
The New Quickcheck for Isabelle

Random, Exhaustive and Symbolic Testing
Living Under One Roof

Lukas Bulwahn

Fakultät für Informatik, Technische Universität München

Abstract. The new Quickcheck is a counterexample generator for Isa-
belle/HOL that uncovers faulty specifications and invalid conjectures
using various testing strategies. The previous Quickcheck only tested
conjectures by random testing. The new Quickcheck extends the previ-
ous one and integrates two novel testing strategies: exhaustive testing
with concrete values; and symbolic testing, evaluating conjectures with
a narrowing strategy. Orthogonally to the strategies, we address two
general issues: First, we extend the class of executable conjectures and
specifications, and second, we present techniques to deal with conditional
conjectures, i.e., conjectures with restrictive premises. We evaluate the
testing strategies and techniques on a number of specifications, functional
data structures and a hotel key card system.

1 Introduction

Counterexample generators are very useful advisory tools for users of interactive
theorem provers. They make developing and proving specifications an enjoyable
experience. Users can identify errors leading to invalid conjectures by immediate
counterexamples rather than by time-consuming unsuccessful proof attempts.

Isabelle [16] uncovers invalid conjectures by two means: Refute [20] and Nit-
pick [3] search for countermodels by reducing a conjecture to boolean satisfi-
ability, whereas Quickcheck tests a conjecture by assigning values to the free
variables of the conjecture and evaluating it. To evaluate the conjecture e�-
ciently, Quickcheck translates the conjecture and related definitions to an ML or
Haskell program, exploiting Isabelle’s code generation infrastructure [12]. This
allows Quickcheck to test a conjecture with millions of test cases within seconds.

In earlier work [2], Quickcheck was originally modeled after the QuickCheck
tool for Haskell [8], which tests user-supplied properties of a Haskell program
with randomly generated values. The first contribution of this work is to ex-
tend Quickcheck with exhaustive and narrowing-based testing as complements
to random testing. Exhaustive testing checks the formula for every possible set
of values up to a given bound, and hence finds counterexamples that random
testing might miss. Narrowing-based testing evaluates the formula symbolically
rather than evaluating with a finite set of ground values, and therefore, it can
be more precise and more e�cient than the other two approaches.

Another contribution is to address previous weaknesses of counterexample
generation by testing. Quickcheck is inherently limited to executable specifica-
tions, and consequently the specification must be transformed into a functional
program. We extend the class of executable conjectures in several directions:

– Narrowing-based testing can handle unbounded existential quantifiers over
infinite types, enabling refutation for a class of conjectures where all other
counterexample generators fail due to their imprecision or lack of support.

– For polymorphic conjectures, Quickcheck finds counterexamples by evaluat-
ing the conjecture for all finite models of small sizes.

– Quickcheck now handles underspecified functions, and provides a simple user
interface to cope with arbitrary type definitions.

A well-known problem of testing with concrete values are conditional conjectures,
especially those with very restrictive premises. These conjectures are problem-
atic because when testing naively, for the vast majority of variable assignments
the premise is not fulfilled, and the conclusion is left untested. Clearly, it is desir-
able to take the premise into account when generating values. We present three
solutions for Quickcheck to generate only appropriate variable assignments:

– Derivation of custom test data generators from user declarations
– Automatic synthesis of test data generators that take the condition’s defini-

tion into account
– Symbolic evaluation

To measure the impact of our improvements, we compare the various testing
approaches in Quickcheck on a large set of automatically generated conjectures,
on faulty implementations of functional data structures, and on a formalization
of a hotel key card system, which was until now beyond the reach of Isabelle’s
counterexample generators.

The paper is structured as follows. We begin with Quickcheck’s basic infra-
structure (§2 and §3) for testing with concrete values, i.e., random and exhaustive
testing. We show how to deal with conditional conjectures (§4) to avoid the vac-
uous test cases that plague most specification testing tools. Then we discuss the
advantages of narrowing-based testing (§5). We highlight aspects (§6) that im-
prove Quickcheck’s performance and complete its infrastructure. Our evaluation
(§7) sheds further light on the counterexample generators’ strength.

2 From conjectures to test programs

Given a conjecture, Quickcheck builds a test program that combines the conjec-
ture’s evaluation with the generation of test values. This test program is then
passed to Isabelle’s code generator, which executes it e�ciently within Isabelle’s
underlying ML runtime system. Turning the conjecture into a test program is a
step common to both random and exhaustive testing.

We create a test program for a given conjecture by enclosing its evaluation
with test data generators for its free variables. The test program returns the

counterexample as an optional value: It either returns Some x, where x is a
counterexample, or None. Both testing approaches define test data generators.
A generator creates a finite domain of values and performs a test for a given
conjecture to all elements of that domain. In the description below, Gen(x)
introduces a generated value x that is obtained from an enumeration of the
generator’s domain. (Thus, in Gen(x). e, x is bound in e.) For further user
interaction, a counterexample of type ⌧ is mapped to a fixed type result using
the function reify :: ⌧) result. We describe the generators and the reification in
detail in §3 and §6.2. A simple test program for a conjecture C with a single
variable x can be expressed as:

Gen(x). if C x then None else Some (reify x)

Test programs are improved by taking the common structure of conjectures into
account, as a list of premises and a conclusion. If a premise does not depend on
a free variable, the generation of values for this free variable can be postponed
until after checking the premise. Thus, Quickcheck optimizes the test program
so that it generates the values for each variable as late as possible.

