Prove logic formulas ... to prove programs

```
fun nth :: "nat => 'a list => 'a"
  where
  "nth 0 (x#_)=x" |
  "nth x (y#ys)= (nth (x - 1) ys)"

fun index :: "'a => 'a list => nat"
  where
  "index x (y#ys)= (if x=y then 1 else 1+(index x ys))"

lemma nth_index: "nth (index e l) l= e"
```

How to prove the lemma \texttt{nth_index}? (Recall that everything is logic!)

What we are going to prove is thus a formula of the form:

\[
\text{Theory of lists} \land \text{Equations for nth} \land \text{Equations for index} \rightarrow \text{nth_index}
\]

Finding counterexamples

\textbf{Why?} because «90% of the theorems we write are false!»

- Because this is not what we want to prove!
- Because the formula is imprecise
- Because the function is false
- Because there are typos...

\textbf{Before starting a proof, always first search for a counterexample!}

Isabelle/HOL offers two counterexample finders:

- \texttt{nitpick}: uses finite model enumeration
 - Works on any logic formula, any type and any function
 - Rapidly exhausted on large programs and properties
- \texttt{quickcheck}: uses random testing, exhaustive testing and narrowing
 - Does not covers all formula and all types
 - Scales well even on large programs and complex properties
Nitpick

To build an interpretation \(I \) such that \(I \not\models \phi \) (or \(I \models \neg \phi \)) nitpick

nitpick principle: build an interpretation \(I \models \neg \phi \) on a finite domain \(D \)
- Choose a cardinality \(k \)
- Enumerate all possible domains \(D \) of size \(k \) for all types \(\tau \) in \(\neg \phi \)
- Build all possible interpretations of functions in \(\neg \phi \) on all \(D \).
- Check if one interpretation satisfy \(\neg \phi \) (this is a counterexample for \(\phi \))
- If not, there is no counterexample on a domain of size \(k \) for \(\phi \)

nitpick algorithm:
- Search for a counterexample to \(\phi \) with cardinalities 1 upto \(n \)
- Stops when \(I \) such that \(I \models \neg \phi \) is found (counterex. to \(\phi \)), or
- Stops when maximal cardinality \(n \) is reached (10 by default), or
- Stops after 30 seconds (default timeout)

Exercise 1

By hand, iteratively check if there is a counterexample of cardinality 1, 2, 3 for the formula \(\phi \), where \(\phi \) is \(\text{length } la <= 1 \)

Remark 1

- The types occurring in \(\phi \) are \('a \) and \('a \) list
- One possible domain \(D_a \) of cardinality 1: \(\{a_1\} \)
- One possible domain \(D_a \) list of cardinality 1: \(\{[[]]\} \)

Domains have to be subterm-closed, thus \(\{[a_1]\} \) is not valid
- One possible domain \(D_a \) of cardinality 2: \(\{a_1, a_2\} \)
- Two possible domains \(D_a \) list of cardinality 2: \(\{[], [a_1]\} \) and \(\{[], [a_2]\} \)
- One possible domain \(D_a \) of cardinality 3: \(\{a_1, a_2, a_3\} \)
- Twelve possible domains \(D_a \) list of cardinality 3: \(\{[], [a_1], [a_1, a_1]\}, \{[], [a_1], [a_1, a_2]\}, \{[], [a_1], [a_3, a_1]\}, \ldots \)

Nitpick (II)

Nitpick options:
- \text{timeout=t}, set the timeout to \(t \) seconds (timeout=none possible)
- \text{show_all}, displays the domains and interpretations for the counterex.
- \text{expect=s}, specifies the expected outcome where \(s \) can be none (no counterexample) or genuine (a counterexample exists)
- \text{card=i-j}, specifies the cardinalities to explore

For instance:

nitpick [timeout=120, show_all, card=3-5]

Exercise 2

- Explain the counterexample found for \(\text{rev } l = 1 \)
- Is there a counterexample to the lemma \(\text{nth_index} \)?
- Correct the lemma and definitions of \(\text{index} \) and \(\text{nth} \)
- Is the lemma append_commute true? really?

