
How to read the trace of the solver

Let us explain the trace of the solver for isaplanner prop31.smt2, i.e., trying to prove the property
∀ (a : nat) (b : nat) (c : nat). (min (min a b) c) = (min a (min b c)). The first section of the trace recalls
the parameters that were used for the model-inference: ICE fuel which states the maximal number of
ICE iterations, Timeout the maximal timeout, and Convolution the type of convolution used for the proof,
i.e., either left, right or complete.

Inference procedure has parameters:

Ice fuel: 200

Timeout: 60s

Convolution: right

The second section recalls the clauses defining the program and the clauses representing the properties.

Learning problem is:

env: {

nat -> {s, z}

}

definition:

{

(min, F:

{() -> min([s(u), z, z])

() -> min([z, y, z])

(min([u, y1, _qb])) -> min([s(u), s(y1), s(_qb)])}

(min([_rb, _sb, _tb]) /\ min([_rb, _sb, _ub])) -> eq_nat([_tb, _ub])

)

}

properties:

{(min([_vb, c, _wb]) /\ min([a, _xb, _yb]) /\ min([a, b, _vb]) /\ min([b, c, _xb])) ->

eq_nat([_wb, _yb])}

The following section states which relation can be over/under-approximated.

over-approximation: {min}

under-approximation: {eq_nat}

Clause system for inference is:

{

() -> min([s(u), z, z]) -> 0

() -> min([z, y, z]) -> 0

(min([_vb, c, _wb]) /\ min([a, _xb, _yb]) /\ min([a, b, _vb]) /\ min([b, c, _xb])) ->

eq_nat([_wb, _yb]) -> 0

(min([u, y1, _qb])) -> min([s(u), s(y1), s(_qb)]) -> 0

}

Finally, the total time is given. If the proof is successful, the solver provides the model, i.e., the convo-
luted tree automata for all the relations are stated. The solver only provides automata for non-equality
relations, here min, as automata for equality on any datatype are canonical.

1



Solving took 0.068141 seconds.

Proved

Model:

|_

{

min ->

{{{

Q={q_gen_432, q_gen_434},

Q_f={q_gen_432},

Delta=

{

<s>(q_gen_434) -> q_gen_434

<z>() -> q_gen_434

<s, s, s>(q_gen_432) -> q_gen_432

<s, z, z>(q_gen_434) -> q_gen_432

<z, s, z>(q_gen_434) -> q_gen_432

<z, z, z>() -> q_gen_432

}

Datatype: <nat, nat, nat>

Convolution form: right

}}}

}

Note that the convoluted automata produced by our implementation are padding-free. Ruling out
padding symbols allows to avoid having different states recognizing similar relations. For instance,
symbols

〈
�,�, Z

〉
,
〈
�, Z,�

〉
and

〈
Z,�,�

〉
are different but they all represent the unary tuple (Z). Mak-

ing no difference between those three relations is safe w.r.t. the recognized language and only needs one
state instead of three.

2