For example, consider the function insort, which inserts an element into a
sorted list in such a way that it remains sorted. If insort is implemented correctly,
the following property should hold:

sorted xs =) sorted (insort x xs)

Quickcheck generates values for xs and checks the premise sorted xs. Now only
for values fulfilling the premise, Quickcheck proceeds generating values for x,
and checks the conclusion insort x xs . Consequently, Quickcheck produces this
optimized test program:

Gen(xs). if ¬ sorted xs then None

elseGen(x). if sorted (insort x xs) thenNone else Some (reify (x, xs))

In the presence of (multiple) premises, this interleaving of generation and eval-
uation already improves its performance dramatically. In §4, we optimize the
generation and evaluation of this kind of conjectures even more.

3 Test data generators

Quickcheck automatically synthesizes test data generators for random and ex-
haustive testing (§3.1 and §3.2). For both testing strategies, Quickcheck supports
the definition of generators: Generators of inductive data types (§3.3) are au-
tomatically defined, and generators of arbitrary type definitions (§3.4) can be
defined with some guidance from the user.

Both testing approaches build on a family of test data generators. These test
data generators are type-based, i.e., there is exactly one generator for each type.
Generators for a complex type ⌧ are constructed following its type structure,
which is nicely described using type classes in Isabelle [21]. For example, given

a generator for polymorphic lists ↵ list and a generator for the type of natural
numbers (type nat), the generator for nat list is implicitly composed from those
two generators by the type class mechanism. Throughout the presentation, we
denote an instance of an overloaded constant c with type ⌧ by c

⌧

.
Generators are put together by chaining and choosing between alternatives.

The generators express a nondeterministic (branching) computation. The gen-
erators’ operations are closely related to operations on a plus monad, a general-
ization of the ideas for nondeterministic computations in [19].

3.1 Basic random generators

Random generators are provided by the type class random, which defines a
function random of type nat) seed) ⌧ ⇥ seed for type ⌧ in this class. The
generator yields a value of type ⌧ , and is parametrized by the size of values to
be generated. The state seed is used for the underlying random engine. Random
generators are chained together by the return and bind (written infix as >>=)
operators on an open state monad:

return ::↵) �) ↵⇥ �

return x s = (x, y)

>>= :: (�) ↵⇥ �)) (↵) �) � ⇥ �)) �) � ⇥ �

(f >>= g) s = g x s

0
where (x, s0) = f s

With this notation, the random generator for product types is built from gener-
ators for its type constructor’s arguments, where i denotes the size:

random

↵⇥�

i = random

↵

i >>= (�x. random
�

i >>= (�y. return (x, y)))

Given a list of generators with associated weights, select yields a random gen-
erator that chooses one of the generators (randomly using the seed value). The
weights are used to give a non-uniform probability distribution to the alterna-
tives. The random generator for the sum type ↵+ � (with constructors Inl and
Inr) illustrates selecting of alternative generators:

random

↵+�

i = select [(1, random

↵

i >>= (�x. return (Inl x))),
(1, random

�

i >>= (�x. return (Inr x)))])

3.2 Basic exhaustive generators

Similar to random generators, exhaustive generators are provided by the type
class exhaustive with a function exhaustive of type (⌧) result option)) nat)

result option. The exhaustive generators are expressed with continuations: They
take a continuation (which ultimately checks the conjecture), and evaluate it with
all values of type ⌧ up to the given size. Generators are chained by nesting the
continuations. For example, for a given continuation c and size i, the generator
for product types is defined by

exhaustive

↵⇥�

c i = exhaustive

↵

(�x. exhaustive
�

(�y. c (x, y))) i) i

As the weights of alternatives are irrelevant for exhaustive testing, generators
can be simply combined with the binary operation t, which chooses the first
Some value when evaluating from left to right:

t ::↵ option) ↵ option) ↵ option

(Some x) t y = Some x

None t y = y

The generator for ↵ + � joins the two exhaustive generators for types ↵ and �

employing the operator t:

exhaustive

↵+�

c i =
exhaustive

↵

(�x. c (Inl x)) i t exhaustive

�

(�x. c (Inr x)) i

3.3 Generators for inductive datatypes

Most commonly, new types are defined by datatype declarations. For these types,
Quickcheck automatically constructs random and exhaustive generators upon
the type’s definition. The construction of random generators has been described
in [2], so we only sketch the construction of exhaustive generators here.

