
Analyse et Conception Formelle

Lesson 3

–
Recursive Functions and Algebraic Data Types

T. Genet (ISTIC/IRISA) ACF-3 1 / 17

Recursion everywhere... and nothing else

«Recursion in computer science is a method where the solution to a
problem depends on solutions to smaller instances of the same problem»

The «bad» news: in Isabelle/HOL, there is no while, no for, no
mutable arrays and no pointers, . . .
The good news: you don’t really need them to program!
The second good news: programs are easier to prove without all that!

In Isabelle/HOL all complex types and functions are defined using recursion
What theory says: expressive power of recursive-only languages and
imperative languages is equivalent
What OCaml programmers say: it is as it should always be
What Java programmers say: may be tricky but you will always get by

T. Genet (ISTIC/IRISA) ACF-3 2 / 17

Outline

1 Recursive functions
I Definition
I Termination proofs with measures
I Di�erence between fun, function and primrec

2 (Recursive) Algebraic Data Types
I Defining Algebraic Data Types using datatype

I Building objects of Algebraic Data Types
I Matching objects of Algebraic Data Types
I Type abbreviations

Acknowledgements:
some material is borrowed from T. Nipkow and S. Blazy’s lectures

T. Genet (ISTIC/IRISA) ACF-3 3 / 17

Recursive Functions
A function is recursive if it is defined using itself.
Recursion can be direct
fun member:: "’a => ’a list => bool"

where

"member e [] = False" |

"member e (x#xs) = (e=x \/ (member e xs))"

... or indirect. In this case, functions are said to be mutually recursive.
fun even:: "nat => bool"

and odd:: "nat => bool"

where

"even 0 = True" |

"even (Suc x) = odd x" |

"odd 0 = False" |

"odd (Suc x) = even x"

T. Genet (ISTIC/IRISA) ACF-3 4 / 17

Terminating Recursive Functions
In Isabelle/HOL, all the recursive functions have to be terminating!

How to guarantee the termination of a recursive function? (practice)
Needs at least one base case (non recursive case)
Every recursive case must go towards a base case
... or every recursive case «decreases» the size of one parameter

How to guarantee the termination of a recursive function? (theory))
If f ::·1 ∆ . . . ∆ ·n ∆ · then define a measure function

g::·1 ◊ . . . ◊ ·n ∆ N
Prove that the measure of all recursive calls is decreasing
To prove termination of f f (t1) ⇣ f (t2) ⇣ . . .

Prove that g(t1) > g(t2) > . . .

The ordering > is well founded on N
i.e. no infinite decreasing sequence of naturals n1 > n2 > . . .

T. Genet (ISTIC/IRISA) ACF-3 5 / 17

Terminating Recursive Functions (II)
How to guarantee the termination of a recursive function? (theory))

If f ::·1 ∆ . . . ∆ ·n ∆ · then define a measure function
g::·1 ◊ . . . ◊ ·n ∆ N

Prove that the measure of all recursive calls is decreasing
To prove termination of f f (t1) ⇣ f (t2) ⇣ . . .

Prove that g(t1) > g(t2) > . . .

Example 1 (Proving termination using a measure)

"member e [] = False" |

"member e (x#xs) = (if e=x then True else (member e xs))"

1 We define the measure g = ⁄x y . (length y)

2 We prove that ’e x xs. (g e (x#xs)) > (g e xs)

T. Genet (ISTIC/IRISA) ACF-3 6 / 17

Terminating Recursive Functions (III)

How to guarantee the termination of a recursive function? (Isabelle/HOL)
Define the recursive function using fun

Isabelle/HOL automatically tries to build a measure1

If no measure is found the function is rejected
If it is not terminating, make it terminating!
Try to modify it so that its termination is easier to show

Otherwise
Re-define the recursive function using function

Manually give a measure to achieve the termination proof

1
Actually, it tries to build a termination ordering but it has the same objective.

T. Genet (ISTIC/IRISA) ACF-3 7 / 17

Terminating Recursive Functions (IV)
Example 2
A definition of the member function using function is the following:

function member::"’a ∆ ’a list ∆ bool"

where

"member e [] = False" |

"member e (x#xs) = (if e=x then True else (member e xs))"

apply pat_completeness Prove that the function is ”complete”
apply auto i.e. total
done

Prove its termination using the measure
termination member proposed in Example 1
apply (relation "measure (⁄(x,y). (length y))")

apply auto

done

T. Genet (ISTIC/IRISA) ACF-3 8 / 17

Terminating Recursive Functions (V)

Exercise 1
Define the following functions, see if they are terminating. If not, try to

modify them so that they become terminating.

fun f::"nat => nat"

where

"f x=f (x - 1)"

fun f2::"int => int"

where

"f2 x = (if x=0 then 0 else f2 (x - 1))"

function f3::"nat => nat => nat"

where

"f3 x y= (if x >= 10 then 0 else f3 (x + 1) (y + 1))"