Quickcheck

To build an interpretation \(I \) such that \(I \models \neg \phi \) (or \(I \models \neg \phi \)) quickcheck

quickcheck principle: test \(\phi \) with automatically generated values of size \(k \)

Either with a generator
- Random: values are generated randomly (Haskell’s QuickCheck)
- Exhaustive: (almost) all values of size \(k \) are generated
- Narrowing: like exhaustive but taking advantage of symbolic values

No exhaustiveness guarantee!! with any of them

quickcheck algorithm:
- Export Haskell code for functions and lemmas
- Generate test values of size 1 upto \(n \) and, test \(\phi \) using Haskell code
- Stops when a counterexample is found, or
- Stops when max. size of test values has been reached (default 5), or
- Stops after 30 seconds (default timeout)
Quickcheck (II)

quickcheck options:
- `timeout=t`, set the timeout to `t` seconds
- `expect=s`, specifies the expected outcome where `s` can be `no_counterexample`, `counterexample` or `no_expectation`
- `tester=tool`, specifies generator to use where `tool` can be `random`, `exhaustive` or `narrowing`
- `size=i`, specifies the maximal size of testing values

For instance: quickcheck [tester=narrowing,size=6]

Exercise 3 (Using `quickcheck`)
- find a counterexample on TP0 (`solTP0.thy`, `CM4_TP0`)

Remark 2
Quickcheck first generates values and then does the tests. As a result, it may not run the tests if you choose bad values for size and timeout.

How do proofs look like?
A formula of the form $A_1 \land \ldots \land A_n$ is represented by the proof goal:

```
goal (n subgoals):
1. $A_1$
...  
n. $A_n$
```

Where each subgoal to prove is either a formula of the form

- $A \land \ldots \land A_n \implies B$ meaning prove B, or
- $\neg A \land \ldots \land A_n \implies B$ meaning prove $B \implies C$, or
- $\neg A \land \ldots \land A_n \land B \implies \ldots \land B_n \implies C$ meaning prove $B_1 \land \ldots \land B_n \implies C$

and $\land x_1 \ldots x_n$ means that those variables are local to this subgoal.

Example 1 (Proof goal)

```
goal (2 subgoals):
1. member [] e \implies nth (index e []) [] = e
2. \forall a 1. e \neq a \implies member (a # l) e \implies 
   \neg member l e \implies nth (index e l) l = e
```

Proof by cases
... possible when the proof can be split into a finite number of cases

Proof by cases on a formula F
Do a proof by cases on a formula Fapply (case_tac "F")
Splits the current goal in two: one with assumption F and one with $\neg F$

Example 2 (Proof by case on a formula)
With apply (case_tac "F::bool")
goal (1 subgoal): becomes goal (2 subgoals):
1. $A \implies B$
2. $\neg F \implies A \implies B$

Exercise 4
Prove that for any natural number x, if $x < 4$ then $x \times x < 10$.
Proof by induction (II)

Proof by cases (II)

To prove \(P \) on \(\cdot \) of an enumerated type of size \(n \)

Proof by cases on a variable \(x \) of an enumerated type

Do a proof by cases on a variable \(x \) apply (case_tac "x")

Splits the current goal into \(n \) goals, one for each case of \(x \).

Example 3 (Proof by case on a variable of an enumerated type)

In Course 3, we defined datatype color = Black | White | Grey

With apply (case_tac "x")

\[
\begin{align*}
\text{goal (1 subgoal):} & \quad \text{becomes} \\
1. P (x::color) & \quad \text{goal (3 subgoals):} \\
2. x = \text{Black} \implies P x & \quad 1. x = \text{Black} \implies P x \\
3. x = \text{White} \implies P x & \quad 2. x = \text{White} \implies P x \\
3. x = \text{Grey} \implies P x & \quad 3. x = \text{Grey} \implies P x
\end{align*}
\]

Exercise 5

On the color enumerated type or course 3, show that for all color \(x \) if the
notBlack \(x \) is true then \(x \) is either white or grey.