We view a datatype as a recursive type definition of a sum of product types.
For example, the datatype ↵ list can be seen as least fixed point of the equation
↵ list = unit + ↵ ⇥ (↵ list). Following the scheme of exhaustive generators for
product and sum type, the exhaustive generator for lists is defined recursively:

exhaustive

↵ list c i = if i = 0 then None else (c Nil t

exhaustive

↵

(�x. exhaustive
↵ list (�xs. c (Cons x xs)) (i� 1)) i)

Generalizing this example to an arbitrary datatype is almost straightforward,
only recursion through functions takes some care.

3.4 Generators for arbitrary type definitions

Beyond inductive datatypes, types can also be defined by other means, e.g.,
by HOL-style type definitions. For such types, code generation requires special
setup by the user. Quickcheck provides a simple interface with which users can
specify generators. One simply lists the constructing functions for values of this
type. Generators are then built using these functions, as if they were datatype
constructors for this type. For example, red-black trees are binary search trees
with a sophisticated invariant. The type (↵,�) rbt contains all binary search
trees with keys of type ↵ and values of type � fulfilling the invariant. Values of
this type can be generated with the invariant-preserving operations:

empty :: (↵,�) rbt
insert ::↵) �) (↵,�) rbt) (↵,�) rbt

Using these as constructing functions, Quickcheck provides random and exhaus-
tive generators for (↵,�) rbt that produce values starting with the empty tree
and executing a sequence of insert operations. The random generator chooses the
key and value for the insert operation randomly from the set of possible values,
whereas the exhaustive generator enumerates all possible keys and values (up to
a given size) for the insert operations.

4 Conditional conjectures

The main weakness of both random and exhaustive testing, already mentioned
in the original QuickCheck for Haskell paper, is that they do not cope well
with hard-to-satisfy premises. For example, when testing our previous conjecture
about insort,

sorted xs =) sorted (insort x xs)

the conjecture is evaluated with all lists up to a given bound for xs. For all
unsorted lists, the premise is not fulfilled, and the conclusion is left untested.
Clearly, it is desirable to take the condition into account when generating values:
In this example, we would like to only generate sorted lists.

Often, these conditional conjectures arise in the verification of functional
data structures, e.g., red-black trees. A properly implemented delete operation
for red-black trees satisfies the following property:

is-rbt t =) is-rbt (delete k t)

The predicate is-rbt captures the invariant of red-black trees on the type of bi-
nary search trees (↵,�) tree. Again, binary trees generated naively rarely satisfy
the premise, and we prefer to only generate trees satisfying the invariant.

4.1 Custom generators

The simplest solution to test conditional conjectures e↵ectively is to employ a
custom generator that has been provided by the user. Assuming the user provides
a generator for some type restricted by a predicate (cf. §3.4) that matches the
condition, Quickcheck automatically lifts the conjecture to the restricted type.
For example, the conjecture about delete is automatically lifted to the type
(↵,�) rbt, where Reprbt t

0 maps a red-black tree t

0 of type (↵,�) rbt to its
representative binary tree on type (↵,�) tree:

is-rbt (Reprbt t0) =) is-rbt (delete k (Reprbt t0))

Note that t0 is now of type (↵,�) rbt, unlike the original conjecture, where t has
the type (↵,�) tree. As all representatives of type (↵,�) rbt satisfy the predicate
is-rbt (by the type’s construction), the premise is-rbt (Reprbt t

0) simplifies to
true. This way, Quickcheck obtains an unconditional conjecture, which it tests
either with the random or exhaustive generator of (↵,�) rbt.

4.2 Smart generators

A more sophisticated solution to test conditional conjectures e↵ectively, is smart
test data generators that take the condition’s definition into account. These test
data generators construct values in a bottom-up fashion, simultaneously test-
ing the condition and generating appropriate values [5]. Briefly, we synthesize
the test data generator associated with a given premise by reformulating the
premise as a set of Horn clauses and computing its data-flow dependencies; from
this data-flow analysis, we synthesize generators that directly compute appro-
priate values. When transforming the premises to Horn clauses, we replace n-ary
functions with (n + 1)-ary predicates; this gives more freedom to the data-flow
analysis, which can then invert functions. The data-flow analysis is an extension
of a classic analysis from logic programming. To execute a predicate, its argu-
ments are classified as input or output, made explicit by means of modes. A mode

is a data-flow assignment that annotates all arguments of a predicate as input
(i) or output (o). For example, the binary predicate of type ↵ list) nat) bool

corresponding to the function length supports several modes:

– From the first argument xs, we can compute the second argument by evalu-
ating length xs. This corresponds to the mode i ! o ! bool.

– Inversely, we can enumerate lists of a given length: o ! i ! bool.
– Given a list and a natural number, we can check whether the list’s length

equals that number: i ! i ! bool.
– Or we can simply enumerate all pairs (xs, n) such that length xs = n. This

is the mode o ! o ! bool.

