Collaviz®

An Asymmetric 2D Pointer / 3D Ray for 3D Interaction within Collaborative Virtual Environments

Thierry Duval – Cédric Fleury Université de Rennes 1 – INSA de Rennes IRISA – UEB

Introduction

- There were 2 projects funded by the ANR (French National Research Agency) :
 - Part@ge : Virtual Reality project about technical collaborative 3D interaction
 - SCOS V3D : 3D web oriented project about collaborative visualization of 3D scientific data
- ANR asked them to work together :
 - Two different communities had to meet and understand each other
 - They nearly succeeded ;-)
 - We showed yesterday a demo as a result of this work
 - We still work together through the CollaViz project

3D VR for Collaborative Scientific Visualization

17/06/2009

Web3D 2009 - Darmstadt

- Our end-users are used to :
 - Scientific Visualization
 - Complex 2D interaction
 - With a "classical" 2D mouse
- But our end-users are not used to :
 - Virtual Reality
 - 3D interaction
 - Especially with "exotic" input devices
 - Computer Supported Collaborative Work

Users' requirements

- Early "2D" requirements :
 - Several "2D" cursors
 - One for each user
 - Each other user's 2D cursor must be visible
- 3D requirements :
 - Several viewpoints
 - One for each user...
 - Each other user's 3D viewpoint must be visible
 - Each viewpoint can have a 3D "avatar"
 - 3D interactions that could remain the same :
 - With different kinds of physical displays
 - With different kinds of physical input devices

The problems to solve

- Seeing other users' 2D pointers :
 - Easy and useful if users share a common viewpoint
 - Useless otherwise
- Providing 3D interactions with a 2D like input Device :
 - Need to make some interpretation of the 2D inputs for 3D translations and 3D rotations
- Adapting to different kinds of physical environments for display and input devices
 Need to provide a 2D logical input device

Related work

- Making users aware of other users' 3D actions
 - To understand collaboration [Gutwin and Greenberg 1998][Fraser et al. 1999][Fraser et al. 2000]
 - Avatars for users
 - Visualization of the other users' :
 - viewing frustums
 - interaction tools
 - gestures

Related work

- 3D interaction tools and techniques
 - Virtual 3D cursor [Zhai et al. 1994]
 - Aperture based selection [Forsberg et al. 1996]
 - One-eyed cursor [Ware and Lowther 1997]
 - 3D Virtual Ray [Bowman and Hodges 1997]
 - Ray-casting technique [Poupyrev et al. 1998]
 - And many others [Bowman et al. 2004]
- Many of these egocentric metaphors are well suited for collaboration thanks to their graphical visualization

The ideas

- Provide to users a logical input device :
 - As easy to use as a 2D mouse
 - Able to provide 6 DOF interactions
 - Able to deal with several physical input devices
- Make the other users aware of the 3D interactions :
 - By providing a 3D representation of this logical input device

- The 2D pointer (such as a mouse pointer) :
 - Easy to use
- The 3D virtual ray :
 - Easy to use
 - Good awareness for collaboration
 - The projection of a 3D ray can be a spot on the screen...
- Driven by a 2 DOF input device :
 - A 2D mouse
 - Any kind of cheap joystick

C

The 3D Virtual Ray

- The 3D virtual Ray :
 - Is easy to use
 - Provides good awareness for collaboration
 - Needs head-tracking for co-location with the hand
 - Generally using precise and expensive tracking devices

2D Pointer / 3D Ray

- When driven by a strict 2D device...
- 3D coordinates of the closest extremity :
 - X and Y :
 - Provided by the 2D device
 - Fixed Z
 - Heading (around Y) :
 - Rho = atan (-Xc / Zc)
 - Pitch (around X) :
 - Theta = atan (Yc / sqrt (Xc * Xc + Zc * Zc))
 - No Roll (around Z)

2D Pointer / 3D Ray

- A 3D coordinate is computed for grabbed objects :
 - According to the movements of the 3D Ray
- 3D offsets can be proposed :
 - According to other input events :
 - Keys pressed on the keyboard
 - Mouse wheel events
 - Special buttons of a joystick
 - ...
 - X, Y, Z
 - H, P, R

Demonstration...

C Comparing the 2D Ray / 3D Pointer to other techniques

• H1 :

- The best solution for 3D interaction is immersion with head-tracking
- H2 :
 - Our 2D Pointer / 3D Ray can be as efficient than immersion with head-tracking
- H3 :
 - Immersion without head-tracking is not a good solution for 3D interaction
- H4 :
 - A semi-immersed 2D Pointer / 3D Ray can be as efficient as a 3D virtual ray without head-tracking

Experimentations

- 4 situations :
 - In front of a workstation with a mouse
 - Semi-immersed with a Nintendo Wiimote
 - Immersed with stereo and AR Tracking
 - Fully immersed with stereo and AR Tracking for the hand and the head (for colocation)

Experimentations

- Two tasks :
 - A 2D task :
 - All the objects are in the same plan, no need to adjust the depth
 - A 3D task :
 - The objects are not in the same plan, depth must be adjusted

Some raw results

About speed

 About the 36 users' preferences

Web3D 2009 - Darmstadt

Some interpretations

- H1 : Immersion is the best solution : OK
 Immersion is efficient, users enjoy it
- H2 : our solution can be as efficient : OK
 Using a mouse : the fastest and most accurate
- H3 : deficient immersion is not good : OK-
 - A little bit better than our solution in a semiimmersive context
 - Head-tracking is lacking...
- H4 : our solution can be as efficient as deficient 3D interaction : OK-

Problems with depth adjustment of small objects

Another solution has been implemented but not evaluated
 Web3D 2009 - Darmstadt

Conclusion about the 2D Pointer / 3D Ray

- It can be as efficient as usual 3D metaphors used with high-tech input devices
- It can be used :
 - In front of a workstation
 - In front of an immersive display
 - Even if it is not the best solution in this case...
- It can be driven by :
 - A mouse and a keyboard
 - Any kind of low-cost input device
 - e.g. a Nintendo Wiimote

Perspectives

- For 3D interaction :
 - Improve and evaluate the technique for the depth
 - Improve the technique to enable easy 6DOF manipulation
 - By adding some orientation offsets
 - Implement the 2D Pointer / 3D Ray as an X3D node
 - To embed it within any VE description
- For 3D Collaborative Scientific Visualization :
 - Deploy over the internet, with WEB 3D standards
 - This is the objective of the CollaViz project

Thank you for your attention. Are there any questions ?

17/06/2009

Web3D 2009 - Darmstadt

24