<table>
<thead>
<tr>
<th>T. Genet (ISTIC/IRISA)</th>
<th>ACF-4</th>
<th>13 / 26</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proof by induction (II)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(P([[]) \land \forall e \in \cdot a. \forall l \in \cdot a \ \text{list}. (P(l) \implies P(e#l)) \implies \forall l \in \cdot a \ \text{list}.P(l))</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example 5 (Proof by induction on lists)

Recall the definition of the function append:

1. \(\text{append \ }[[]\] \ l \ = \ l \)
2. \(\text{append \ }([x\#xs]) \ l \ = \ x\#(\text{append \ }xs \ l) \)

To prove \(\forall l \in \cdot a \ \text{list}.(\text{append \ }([[]) = l) \) by induction on \(l \), we prove:

1. \(\forall e \in \cdot a. \forall l \in \cdot a \ \text{list}. (\text{append \ }([[]) = l) \), proven by the first equation of append
2. \(\forall e \in \cdot a. \forall l \in \cdot a \ \text{list}. (\text{append \ }([[]) = l \implies (\text{append \ }e\#l([[]) = (e\#l)) \)

An induction proof on \(l \), instead of \(l’ \), is more likely to succeed:

- an induction on \(l \) will require to prove:
 \(l \geq (\text{length \ } (\text{append \ }e\#l)) \)
- an induction on \(l’ \) will require to prove:
 \(l’ \geq (\text{length \ } (\text{append \ }e\#l)) \)

Example 6 (Choice of the induction variable)

(1) \(\text{append \ }[[]\] \ l \ = \ l \)
(2) \(\text{append \ }([x\#xs]) \ l \ = \ x\#(\text{append \ }xs \ l) \)

To prove \(\forall l_1 l_2 \in \cdot a \ \text{list}.(\text{length \ } (\text{append \ }l_1 l_2)) \geq (\text{length \ } l_2) \)

An induction proof on \(l_1 \), instead of \(l_2 \), is more likely to succeed:

- an induction on \(l_1 \) will require to prove:
 \((\text{length \ } (\text{append \ }e\#l)) \geq (\text{length \ } l_2) \)
- an induction on \(l_2 \) will require to prove:
 \((\text{length \ } (\text{append \ }l_1 e\#l_2)) \geq (\text{length \ } (e\#l_2)) \)

Proof by induction (II)

«Properties on recursive functions need proofs by induction»

Recall the basic induction principle on naturals:

\[
P(0) \land \forall x \in \mathbb{N}. (P(x) \implies P(x+1)) \implies \forall x \in \mathbb{N}. P(x)
\]

All recursive datatype have a similar induction principle, e.g. \(\cdot a \) lists:

\[
P([[]]) \land \forall e \in \cdot a. \forall l \in \cdot a \ \text{list}.(P(l) \implies P(e\#l)) \implies \forall l \in \cdot a \ \text{list}.P(l)
\]

Example 4

datatype \(\cdot a \ \text{binTree} = \text{Leaf} \mid \text{Node} \cdot a \ \text{"a binTree}\ " \cdot a \ \text{binTree} \)

\[
P(\text{Leaf}) \land \forall e \in \cdot a. \forall t1 t2 \in \cdot a \ \text{binTree}. (P(t1) \land P(t2) \implies P(\text{Node} e t1 t2)) \implies \forall t \in \cdot a \ \text{binTree}.P(t)
\]

Example 5 (Proof by induction on lists)

Recall the basic induction principle on naturals:

\[
P(0) \land \forall x \in \mathbb{N}. (P(x) \implies P(x+1)) \implies \forall x \in \mathbb{N}. P(x)
\]