In the classic analysis, a mode is only possible if the Horn clauses allow a
complete data flow from input to output values. For Quickcheck, if the mode
analysis fails to produce a complete mode assignment because the values of
some variables are not constrained by the premises, we fall back on the random
or exhaustive strategy to fill in the gaps in the data flow. For example, given the
Horn clause P x =) Q x y, where P supports the modes i ! bool and o ! bool,
the classic analysis fails to find a consistent mode assignment for Q with mode
o ! o ! bool because y is unconstrained. To generate values for x and y that
fulfill Q, we can generate x values using P with o ! bool and set y to an arbitrary
value.

Employing these smart test data generators, Quickcheck can automatically
derive a generator for sorted lists. Applying it to our conjecture about insort,
Quickcheck’s performance improves significantly.

5 Narrowing-based testing

The random and exhaustive strategies su↵er from two important limitations:
They cannot refute propositions that existentially quantify over infinite types,
and they often repeatedly test formulas with values that checks essentially the
same executions (e.g., because of symmetries).

Both issues arise from the use of ground values and can be addressed by
evaluating the formula symbolically. The technique is called narrowing and is
well known from term rewriting. The main idea is to evaluate the conjecture with
partially instantiated terms and to progressively refine these terms as needed.
Technically, this can be achieved in at least three di↵erent ways:

1. Target a language that natively supports narrowing, such as the functional-
logical language Curry [1], instead of ML.

2. Simulate narrowing by generating a functional program that includes its own
refinement algorithm [18].

3. Simulate narrowing by embedding the narrowing-based execution with a
library of combinators [11, 14] in a functional language.

We tried out the first two approaches and found that the second approach is
faster. The third approach looks promising but would require a more involved
translation.

The main benefit of narrowing is its generality: Unlike the random and ex-
haustive strategies, it can refute existential quantifications over infinite types.
Consider the following conjecture:

8n. 9m ::nat . n = Suc m

To disprove it, we must exhibit a natural number n such that 8m ::nat . n 6=
Suc m. Taking a symbolic view, if we choose n = 0, it is easy to see that
n 6= Suc m is true for every natural number m without having to instantiate m.

The above example is perhaps too simple to be convincing. A more realistic
example is based on the observation that the palindrome [a, b, b, a] can be split
into the list [a, b] and its reverse [b, a]. Generalizing this to arbitrary lists, we
boldly conjecture that

rev xs = xs =) 9ys. xs = ys @ rev ys

The narrowing approach immediately finds the counterexample xs = [a1], infer-
ring that there is no witness for ys in the infinite domain of lists: If ys is empty,
ys @ rev ys = [] 6= [a1], and if ys is not empty, ys @ rev ys consists of at least
two elements and hence cannot be equal to [a1].

Narrowing also deals very well with conditional conjectures. In our example
with the delete operation on red-black trees,

is-rbt t =) is-rbt (delete k t)

the premise is-rbt t ensures that the tree t has a black root node, and in fact,
after a few refinements, narrowing will only test symbolic values satisfying this
property, already pruning away about half of the overall test cases.

Like LazySmallCheck [18], our implementation exploits Haskell’s lazy eval-
uation and imprecise exceptions. The refinement algorithm of [18] only allows
universal properties, whereas our refinement algorithm can also deal with exis-
tential quantifiers.

In a first step, Quickcheck puts the conjecture in prefix normal form. The
conjecture then is split into an outer part of universal and existential quantifiers,
and an inner quantifier-free formula. The execution that tests the conjecture by
narrowing, combines two alternating executions, the evaluation of the quantifier-
free formula with symbolic values, and the refinement step. The refinement step
controls which symbolic evaluation should be done next, and the evaluation ei-
ther yields the truth value of the formula, or which symbolic value must be
refined. For every refinement step, we must keep track if an existential or uni-
versal value is being refined. For that purpose, the refinement step employs a
data structure that represents the (partial) computation tree of the formula.
After every evaluation, it alters the tree according to the evaluation’s result,
i.e., it stores the boolean results, duplicates subtrees in case of refinements, and
looks up the values for the next evaluation step. Eventually, the truth value of
the computation tree may be found to be false, in which case we have found a
counterexample; otherwise if the execution requires too many refinement steps
it is aborted.

6 Completing the infrastructure

So far, we presented the core parts of Quickcheck. In the following subsections,
we touch on three further aspects: testing of polymorphic conjectures, reification
of results, and underspecified functions.

6.1 Polymorphic conjectures

If the conjecture is polymorphic, we can instantiate the type variables with any
concrete type for refuting it. Older versions of Quickcheck instantiated type
variables with the type of integers (if possible depending on the type class
constraints), and tested the conjecture with increasing integer values. Lately,
Quickcheck prefers to use a set of small finite types instead, so that conjectures
with quantifiers, e.g., existential conjectures 9x ::↵. P x, can be refuted by a
finite number of P tests.

