PAC-C3D
A New Software Architectural Model
for Designing 3D Collaborative Virtual Environments

Thierry Duval, Cédric Fleury
IRISA - Rennes - France
Designing 3D CVE is a complex task:

- ✔ Address 3D interaction and immersion issues
 - × Adaptation to 3D graphics API, to various displays (desktop, tablets, CAVE, ...)
- ✔ Address collaborative issues:
 - × Distribution, synchronization, consistency maintenance of the shared data

To meet all these requirements, merge:

- ✔ HCI and CSCW results about independence to graphics 2D API
- ✔ 3D CVE results about collaborative issues
Plan / Schedule

➢ Related work
 ✔ Distributed architectures for 3D CVE
 ✔ HCI and CSCW software architectural models

➢ The PAC-C3D model
 ✔ Independence to 3D graphics
 ✔ Adaptation to distribution modes

➢ PAC-C3D main features
 ✔ Drive the same abstraction with different input devices
 ✔ Visualize the same abstraction with different 3D API
 ✔ Delegate behavior to abstraction and other presentations
 ✔ Make interoperability possible between heterogeneous 3D viewers
 ✔ Maintain consistency between Virtual and Physical world

➢ Conclusion and future work
Related work

3D CVE distribution modes

- 3D CVE architectures: duplicated
Related work

3D CVE distribution modes

- 3D CVE architectures: centralized
Related work

3D CVE distribution modes

➢ 3D CVE architectures: hybrid
related work

HCI architectural models

- HCI models
Related work

CSCW architectural models

- CSCW models
 - [Ellis, Wainer 1994] ontological, coordination and user-interface models
 - Clover concept, PAC* [Calvary, Coutaz, Nigay 1997]
Related work
CSCW architectural models

- CSCW models
 - Dewan's model [Dewan 1999], Clover model [Laurillau, Nigay 2002]
Related work

Summary

➢ The need: help for designing 3D CVE
 ✔ That should not rely too much on the 3D graphics API
 ✔ That should not be too dependent from the real displays
 ✔ That should not be too dependent from the network issues

➢ First solutions:
 ✔ Static choice of the global distribution mode of the virtual environment
 ✗ With no explicit separation between network and graphic features
 ✗ With no possibility to change the distribution mode
 ✔ HCI software architectural models
 ✗ That do not impose a strong enough separation with 3D graphics
 ✗ That do not locate precisely the place to put the collaboration management

➢ These two research domains must be merged more efficiently
We propose a new interpretation of the PAC model: PAC-C3D

✔ PAC + explicit interfaces for better independence between components
We propose a new interpretation of the PAC model: PAC-C3D

- PAC + explicit management of distribution policies

The PAC-C3D model

Providing distribution policies

contains a new interpretation of the PAC model: PAC-C3D.
PAC-C3D and duplicated architecture

- PAC-C3D and duplicated architecture
The PAC-C3D model
Managing centralized architecture

- PAC-C3D and centralized architecture

Diagram showing the interaction between the server and two nodes, with steps labeled 1 to 7.
PAC-C3D and hybrid architecture

Node 1

Node 2

Node 3

The PAC-C3D model
Managing hybrid architecture
The PAC-C3D model
Creating PAC virtual objects

- PAC-C3D and AbstractFactory for creation of PAC components

- Then the controller may send messages to other nodes
 - According to its distribution policy...
The PAC-C3D model
Current state

PAC-C3D current implementation in the Collaviz framework:

- **Abstractions:**
 - ✔ Java

- **Controls:**
 - ❌ Java + tcp or http/https communication layer + choice between 3 distribution policies

- **Presentations:**
 - ❌ Java3D
 - ❌ jReality
 - ❌ jMonkey (not yet fully operational)
 - ❌ Scirenderer (the Scilab 3D rendering engine)
 - ❌ jBullet (for Physics)
The PAC-C3D model
Benefits of the PAC separation

- PAC-C3D encourages devices abstraction

2DPointer/3DRay

- 2DPointer/3DRay
 - 3DPick
 - do3DPick
 - setPosition

Java3D Visualizer

- Java3D Visualizer
 - 3DPick
 - do3DPick
 - setPosition

Wiimote

- Wiimote
 - (x,y) mouse move
 - Event and/or (z) Wheel mouse event
 - (x,y,z) Infra-red event
 - button event

- Allows to drive virtual interaction tools with any physical device...
The PAC-C3D model

Benefits of the PAC separation

- PAC-C3D and devices abstraction

2DPointer/3DRay

P (jReality)

jReality Visualizer

Wiimote

- Allows not to bother about graphics inputs in jReality...
The PAC-C3D model
Benefits of the PAC distribution

- PAC-C3D offers interoperability between heterogeneous 3D viewers

- Allows not to bother about any 3D picking with new 3D API...
The PAC-C3D model
Coupling physics engines

➢ PAC-C3D and Physics engines

Physics engines are considered as active presentation components
PAC-C3D:

- Evolution of the PAC model
 - Explicit interfaces between components
 - Very small dependency on 3D graphics API
 - Control components are also in charge of the collaboration
- Deals with different distribution modes
 - Through the control components

Tangible results through our implementation:

- Ability to build “abstract” virtual worlds
 - With quite standardized control components
 - With dynamical choice of distribution mode, for each virtual object
 - With wide choice of 3D graphics visualization
- Ability to provide abstract navigation and interaction tools
 - That can be driven by any kind of physical devices, even by a 2D GUI
- Ability to share a virtual world between heterogeneous 3D viewers
 - With possibility to exchange services between them!
Future work

➢ Take into account “active presentations” more efficiently
 ✔ Work in progress...

➢ Couple PAC-C3D objects with other kinds of “engines”
 ✔ Artificial intelligence behavior libraries

➢ Propose a kind of abstract scene-graph to describe CVE
 ✔ Should cover the most common 3D features such as X3D
 ✔ Should describe the distribution mode of each object
 ✔ Should deal with interactive and collaborative capabilities for virtual objects
 ✗ Kind of interaction for each object, how many users at the same time, ...
 ✔ Should manage access rights for interaction and collaboration
 ✗ Who can interact, who can join or interrupt an interaction...
 ✔ Should describe the interaction tools capabilities
 ✔ Should describe the physical environment of the users
 ✗ To embed it within the virtual environment, to prevent collisions, to improve collaboration, ...
Thank you for your attention

➢ Any questions?

✔ Come and see our collaborative demo tomorrow!

jReality
2 wiimotes, no picking, no physics

jReality
1 mouse, 3D picking, physics