All recursive datatype have a similar induction principle, e.g. \(\cdot a \) lists:

\[
P([[]]) \land \forall e \in \cdot a. \forall l \in \cdot a \ \text{list}.(P(l) \implies P(e\#l)) \implies \forall l \in \cdot a \ \text{list}.P(l)
\]

Example 4

datatype \(\cdot a \ \text{binTree} = \text{Leaf} \mid \text{Node} \cdot a \ \text{"a binTree}\ " \cdot a \ \text{binTree} \)

\[
P(\text{Leaf}) \land \forall e \in \cdot a. \forall t1 t2 \in \cdot a \ \text{binTree}. (P(t1) \land P(t2) \implies P(\text{Node} e t1 t2)) \implies \forall t \in \cdot a \ \text{binTree}.P(t)
\]

Example 5 (Proof by induction on lists)

Recall the basic induction principle on naturals:

\[
P(0) \land \forall x \in \mathbb{N}. (P(x) \implies P(x+1)) \implies \forall x \in \mathbb{N}. P(x)
\]

All recursive datatype have a similar induction principle, e.g. \(\cdot a \) lists:

\[
P([[]]) \land \forall e \in \cdot a. \forall l \in \cdot a \ \text{list}.(P(l) \implies P(e\#l)) \implies \forall l \in \cdot a \ \text{list}.P(l)
\]

Example 4

datatype \(\cdot a \ \text{binTree} = \text{Leaf} \mid \text{Node} \cdot a \ \text{"a binTree}\ " \cdot a \ \text{binTree} \)

\[
P(\text{Leaf}) \land \forall e \in \cdot a. \forall t1 t2 \in \cdot a \ \text{binTree}. (P(t1) \land P(t2) \implies P(\text{Node} e t1 t2)) \implies \forall t \in \cdot a \ \text{binTree}.P(t)
\]
Proof by induction: apply (induct x) (II)

Exercise 6
Recall the datatype of binary trees we defined in lecture 3. Define and prove the following properties:

1. If member x t, then there is at least one node in the tree t.
2. Relate the fact that x is a sub-tree of y and their number of nodes.

Exercise 7
Recall the functions sumList, sumNat and makeList of lecture 3. Try to state and prove the following properties:

1. Relate the length of list produced by makeList i and i
2. Relate the value of sumNat i and i
3. Give and try to prove the property relating those three functions

Proof by induction: generalize the goals
By default apply induct may produce too weak induction hypothesis

Example 7
When doing an apply (induct x) on the goal P (x::nat) (y::nat) goal (2 subgoals):
1. P 0 y
2. \(\forall x. P x y \Rightarrow P (\text{Suc} x) y \)

Example 8
With apply (induct x arbitrary:y) on the same goal goal (2 subgoals):
1. \(\forall y. P 0 y \)
2. \(\forall x y. P x y \Rightarrow P (\text{Suc} x) y \)

Exercise 8
Prove the sym lemma on the leq function.

Proof by induction: induction principles
Recall the basic induction principle on naturals:
\[P(0) \land \forall x \in \mathbb{N}. (P(x) \rightarrow P(x + 1)) \rightarrow \forall x \in \mathbb{N}. P(x) \]

In fact, there are infinitely many other induction principles

- \(P(0) \land P(1) \land \forall x \in \mathbb{N}. ((x > 0 \land P(x)) \rightarrow P(x + 1)) \rightarrow \forall x \in \mathbb{N}. P(x) \)
- ...
- Strong induction on naturals
 \(\forall x, y \in \mathbb{N}. ((y < x \land P(y)) \rightarrow P(x)) \rightarrow \forall x \in \mathbb{N}. P(x) \)
- Well-founded induction on any type having a well-founded order \(<<\)
 \(\forall x, y. ((y << x \land P(y)) \rightarrow P(x)) \rightarrow \forall x. P(x) \)