The implementation for refuting quantified formulas over a finite type is
based on the type class enum. This allows to obtain implementations for more
complex types by composition. E.g., the type ↵ ⇥ �) � is finite if ↵, � and
� are finite types. The type class enum provides three operations for every fi-
nite type ⌧ : univ :: ⌧ list enumerates the finite universe; all :: (⌧) bool)) bool

and ex :: (⌧) bool)) bool check universal and existential properties. The exis-
tential and universal quantifiers could be expressed just with univ :: ⌧ list, i.e.,
8x :: ⌧. P x = list-all P (univ :: ⌧ list). Due to the strict evaluation of ML, this
would be rather ine�cient: The evaluation would first construct a finite (but
potentially large) list of values, and then check them sequentially. To avoid the
large intermediate list, we implement the quantifiers using continuations, simi-
lar to the construction of the exhaustive generators (cf. §3.2). For example, the
universal quantifiers for product and sum type are implemented by

all

↵⇥�

P = all

↵

(�a ::↵. all
�

(�b ::�. P (a, b)))
all

↵+�

P = (all
↵

(�a ::↵. P (Inl a)) ^ all

�

(�b ::�. P (Inr b)))

For most types, the implementation is straightforward. Only for the function
type, it is a bit more involved. To construct the set of all functions ↵) �, we
have to create all possible mappings, i.e., all lists of type � list with the same
length as univ ::↵ list, and transform those lists into functions.

6.2 Reification

To present the counterexample to the user, it is necessary that the execution’s
result is turned into a term in Isabelle. Quickcheck takes advantage of the fact
that Isabelle is tightly coupled with the ML environment, i.e., the Isabelle system
runs within the ML runtime system and o↵ers the possibility to conveniently
compile and execute ML source code dynamically. Due to this fact, the test
program returns a value which Isabelle directly interprets as a term in the logic.

To obtain an ML test program that returns an Isabelle term, we must model
Isabelle’s internal type and term representations within the logic. The necessary
datatypes for monomorphic types and ground terms are defined by:

datatype type = Type string (type list)
datatype term = App term term | Const string type

The two type classes typerep and term-of

class typerep = fixes typerep ::↵ it) type

class term-of = typerep+ fixes term-of ::↵) term

provide functions to obtain the type and term representation of a value, where
the phantom type ↵ it with the single value T is used to embed types as
term. Instances of typerep are automatically derived for all types, and instances
of term-of for all inductive datatypes. The construction of those functions is
straightforward. E.g., for the boolean and product type, these functions are:

typerep

bool

(T :: bool it) = Type “bool” []
typerep

↵⇥�

(T :: (↵⇥�) it) = Type “prod” [typerep (T ::↵ it), typerep (T ::� it)]
term-of

bool

False = Const “False” (Type “bool” [])
term-of

bool

True = Const “True” (Type “bool” [])
term-of

↵⇥�

(a, b) = App (App

(Const “Pair” (typerep (T :: (↵) �) ↵⇥�) it))) (term-of a)) (term-of b)

6.3 Underspecified functions

Even though HOL is a logic of total functions, users can give underspecified
function definitions. The results are total functions, but equations only exist for
some subset of possible inputs. A prominent example here is the head function
on lists. It is specified by hd (Cons x xs) = x, but no equation is given for
the Nil constructor. Some facts only hold on the domain where the function is
specified, while others may hold in general, even on values where the function
has no specifying equations. For example, the conjecture about hd and append,

hd (append xs ys) = (if xs = Nil then hd ys else hd xs),

is valid for all lists xs and ys, even if xs and ys are Nil. In this special case,
left and right hand side are equal, i.e., they reduce to the same term hd Nil. In
contrast, the conjecture hd (map f xs) = f (hd xs) is valid only if xs 6= Nil.

On the two conjectures above, Quickcheck returns xs = Nil, ys = Nil and
xs = Nil, f = �x. a1 as potentially spurious counterexamples. Quickcheck cannot
determine if the counterexample is genuine or spurious. In other words, it cannot
distinguish the two cases occurring in the examples above. Nevertheless, these
potentially spurious counterexamples are useful in two ways: First, it makes
users aware that the choice of how the underspecified function is turned into
a total function might be crucial for the validity of this conjecture; second,
when users knows that the property only holds on values where the function is
properly specified, they can validate that the given assumptions su�ce to restrict
the values to the defined part of the function by observing that no potentially
spurious counterexample is found.

To uncover counterexamples with underspecified functions, we slightly change
the test programs. The evaluation of underspecified functions in Standard ML
yields a Match exception if it encounters a call to such a function and no pattern
matches the given arguments. The test program catches this exception. If we are
interested in possible counterexamples due to underspecification, we return the
values that yield the exception as counterexample. Alternatively, if we are only
interested in genuine counterexamples, we continue to search for other values.

7 Empirical results

We evaluated Quickcheck with its di↵erent strategies on a database of theorem
mutations, faulty implementations of functional data structures, and a trace-
based hotel key card system.1 The functional data structures and the key card
system are well suited for comparing the di↵erent techniques to cope with con-
ditional conjectures.

7.1 Evaluation on theorem mutations

To obtain a large set of non-theorems in Isabelle, we derive formulas mutating

existing theorems by replacing constants and swapping arguments, as in [2, 3].
Table 1 shows the results of running the counterexample generators on 400 mu-
tated theorems of 13 theories with a very liberal time limit of 30 seconds. The
chosen set of theories focuses on executable ones, and leaves out those that are
obviously not executable. For example, the Arrow theory with axiomatic defini-
tions and theories with coinductive datatypes are not executable with Isabelle’s
code generation. Conjectures in these theories are only refuted by Nitpick.

