Evaluation of a Reconfigurable Tangible Device for Collaborative Manipulation of Objects in Virtual Reality

Laurent Aguerreche Thierry Duval Anatole Lécuyer

Theory and Practice of Computer Graphics The University of Warwick — September 2011, 8th

Introduction

Context

- 3D manipulation of virtual objects
 - Is essential
 - Must match various 3D shapes
 - Must be sometimes realistic (for training)
 - Must be sometimes shared between users [Riege et al., 3DUI 2006]
- \Rightarrow We need new tools and techniques

Goals

 Improve single-user or multi-user 3D manipulation of virtual objects through new devices and techniques

Tangible User Interface (TUI)

• Manipulation of a windshield [Salzmann, Jacobs and Fröhlich, JVRC'2009]

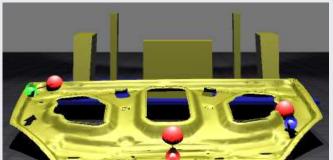
Known techniques to co-manipulate objects

Reconfigurable Tangible User Interfaces

Activecubes

[Watanabe et al., Computer in entertainment 2004]

• Senspectra [Leclerc et al., CHI 2007]

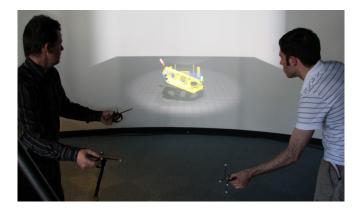


4

Known techniques to co-manipulate objects

The 3-Hand Manipulation Technique

- Use of 3 virtual hands *(pointers on the screen)* [Aguerreche, Duval and Lécuyer, JVRC'2009]
- Only positions of hands matter, not their orientations
 - $\,\hookrightarrow\,$ 3 points define a plane, thus an orientation
- Virtual hands must remain close to their manipulation points

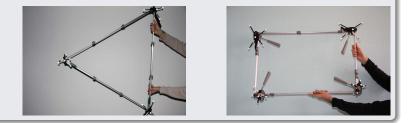


In our opinion...

- 3D manipulation of virtual objects through multi-hand handles is interesting
 - $\,\hookrightarrow\,$ But how to ensure that the 3-points shape stays the same?
 - Government → But how to ensure stability with four points which shape would not stay the same?
- Tangible user interfaces often improve 3D interaction...
 - $\,\hookrightarrow\,$ But quite often they are designed to match only one shape
 - \hookrightarrow Or they are not rigid enough to be shared by several users


The Reconfigurable Tangible Device

TP.CG.2011 7


The Reconfigurable Tangible Device

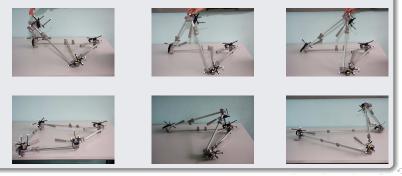
The Reconfigurable Tangible Device (RTD)

Concept

- Ability to match various 3D shapes
- Can be reshaped without breaking immersion
- Rigid, to serve as a passive haptinc link between users
- Two instances : RTD-3 and RTD-4 [Aguerreche, Duval and Lécuyer, VRST'2010]

The RTD-3

Triangular RTD

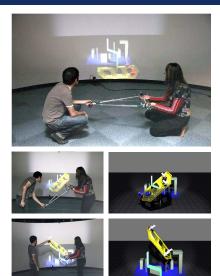

- Three stretchable and rigid arms connected by a pivot
- Three points of manipulations (handles)
- Physical and reconfigurable version of the 3-hand manipulation technique
 - $\,\hookrightarrow\,$ ensure that the 3 manipulation points keep the good shape

The RTD-4

Quadrilateral or tetrahedral RTD

- Four stretchable and rigid arms connected by linkage balls
- Four points of manipulation
- Extension of the 3-hand manipulation technique to 4 points
 - $\,\hookrightarrow\,$ stable because the RTD maintains the shape