Proof by induction: induction principles (II)
Apply an induction principle adapted to the function call \((f x y z)\)
\[\ldots \ldots \ldots \ldots \ldots \ldots \cdot \text{apply (induct x y z rule:f.induct)} \]
Apply strong induction on variable \(x\) of type \(\mathbb{N}\)
\[\ldots \ldots \ldots \ldots \ldots \ldots \cdot \text{apply (induct x rule:nat_less_induct)} \]
Apply well-founded induction on a variable \(x\)
\[\ldots \ldots \ldots \ldots \ldots \ldots \cdot \text{apply (induct x rule:wf_induct)} \]

Exercise 9
Prove the lemma on function \(\text{div2}\).
Combination of decision procedures auto and simp

Automatically solve or simplify all subgoals apply auto
apply auto does the following:
- Rewrites using equations (function definitions, etc)
- Applies a bit of arithmetic, logic reasoning and set reasoning
- On all subgoals
 - Solves them all or stops when stuck and shows the remaining subgoals

Automatically simplify the first subgoal apply simp
apply simp does the following:
- Rewrites using equations (function definitions, etc)
- Applies a bit of arithmetic
- on the first subgoal
 - Solves it or stops when stuck and shows the simplified subgoal

Example 9
Switch on tracing and try to prove the lemma:
```plaintext
lemma "(index (1::nat) [3,4,1,3]) = 2"
using [[simp_trace=true]]
apply auto
```

Combination of decision procedures auto and simp (II)

Want to know what those tactics do?
- Add the command using [[simp_trace=true]] in the proof script
- Look in the output buffer

Sledgehammer

«Sledgehammers are often used in destruction work...»

Sledgehammer

«Solve theorems in the Cloud»

Architecture:

```
Isabelle/HOL  + relevant definitions and lemmas  External ATPs
          ------------>                     1
                        Proof (click on it)
```

Prove the first subgoal using state-of-the-art ATPs sledgehammer
- Call to local or distant ATPs: SPASS, E, Vampire, CVC4, Z3, etc.
- Succeeds or stops on timeout (can be extended, e.g. [timeout=120])
- Provers can be explicitly selected (e.g. [provers= z3 spass])
- A proof consists of applications of lemmas or definition using the Isabelle/HOL tactics: metis, smt, simp, fast, etc.

1Automatic Theorem Provers
2See http://www.tptp.org/CASC/.
Remark 3
By default, sledgehammer does not use all available provers. But, you can remedy this by defining, once for all, the set of provers to be used:

```
sledgehammer_params [provers=cvc4 spass z3 e vampire]
```

Exercise 10
Finish the proof of the property relating \(\text{nth} \) and \(\text{index} \)

Exercise 11
Recall the functions \texttt{sumList}, \texttt{sumNat} and \texttt{makeList} of lecture 3. Try to state and prove the following properties:

1. Prove that there is no repeated occurrence of elements in the list produced by \texttt{makeList}
2. Finish the proof of the property relating those three functions

Hints for building proofs in Isabelle/HOL

When stuck in the proof of \texttt{prop1}, add relevant intermediate lemmas:

1. In the file, define a lemma \texttt{before} the property \texttt{prop1}
2. Name the lemma (say \texttt{lem1}) (to be used by sledgehammer)
3. Try to find a counterexample to \texttt{lem1}
4. If no counterexample is found, close the proof of \texttt{lem1} by \texttt{sorry}
5. Go back to the proof of \texttt{prop1} and check that \texttt{lem1} helps
6. If it helps then prove \texttt{lem1}. If not try to guess another lemma

To build correct theories, do not confuse \texttt{oops} and \texttt{sorry}:

1. Always close an unprovable property by \texttt{oops}
2. Always close an unfinished proof of a provable property by \texttt{sorry}

Example 10 (Everything is provable using contradictory lemmas)
We can prove that \(1 + 1 = 0 \) using a false lemma.