessions. The Diffie-Hellman protocol of



Section 3.1 is deterministic and there is only one session between agents A and B. Now, assume that we
start from a different environment where we run the same protocol between A and B and between C and D,
then the protocol execution becomes non deterministic. This new running environment can be specified by
replacing the environment section of Section 3.1 by the following one:

role environment() def=
const a,b,c,d,i:agent, g,ni:text

composition
session(a,b,g,Snd,Rcv) /\ session(c,d,g,Snd,Rcv)

end role

Running SPAN on this new initial environment leads to a different animation. On Figure 7 we can see
that there are two instances, namely (alice,3) and (alice,6) of role alice and two instances, namely
(bob,4) and (bob,7) of role bob. Note that, real identities, (alice,3) is the agent a of the HLPSL
specification. Similarly, the real identities of the agents (bob,4)=b, (alice,6)=c and (bob,7)=d can
be obtained using variable monitoring. In the left-hand side window, one can notice that transitions to be
triggered are more numerous than expected.

Figure 7: Animation on several sessions of Diffie-Hellman HLPSL specification

Indeed, there is no guarantee that the initial protocol message sent by (alice,3)=a is received by
(bob,4)=b. In particular, it can be received by (bob,7)=d and thus we get such a additional transition
to trigger in SPAN. Hence, by animating this specification, we can obtain all the interleavings between
messages sent by a, b, c and d. Since the execution is non deterministic, the user has to choose between all
the transitions to trigger so as to construct a possible MSC. In Figure 8 and Figure 9, we show two different
interleaved executions of the Diffie-Hellman protocol. Figure 8 shows that it is possible to establish sessions
between (alice,3)=a and (bob,4)=b and between (alice,6)=c and (bob,7)=d. Figure 9 shows that
it is also possible to establish sessions between (alice,3)=a and (bob,7)=d and between (alice,

6)=c and (bob,4)=b.

Figure 8: Interleaving of sessions a−b and c−d



Figure 9: Interleaving of sessions a−d and c−b

Note that at every moment SPAN lets the user undo the choices he made or replay them. For a given
protocol, it is also possible to save a particular scenario, as a so-called trace file, in order to replay it later
or to send it by e-mail.

4.4 Using SPAN to construct attacks over protocols
Once the HLPSL specification is debugged it can be checked automatically for attack detection using the
AVISPA verification tools. However, the output trace may not be the expected one as shown in Section 3.2.
Animating an HLPSL specification on SPAN allows the user to construct the attack s/he has in mind or to
find new ones. SPAN offers specific mechanisms making the attack construction easier. After each step, in
the intruder part, SPAN shows the current intruder knowledge and proposes to construct and send malicious
messages from this knowledge. Message patterns are proposed to the user conjointly with intruder data,
relevant with regards to pattern structure and type. After having selected a message pattern, the user can
select between all the proposed data in order to fill the pattern and construct a valid message. Another
feature proposed by SPAN is to let the user choose if a message is eavesdropped: the user decides if a
message is received by the intruder or not. This makes explicit the way the intruder gain knowledge. This
is of great interest for the analysis of protocols like [CHKD06] where the usual assumption – the intruder
is the network – is not true.

We now illustrate all these features on the Diffie-Hellman protocol specification of Section 3.1 and show
how to construct the usual man in middle attack using SPAN. Starting from the specification, using the
intruder mode of SPAN we can reach the situation shown on Figure 10. This figure shows that the user
chooses to send the first message of the protocol to the intruder. In the left-hand window, one may note
that many messages are likely to be sent by the intruder to alice. This is due to the fact that in the
Diffie-Hellman HLPSL specification, alice waits for a message with no particular structure, i.e. the
pattern X. Hence, the intruder is able to send any data it already knows (a, b, exp(g, nonce-1), . . . )
such that alice accepts it as a valid instance for X. However, the transition we are interested in is still
not present because the data exp(g, ni) is not yet present in the intruder knowledge. In fact, in SPAN
deduction mechanisms (e.g. deducing m from {m}K and K) are automatic but construction mechanisms
(e.g. producing exp(x,y) from x and y) are not. This is due to the fact that deduction converges whereas
construction does not. Using a unification algorithm between constructible messages and messages likely
to be received could have helped to prune the search space of data to construct. This is used in many tools
in the AVISPA system for efficient attack detection. However, our purpose here is not to get automatically
the smallest malicious message but rather to let the user build the attack s/he is interested in.