T. Genet (ISTIC/IRISA) ACF-3 9 / 17

Terminating Recursive Functions (VI)
Automatic termination proofs (fun definition) are generally enough

Covers 90% of the functions commonly defined by programmers
Otherwise, it is generally possible to adapt a function to fit this setting

Most of the functions are terminating by construction (primitive recursive)

Definition 3 (Primitive recursive functions: primrec)
Functions whose recursive calls «peels o�» exactly one constructor

Example 4 (member can be defined using primrec instead of fun)
primrec member:: "’a => ’a list => bool"

where

"member e [] = False" |

"member e (x#xs) = (if e=x then True else (member e xs))"

For instance, in List.thy:
26 ”fun”, 34 ”primrec” with automatic termination proofs
3 ”function” needing measures and manual termination proofs.

T. Genet (ISTIC/IRISA) ACF-3 10 / 17

Recursive functions, exercises

Exercise 2
Define the following recursive functions

A function sumList computing the sum of the elements of a list of

naturals

A function sumNat computing the sum of the n first naturals

A function makeList building the list of the n first naturals

State and verify a lemma relating sumList, sumNat and makeList

T. Genet (ISTIC/IRISA) ACF-3 11 / 17

Outline

1 Recursive functions
I Definition
I Termination proofs with orderings
I Termination proofs with measures
I Di�erence between fun, function and primrec

2 (Recursive) Algebraic Data Types
I Defining Algebraic Data Types using datatype

I Building objects of Algebraic Data Types
I Matching objects of Algebraic Data Types
I Type abbreviations

T. Genet (ISTIC/IRISA) ACF-3 12 / 17

(Recursive) Algebraic Data Types
Basic types and type constructors (list, ∆, *) are not enough to:

Define enumerated types
Define unions of distinct types
Build complex structured types

Like all functional languages, Isabelle/HOL solves those three problems
using one type construction: Algebraic Data Types (sum-types in OCaml)

Definition 5 (Isabelle/HOL Algebraic Data Type)
To define type · parameterized by types (–1, . . . , –n):
datatype (–1, . . . , –n)· = C1 ·1,1 . . . ·1,n1 with C1, . . . , Cn

| . . . capitalized identifiers
| Ck ·1,k . . . ·1,nk

Example 6 (The type of (polymorphic) lists, defined using datatype)
datatype ’a list = Nil

| Cons ’a "’a list"

T. Genet (ISTIC/IRISA) ACF-3 13 / 17

Building objects of Algebraic Data Types
Any definition of the form

datatype (–1, . . . , –n)· = C1 ·1,1 . . . ·1,n1
| . . .
| Ck ·1,k . . . ·1,nk

also defines constructors C1, . . . , Ck for objects of type (–1, . . . , –n)·
The type of constructor Ci is ·i ,1 ∆ . . . ∆ ·i ,ni ∆ (–1, . . . , –n)·

Example 7

datatype ’a list = Nil

| Cons ’a "’a list"

defines constructors

Nil::’a list and Cons::’a ∆ ’a list ∆ ’a list

Hence,
Cons (3::nat) (Cons 4 Nil) is an object of type nat list

Cons (3::nat) is an object of type nat list ∆ nat list

T. Genet (ISTIC/IRISA) ACF-3 14 / 17

Matching objects of Algebraic Data Types

Objects of Algebraic Data Types can be matched using case expressions:
(case l of Nil => ... | (Cons x r) => ...)

possibly with wildcards, i.e. ”_”
(case i of 0 => ... | (Succ _) => ...)

and nested patterns
(case l of (Cons 0 Nil) => ... | (Cons (Succ x) Nil) => ...)

possibly embedded in a function definition

fun first:: "’a list => ’a list"

where

"first Nil = Nil" |

"first (Cons x _) = (Cons x Nil)"

T. Genet (ISTIC/IRISA) ACF-3 15 / 17

Algebraic Data Types, exercises

Exercise 3
Define the following types and build an object of each type using value

The enumerated type color with possible values: black, white and

grey

The type token union of types string and int

The type of (polymorphic) binary trees whose elements are of type ’a

Define the following functions

A function notBlack that answers true if a color object is not black

A function sumToken that gives the sum of two integer tokens and 0
otherwise

A function merge::color tree ∆ color that merges all colors in

a color tree (leaf is supposed to be black)

T. Genet (ISTIC/IRISA) ACF-3 16 / 17

Type abbreviations

In Isabelle/HOL, it is possible to define abbreviations for complex types
To introduce a type abbreviation . type synonym

For instance:
type_synonym name="(string * string)"

type_synonym (’a,’b) pair="(’a * ’b)"

type_synonym phoneBook= "(string,nat) map"

Using those abbreviations, objects can be explicitly typed:
value "(’’Leonard’’,’’Michalon’’)::name"

value "(1,’’toto’’)::(nat,string)pair"

value "EmptyMap::phoneBook"

T. Genet (ISTIC/IRISA) ACF-3 17 / 17