The four columns show the absolute number of genuine counterexamples of
the di↵erent approaches: random testing, exhaustive testing, narrowing-based

1The test data is available at http://www21.in.tum.de/⇠bulwahn/itp2012.tar.gz

http://www21.in.tum.de/~bulwahn/itp2012.tar.gz

Theory
Counterexample generators

Random Exhaustive Narrowing Nitpick

Arithmetics

Divides [fin] 199/318 212/318 221/343
259/400

Divides [int] 224/369 239/369 248/394
GCD 203/294 203/294 228/336 216/400
MacLaurin [fin] 44/61 44/61 45/77

19/400
MacLaurin [int] 55/79 55/79 56/95

Set Theory

Fun [fin] 214/394 215/394 201/396
235/400

Fun [int] 146/254 144/254 161/326
Relation [fin] 248/395 251/395 248/395

247/400
Relation [int] 139/230 155/230 160/258
Set [fin] 246/395 246/395 249/395

260/400
Set [int] 205/329 206/329 220/369
Wellfounded [fin] 229/372 233/372 232/373

249/400
Wellfounded [int] 45/94 47/94 51/122

Datatypes

List [fin] 197/319 197/318 215/354
245/400

List [int] 191/312 193/312 212/351
Map [fin] 257/400 257/400 257/400

258/400
Map [int] 146/221 148/221 160/248

AFP Theories

Hu↵man 244/399 248/399 246/399 251/400
List-Index 256/399 256/399 263/399 271/400
Max-Card-Matching [fin] 152/345 212/345 212/345

214/400
Max-Card-Matching [int] 4/11 4/11 4/11
Regular-Sets 154/304 152/304 210/368 142/400

Table 1. Results for running counterexample generators on mutated theorems on a
Intel Core2 Duo T7700 2.40GHz with a time limit of 30 seconds

testing, and Nitpick. In a cell with values A/B, A is the number of genuine
counterexamples and B the number of executable mutants of the corresponding
counterexample generator. As Nitpick handles arbitrary specifications, it is able
to check all 400 mutants. Quickcheck can use finite types or integers to instantiate
polymorphic conjectures (cf. §6.1). For theories with polymorphic conjectures,
we show both modes separately in the table, indicated with [fin] and [int]. Using
finite types for polymorphic conjectures makes almost all conjectures in the
set theory domain amenable to Quickcheck, closing the previously existing gap
between Quickcheck and Nitpick in this domain. The narrowing-based testing
can execute more conjectures than concrete testing with random and exhaustive
testing. We gain most on the Regular-Sets theory, increasing from 304 to 368.

We also compared the tools against each other, and measured the number of
counterexamples that can be found uniquely by one tool compared to another.

R2K R20K Exh. Cu.G. Sm.G. Nar. Nit.

AVL trees 5 7 7 9 9 11 4
Red-black trees 10 18 21 22 19 26 11
2-3 trees 5 5 7 11 12 12 0

Table 2. Number of counterexamples on faulty implementations of functional data
structures (time limit: 30 s for AVL and red-black trees; 120 s for 2-3 trees)

Exhaustive testing slightly outperforms random testing. Narrowing often finds a
few more counterexamples than exhaustive testing, but this is mainly due to the
larger set of executable formulas. Narrowing and Nitpick complement each other
to some extent, as witnessed most prominently by Isabelle’s GCD theory. In ab-
solute numbers, narrowing and Nitpick find 228 and 216 counterexamples; hence
only di↵ering by 12. However, they succeed on di↵erent conjectures—narrowing
finds 23 counterexamples where Nitpick fails, Nitpick finds 11 where narrowing
fails—meaning that employing them in combination yields 239 counterexamples.

To illustrate the di↵erences in strength between testing with Quickcheck and
model finding with Nitpick, we show two interesting examples of our evaluation.
On the one hand, consider one of the monotonicity lemmas for integer division:

b·q+r = b

0
·q

0+r

0
^ 0 b

0
·q

0+r

0
^ r

0
< b

0
^ 0 r ^ 0 < b

0
 b =) q q

0

For Quickcheck, it is no problem to detect a typo that changes the second premise
to 0 b

0
· b

0 + r

0. It produces the counterexample b = �2; q = 3; r = 1; b0 = �2;
q

0 = 1; r0 = 3 instantaneously, while Nitpick replies after seven minutes with a
similar counterexample.

On the other hand, in the Isabelle theory of maximal matchings in graphs
(Max-Card-Matching), a certain invalid conjecture is refuted by constructing a
graph with 4 vertices and a matching with two edges. Owing to the power of its
SAT solver, Nitpick finds this matching within a few seconds. Exhaustive testing
tries to enumerate all graphs and searches for matchings quite naively. Thus,
Quickcheck needs roughly a minute to find a counterexample. Random testing
does not find the counterexample, even with 100,000 iterations for each size and
testing a few minutes—a matching for a valid graph is too unlikely to obtain by
randomly chosen values. Narrowing prunes the search space before evaluating
the conjecture with all possible concrete values, and finds a counterexample in
about thirty seconds.