Hence, exp(g, ni) is not yet present in the intruder knowledge but it can be easily constructed and sent
to bob using the intruder message composition interface of Figure 11. In the top of the interface, the user
can compose new data from intruder knowledge. On this figure, the user has created a component message



Figure 10: First step of man in the middle attack on Diffie-Hellman protocol

of type exp with two arguments: g and ni of the intruder knowledge which is recalled in the leftmost and
rightmost windows. Clicking on the add button adds the new datum to the intruder knowledge: exp(g,ni)
is now available to the intruder. In the second window of the middle row, the user can now select between
message patterns likely to be received by a given agent. Here, the user has chosen to send a message to
bob and the pattern is only Y’. Filling the form by double-clicking on the right data is enough to end the
message composition and continue the attack construction.

Figure 11: Intruder message composition interface

We can easily continue the construction of the attack until reaching the configuration of Figure 12, where
no transition can be fired. We sum up and explain the content of this figure. At step 1, the message sent
by alice is received by the intruder. At step 2, the intruder generates his half-key exp(g,ni) and sends
it to bob. At step 3, the message sent by bob and containing its half-key exp(g, nonce-2) is received
by the intruder. At step 4, the intruder uses the same half-key than at step 2 and sends it to alice. Finally,
at step 5, the agent alice sends the secret nonce-3 encoded with the key: exp(exp(g,ni),nonce-1).
Until now the intruder has not built the shared key exp(exp(g,ni),nonce-1) with the agent alice
yet. As a result, the intruder cannot obtain the secret nonce-3. This can be seen on Figure 13(a) which
shows the content of the intruder knowledge window. Using the composition tool as in Figure 11, the user
can build exp(exp(g,nonce-1),ni) from exp(g,nonce-1) and ni both known by the intruder. SPAN
automatically deduces that exp(exp(g,nonce-1),ni) is equivalent to exp(exp(g,ni),nonce-1) and
can thus obtain nonce-3 from {nonce-3} exp(exp(g,ni),nonce-1) since it has the inverse key. The



Figure 12: Alice sends the secret nonce-3

resulting value of the intruder knowledge containing nonce-3 is given Figure 13(b).

(a) Before key composition (b) After decoding

Figure 13: Intruder knowledge evolution using manual construction and automatic deduction

Finally, using the intruder message composition interface on Figure 14, we can see that bob waits for
a message of the form {Nsecret’} exp(exp(g,ni),nonce-2). The key exp(exp(g,ni),nonce-2)

can easily be constructed using exp(g,nonce-2), ni and the fact that exp(exp(g,nonce-2),ni) is
equivalent to exp(exp(g,ni),nonce-2). Then, the message pattern shown in the middle of the figure
can be filled up with the relevant elements, i.e. nonce-3 for Nsecret’ and exp(exp(g,nonce-2),ni)

for the key. After filling the pattern, the message can be sent and the protocol attack completed as shown
on Figure 15.

Thus, we have shown that SPAN can be used to reconstruct a specific attack from an HLPSL specification.
Note that attacks can be saved and replayed. This makes collaborative development of protocols easier. For
instance, it is possible to send a particular attack trace to a protocol designer and let him load and replay it.
This is useful to illustrate a particular behavior or weakness of a protocol under development.

5 Experiments and further works
By recreating visual information from HLPSL text specifications, SPAN reconciles formal development and
the usual way of designing protocols in the industry. This increases the trust of the protocol designers in
the automated tools. Moreover, this provides an easy way to build UML style examples and documentation
diagrams, not speaking about pedagogic applications. At least, it provides one more good reason to make
the effort of writing a full HLPSL specification.

We have applied SPAN to all the protocols of the AVISPA Library and to a new protocol developed by
THOMSON called USDP [GGHC06, CHKD06]. During the meetings we had with the protocol designers,
we used SPAN to interactively produce MSCs and tune the HLPSL specifications to what they expected of



Figure 14: Intruder message composition interface for the last step of the attack

Figure 15: The complete man in the middle attack: the intruder forwards the secret nonce-3 to bob

the protocol. Despite we already agreed on its HLPSL text, this tool permits to quickly reveal and correct
misunderstandings remaining in the first version of the specification of USDP. We also observed that using
SPAN gives more confidence to the protocol designers on the final HLPSL specification. Finally, the MSCs
commonly used by those engineers in the technical documents and patents on protocols can be produced
automatically by SPAN from the interactive animation of the HLPSL specification.

Since formal modeling and animation have already demonstrated their interest on the analysis of existing
protocols, the aim is now to use HLPSL and SPAN earlier in the development phase of THOMSON’s secu-
rity protocols. In particular, we plan to study the impact of this methodology on the ways of communicating,
explaining, experimenting and analyzing a cryptographic protocol.

In further developments, we also would like to automatically build MSCs from the attack traces given by
AVISPA verification tools.
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