

PAC-C3D A New Software Architectural Model for Designing 3D Collaborative Virtual Environments

Thierry Duval, Cédric Fleury
IRISA - Rennes - France

Introduction

- Designing 3D CVE is a complex task :
 - Address 3D interaction and immersion issues
 - x Adaptation to 3D graphics API, to various displays (desktop, tablets, CAVE, ...)
 - Address collaborative issues:
 - x Distribution, synchronization, consistency maintenance of the shared data
- > To meet all these requirements, merge :
 - HCI and CSCW results about independence to graphics 2D API
 - ✓ 3D CVE results about collaborative issues

Plan / Schedule

- Related work
 - Distributed architectures for 3D CVE
 - ✓ HCI and CSCW software architectural models
- The PAC-C3D model
 - Independence to 3D graphics
 - Adaptation to distribution modes
- PAC-C3D main features
 - Drive the same abstraction with different input devices
 - ✓ Visualize the same abstraction with different 3D API
 - Delegate behavior to abstraction and other presentations
 - Make interoperability possible between heterogeneous 3D viewers
 - Maintain consistency between Virtual and Physical world
- Conclusion and future work

Related work 3D CVE distribution modes

> 3D CVE architectures : duplicated

Related work 3D CVE distribution modes

> 3D CVE architectures : centralized

Related work 3D CVE distribution modes

3D CVE architectures : hybrid

Related work HCI architectural models

> HCI models

PAC [Coutaz 1987] / MVC [Reenskaug 1979] [Goldberg 1990] / Arch [UIMS 1992]

CSCW architectural models

- CSCW models
 - ✓ [Ellis, Wainer 1994] ontological, coordination and user-interface models
 - Clover concept, PAC* [Calvary, Coutaz, Nigay 1997]

CSCW architectural models

CSCW models

Dewan's model [Dewan 1999], Clover model [Laurillau, Nigay 2002]

Related work Summary

- The need : help for designing 3D CVE
 - That should not rely too much on the 3D graphics API
 - That should not be too dependent from the real displays
 - That should not be too dependent from the network issues
- > First solutions :
 - Static choice of the global distribution mode of the virtual environment
 - x With no explicit separation between network and graphic features
 - x With no possibility to change the distribution mode
 - HCI software architectural models
 - x That do not impose a strong enough separation with 3D graphics
 - x That do not locate precisely the place to put the collaboration management
- These two research domains must be merged more efficiently

The PAC-C3D model Providing explicit interfaces

- We propose a new interpretation of the PAC model: PAC-C3D
 - ✔ PAC + explicit interfaces for better independence between components

The PAC-C3D model Providing distribution policies

- We propose a new interpretation of the PAC model: PAC-C3D
 - PAC + explicit management of distribution policies

The PAC-C3D model Managing duplicated architecture

PAC-C3D and duplicated architecture

The PAC-C3D model Managing centralized architecture

PAC-C3D and centralized architecture

The PAC-C3D model Managing hybrid architecture

PAC-C3D and hybrid architecture

The PAC-C3D model Creating PAC virtual objects

PAC-C3D and AbstractFactory for creation of PAC components

- Then the controller may send messages to other nodes
 - According to its distribution policy...

The PAC-C3D model Current state

- PAC-C3D current implementation in the Collaviz framework:
 - Abstractions:
 - x Java
 - Controls:
 - x Java + tcp or http/https communication layer + choice between 3 distribution policies
 - Presentations:
 - x Java3D
 - x jReality
 - x jMonkey (not yet fully operational)
 - x Scirenderer (the Scilab 3D rendering engine)
 - x jBullet (for Physics)

The PAC-C3D model Benefits of the PAC separation

PAC-C3D encourages devices abstraction

Allows to drive virtual interaction tools with any physical device...

The PAC-C3D model Benefits of the PAC separation

PAC-C3D and devices abstraction

Allows not to bother about graphics inputs in jReality...

The PAC-C3D model Benefits of the PAC distribution

PAC-C3D offers interoperability between heterogeneous 3D viewers

Allows not to bother about any 3D picking with new 3D API...

The PAC-C3D model Coupling physics engines

PAC-C3D and Physics engines

Physics engines are considered as active presentation components

C

Conclusion

> PAC-C3D:

- Evolution of the PAC model
 - x Explicit interfaces between components
 - x Very small dependency on 3D graphics API
 - x Control components are also in charge of the collaboration
- Deals with different distribution modes
 - x Through the control components
- Tangible results through our implementation :
 - Ability to build "abstract" virtual worlds
 - x With quite standardized control components
 - x With dynamical choice of distribution mode, for each virtual object
 - x With wide choice of 3D graphics visualization
 - Ability to provide abstract navigation and interaction tools
 - x That can be driven by any kind of physical devices, even by a 2D GUI
 - Ability to share a virtual world between heterogeneous 3D viewers
 - w With possibility to exchange services between them!

Future work

- Take into account "active presentations" more efficiently
 - Work in progress...
- Couple PAC-C3D objects with other kinds of "engines"
 - Artificial intelligence behavior libraries
- Propose a kind of abstract scene-graph to describe CVE
 - Should cover the most common 3D features such as X3D
 - Should describe the distribution mode of each object
 - Should deal with interactive and collaborative capabilities for virtual objects
 - x Kind of interaction for each object, how many users at the same time, ...
 - Should manage access rights for interaction and collaboration
 - x Who can interact, who can join or interrupt an interaction...
 - Should describe the interaction tools capabilities
 - Should describe the physical environment of the users
 - x To embed it within the virtual environment, to prevent collisions, to improve collaboration, ...

Thank you for your attention

- Any questions ?
 - Come and see our collaborative demo tomorrow!

jReality

2 wilmotes, no picking, no physics

Java3D + jBullet

1 mouse, 3D picking, physics