These two examples demonstrate the strength of both tools: Quickcheck is
strong on arithmetics, while Nitpick handles well boolean constraints over finite
domains.

7.2 Functional data structures

Beyond the mutations of lemmas, we evaluated the di↵erent testing approaches
on faulty implementations of typical functional data structures. We injected

faults by adding typos into the correct implementations of the delete opera-
tion of AVL trees, red-black trees, and 2-3 trees. By adding typos, we create
10 di↵erent (possibly incorrect) versions of the delete operation for each data
structure. On 2-3 trees, we check two invariants of the delete operation, keeping
the tree balanced and ordered, i.e., balanced t =) balanced (delete k t), and
ordered t =) ordered (delete k t). We check two similar properties for AVL
trees, and three similar properties for red-black trees. With the 10 versions, this
yields 20 tests each for 2-3 and AVL trees, and 30 tests for red-black trees, on
which we apply various counterexample generators. In this setting, we compare
the techniques to deal with conditional conjectures. Random testing is applied
with 2,000 and 20,000 iterations for each size (abbrev. R2K, R20K). Furthermore,
we used exhaustive testing (Exh.), custom generators (Cu.G., §4.1), smart gen-
erators (Sm.G., §4.2), narrowing (Nar.) and Nitpick (Nit.).

Table 2 summarizes the results. Overall, narrowing, smart, and custom gen-
erators beat exhaustive testing, which itself performs better than random testing
and Nitpick. Nitpick struggles with large functional programs and is limited to
shallow errors in the smaller implementations of AVL and red-black trees. In-
creasing the number of iterations for random testing helps, but in our experience,
it does not find any error that was not also found by testing exhaustively. For
the 2-3 trees, the smart generators and narrowing find errors in 5 more cases
than exhaustive testing. However, in principle, exhaustive testing should find the
errors eventually. Thus, on these more intrinsic cases, we increased the time for
the naive exhaustive testing to finally discover the fault. However, even after one
hour of testing, exhaustive testing was not able to detect a single one of them.
This shows that using the test data generators and narrowing-based testing in
this setting is clearly superior to naive exhaustive testing. The smart generators
and narrowing find 12 errors in 20 conjectures. In the eight cases where they
did not find anything within the time limit, even testing more thoroughly for an
hour did not reveal any further errors. Most probably, the property still holds,
as the randomly injected faults do not necessarily a↵ect the invariant.

7.3 Trace-based hotel key card system

As a further case study, we checked a hotel key card system by Nipkow [15],
which itself was inspired by a model from Jackson [13]. The faulty system con-
tains a tricky man-in-the-middle attack, which is only uncovered by a trace of
length 6. The formalization uses a restrictive predicate that describes in which
order specific events occur. Due to the occurrence of existential quantifiers, the
original specification is not executable for random and exhaustive testing. Even
after refinements to obtain an executable reformulation, the naive random and
exhaustive testing fail to find the counterexample within ten minutes of test-
ing, as the search space is too large. Smart generators include some processing
that detects if the values of existential quantifiers are bound in the formula.
Therefore, we do not have to reformulate the specification when we use smart
generators. Employing these smart generators, we can find the attack within a
few seconds. Narrowing can handle the existential quantifiers in principle, but in

practice it performs badly with the deeply nested existential quantifiers in the
specification. This renders it impossible to find the counterexample with nar-
rowing. After eliminating the existential quantifiers manually, we also obtain a
counterexample with narrowing within a few seconds.

On this trace-based version of the hotel key card system, Nitpick fails to find
the counterexample with a time limit of ten minutes. However, Nitpick finds the
counterexample on an equivalent state-based formalization of the hotel key card
system (cf. [3], §6.2). This indicates that Quickcheck and Nitpick excel on formal-
izations with di↵erent specification styles: Nitpick on relational descriptions [4],
Quickcheck on realistic functional programs and trace-based descriptions.

8 Related work

The success story of Haskell’s QuickCheck [8] has led to many descendants in
interactive theorem provers. Besides Isabelle, PVS [17], Agda [9], ACL2 [10] and
ACL2 Sedan [6] include a random testing tool like the original QuickCheck.

The tool in ACL2 Sedan analyzes the goal to compute dependencies between
free variables, similar to Quickcheck’s data-flow analysis, but it only analyzes the
goal locally, and lacks the ability to do a data-flow analysis beyond the statement
of the conjecture, i.e., in the description of the premises.

Our exhaustive testing is inspired by Haskell’s SmallCheck [18], but is target-
ing ML with its strict evaluation. The implementation of Haskell’s SmallCheck
takes advantage of its laziness, simplifying the definition of generators, while
Isabelle’s tool takes the strictness of ML into account and uses continuations.

