Evaluation of a Reconfigurable Tangible Device for Collaborative Manipulation of Objects in Virtual Reality

Laurent Aguerreche, Thierry Duval, Anatole Lécuyer

Theory and Practice of Computer Graphics
The University of Warwick — September 2011, 8th
Introduction

Context
- 3D manipulation of virtual objects
 - Is essential
 - Must match various 3D shapes
 - Must be sometimes realistic (for training)
 - Must be sometimes shared between users [Riege et al., 3DUI 2006]

⇒ We need new tools and techniques

Goals
- Improve single-user or multi-user 3D manipulation of virtual objects through new devices and techniques
Known techniques to co-manipulate objects

Tangible User Interface (TUI)

- Manipulation of a windshield
 [Salzmann, Jacobs and Fröhlich, JVRC’2009]
Known techniques to co-manipulate objects

Reconfigurable Tangible User Interfaces

- Activecubes
 [Watanabe et al., Computer in entertainment 2004]

- Senspectra [Leclerc et al., CHI 2007]
Known techniques to co-manipulate objects

The 3-Hand Manipulation Technique

- Use of 3 virtual hands (*pointers on the screen*) [Aguerreche, Duval and Lécuyer, JVRC’2009]
- Only **positions** of hands matter, not their orientations
 - 3 points define a plane, thus an orientation
- Virtual hands must remain close to their manipulation points
In our opinion...

- 3D manipulation of virtual objects through multi-hand handles is interesting
 - But how to ensure that the 3-points shape stays the same?
 - But how to ensure stability with four points which shape would not stay the same?

- Tangible user interfaces often improve 3D interaction...
 - But quite often they are designed to match only one shape
 - Or they are not rigid enough to be shared by several users
Our contribution

The Reconfigurable Tangible Device
Our contribution

The Reconfigurable Tangible Device

Evaluation of a RTD for Collaborative Manipulation of Objects in VR
The Reconfigurable Tangible Device (RTD)

Concept

- Ability to match various 3D shapes
- Can be reshaped without breaking immersion
- Rigid, to serve as a passive haptic link between users
- Two instances: RTD-3 and RTD-4
 [Aguerreche, Duval and Lécuyer, VRST’2010]
The RTD-3

Triangular RTD

- Three stretchable and rigid arms connected by a pivot
- Three points of manipulations (handles)
- Physical and reconfigurable version of the 3-hand manipulation technique

→ ensure that the 3 manipulation points keep the good shape
The RTD-4

Quadrilateral or tetrahedral RTD

- Four stretchable and rigid arms connected by linkage balls
- Four points of manipulation
- Extension of the 3-hand manipulation technique to 4 points
 → stable because the RTD maintains the shape
Evaluation of the RTD-3

Objectives
- Determine RTD-3 efficiency and acceptability compared to other techniques

Compared techniques
- RTD-3
- Mean
- Separation

Task
- A ‘pick-and-place’ task
Evaluation of the RTD-3

Collected Data

- **Objective data**
 - Time completion task
 - Number of collisions of the virtual hood with the VE
 - Distance covered by the hood
 - Distance covered by the hands of the users

- **Subjective data (using a 7-point Likert scale)**
 - **Realism** of the manipulation
 - Feeling of **Presence** in the VE
 - **Training** for the same real task
 - **Fatigue** during the manipulation
 - How much they **Liked** a technique
Three techniques compared

1st technique:
The Reconfigurable Tangible Device (RTD-3)
- Based on the 3-Hand technique

2nd technique:
Averaging movements (Mean) of two users
- Using previous positions and rotations

3rd technique:
Splitting degrees of freedom (Separation)
- Translations and rotations
Evaluation of the RTD-3

Experimental plan

- 12 pairs (20 male, 4 female)
- Each pair of participants tested the 3 techniques in various order
- 4 tests for each technique, keeping only the 2 best results
 - Before, ≈ 1 minute to practice and have explanations
- A mirror-version of the scene is randomly proposed
- Global duration ≈ 40 minutes
Objective results

Task completion time

- Mean is faster than RTD-3
- Status not so clear for Separation...
Objective results

Number of collisions

Mean and RTD-3 are better than Separation
Objective results

Distance covered by the hood and by the hands

- For the hood:
 - Mean is more efficient than RTD-3 and Separation
- For the hands:
 - Mean and Separation are more efficient than RTD-3
Subjective results

Notations using a 7-point Likert scale

- Realism, Presence and Training are significantly better for RTD-3 than for Mean and Separation
- No significant difference for Fatigue and Like
Realism, Presence and Training!
Conclusion

- Reconfigurable Tangible Device (RTD) for 3D object manipulation in virtual environments
 - Provides a physical interface (passive haptic link)
 - Can be reshaped (at any time) to match any virtual shape
 - Is made up of handles rigidly linked together by arms
 - Can be used by single or multiple users
 - Uses only 3D positions to provide 6 DoF manipulation

- Two instances of the RTD: RTD-3 and RTD-4
 - Tested within a virtual reality center
 - Used for collaborative manipulation of 3D objects

- Evaluation of the RTD-3 for collaborative manipulations
 - Is slower than other methods but at least as precise
 - Needs more movements
 - Provides users with a better sense of presence in the VE
Future work

- Make more evaluations of our techniques
 - Compare RTD vs. Mean for other tasks
 - Compare RTD-3 vs. RTD-4

- Make other RTD prototypes
 - With more manipulation points
 - Not necessarily cyclics
 - With different articulations

- Study the use of the RTD in different scenarios and use-cases
 - Object deformation according to RTD deformation

- Add real feedback to the RTD
 - Vibration, sound
Questions?
{laurent.aguerreche|thierry.duval|anatole.lecuyer}@irisa.fr
Work supported by the Part@ge project (grant ANR 06-TLOG-031)
http://www.rntl-partage.fr/