Objectives


• Determine RTD-3 efficiency and acceptability compared to other techniques

Compared techniques

- RTD-3
- Mean
- Separation

Task

• A 'pick-and-place' task

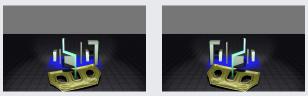
э

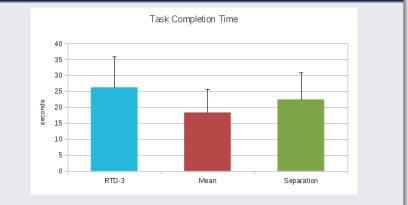
Collected Data

- Objective data
 - Time completion task
 - Number of collisions of the virtual hood with the VE
 - Distance covered by the hood
 - Distance covered by the hands of the users
- Subjective data (using a 7-point Likert scale)
 - Realism of the manipulation
 - Feeling of Presence in the VE
 - Training for the same real task
 - Fatigue during the manipulation
 - How much they Liked a technique

Three techniques compared

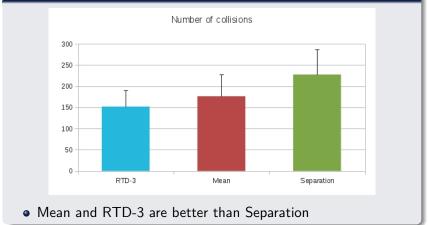
- 1st technique: The Reconfigurable Tangible Device (**RTD-3**)
 - Based on the 3-Hand technique
- 2nd technique: Averaging movements (Mean) of two users
 - Using previous positions and rotations
- 3rd technique: Splitting degrees of freedom (**Separation**)
 - Translations and rotations



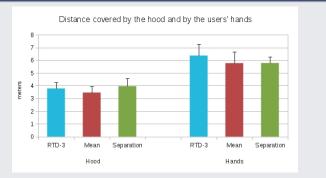


Experimental plan

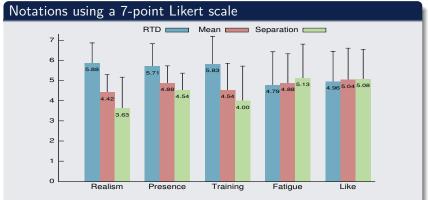
- 12 pairs (20 male, 4 female)
- Each pair of participants tested the 3 techniques in various order
- 4 tests for each technique, keeping only the 2 best results
 - $\bullet~$ Before, $\approx 1\,minute$ to practice and have explanations
- A mirror-version of the scene is randomly proposed
- Global duration \approx 40 minutes



Task completion time


- Mean is faster than RTD-3
- Status not so clear for Separation...

Number of collisions


Objective results

Distance covered by the hood and by the hands

- For the hood:
 - Mean is more efficient than RTD-3 and Separation
- For the hands:
 - Mean and Separation are more efficient than RTD-3

Subjective results

- Realism, Presence and Training are significantly better for RTD-3 than for Mean and Separation
- No significant difference for Fatique and Like

Realism, Presence and Training !

Conclusion

- Reconfigurable Tangible Device (RTD) for 3D object manipulation in virtual environments
 - Provides a physical interface (passive haptic link)
 - Can be reshaped (at any time) to match any virtual shape
 - Is made up of handles rigidly linked together by arms
 - Can be used by single or multiple users
 - Uses only 3D positions to provide 6 DoF manipulation
- Two instances of the RTD: RTD-3 and RTD-4
 - Tested within a virtual reality center
 - Used for collaborative manipulation of 3D objects
- Evaluation of the RTD-3 for collaborative manipulations
 - Is slower than other methods but at least as precise
 - Needs more movements
 - Provides users with a better sense of presence in the VE

Future work

- Make more evaluations of our techniques
 - Compare RTD vs. Mean for other tasks
 - Compare RTD-3 vs. RTD-4
- Make other RTD prototypes
 - With more manipulation points
 - Not necessarily cyclics
 - With different articulations
- Study the use of the RTD in different scenarios and use-cases
 - Object deformation according to RTD deformation
- Add real feedback to the RTD
 - Vibration, sound

Thank you

Questions?