Tools using narrowing for testing functional programs symbolically are the
Agsy tool [14] for Agda, EasyCheck [7] for the programming language Curry,
and LazySmallCheck [18] for Haskell.

9 Conclusion

As we have seen, the methods to uncover invalid conjectures, testing and model
finding, implemented by the counterexample generators Quickcheck and Nitpick
in Isabelle, have their justification. Quickcheck with its new testing strategies and
our e↵ort to extend its applicability allows to check many conjectures e↵ectively
that were previously beyond the scope of testing. Isabelle’s users benefit from
having all these strategies at their disposal, because they complement each other
very well. Unmentioned so far, Quickcheck’s performance also profits from the
fact that code generation in Isabelle is becoming more common and widely used.
Isabelle’s library provides many additions to set up code generation for numerous
purposes. To validate specifications with simple examples before proving, users
invest some time to make their specifications executable. Quickcheck returns
this investment the first time users encounter an invalid conjecture, so they can
correct an error immediately instead of wasting hours on an impossible proof.

Acknowledgment. I thank Jasmin Blanchette, Brian Hu↵man, Peter Lam-
mich, Lars Noschinski, Andrei Popescu and Thomas Tuerk for suggesting sev-
eral textual improvements. I acknowledge funding from DFG doctorate program
1480 (PUMA).

References

1. Antoy, S., Hanus, M.: Functional logic programming. Commun. ACM 53, 74–85
(2010)

2. Berghofer, S., Nipkow, T.: Random testing in Isabelle/HOL. In: Cuellar, J., Liu,
Z. (eds.) SEFM 2004. pp. 230–239. IEEE C.S. (2004)

3. Blanchette, J.C., Nipkow, T.: Nitpick: A counterexample generator for higher-order
logic based on a relational model finder. In: Kaufmann, M., Paulson, L.C. (eds.)
ITP 2010. LNCS, vol. 6172, pp. 131–146. Springer (2010)

4. Blanchette, J.C., Weber, T., Batty, M., Owens, S., Sarkar, S.: Nitpicking C++
Concurrency. In: PPDP ’11. pp. 113–124. ACM (2011)

5. Bulwahn, L.: Smart Testing of Functional Programs in Isabelle. In: LPAR 2012.
LNCS, vol. 7180, pp. 153–167. Springer (2012)

6. Chamarthi, H.R., Dillinger, P., Kaufmann, M., Manolios, P.: Integrating testing
and interactive theorem proving (2011), avail. at http://arxiv.org/pdf/1105.4394

7. Christiansen, J., Fischer, S.: EasyCheck – Test Data for Free. In: FLOPS ’08.
LNCS, vol. 4989, pp. 322–336. Springer (2008)

8. Claessen, K., Hughes, J.: QuickCheck: A lightweight tool for random testing of
Haskell programs. In: ICFP ’00. pp. 268–279. ACM (2000)

9. Dybjer, P., Haiyan, Q., Takeyama, M.: Combining testing and proving in dependent
type theory. In: TPHOLs 2003. LNCS, vol. 2758, pp. 188–203. Springer (2003)

10. Eastlund, C.: Doublecheck your theorems. In: 8th Int. Workshop on the ACL2
Theorem Prover and its Applications (2009)

11. Fischer, S., Kiselyov, O., Shan, C.: Purely functional lazy non-deterministic pro-
gramming. In: ICFP ’09. pp. 11–22. ACM (2009)

12. Haftmann, F., Nipkow, T.: Code generation via higher-order rewrite systems. In:
FLOPS 2010. LNCS, vol. 6009, pp. 103–117. Springer (2010)

13. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. MIT Press
(2006)

14. Lindblad, F.: Property directed generation of first-order test data. In: Morazán,
M. (ed.) TFP 2007. pp. 105–123. Intellect (2008)

15. Nipkow, T.: Verifying a Hotel Key Card System. In: ICTAC ’06. LNCS, vol. 4281.
Springer (2006), invited paper

16. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A Proof Assistant for
Higher-Order Logic, LNCS, vol. 2283. Springer (2002)

17. Owre, S.: Random testing in PVS. In: AFM ’06 (2006)
18. Runciman, C., Naylor, M., Lindblad, F.: SmallCheck and Lazy SmallCheck: Auto-

matic exhaustive testing for small values. In: Haskell Symp. ’08. pp. 37–48 (2008)
19. Wadler, P.: How to replace failure by a list of successes. In: Functional programming

languages and computer architecture. LNCS, vol. 201, pp. 113–128. Springer (1985)
20. Weber, T.: Bounded Model Generation for Isabelle/HOL. In: PDPAR ’04. Elec-

tronic Notes in Theoretical Computer Science, vol. 125(3), pp. 103–116 (2005)
21. Wenzel, M.: Type Classes and Overloading in Higher-Order Logic. In: Gunter,

E.L., Felty, A. (eds.) TPHOLs ’97. LNCS, vol. 1275, pp. 307–322 (1997)

http://arxiv.org/pdf/1105.4394

	 The New Quickcheck for Isabelle

