
Formal verification of security protocols -
the Squirrel prover

Stéphanie DELAUNE

FPS - December 11, 2023

Cryptographic protocols everywhere !

Cryptographic protocols

• distributed programs designed to secure communication (e.g.
secrecy, authentication, anonymity, . . .)

• use cryptographic primitives (e.g. encryption, signature, hash
function, . . .)

1

Cryptographic protocols everywhere !

Cryptographic protocols

• distributed programs designed to secure communication (e.g.
secrecy, authentication, anonymity, . . .)

• use cryptographic primitives (e.g. encryption, signature, hash
function, . . .)

The network is unsecure !
Communications take place over a public network like the Internet.

1

Cryptographic protocols everywhere !

Cryptographic protocols

• distributed programs designed to secure communication (e.g.
secrecy, authentication, anonymity, . . .)

• use cryptographic primitives (e.g. encryption, signature, hash
function, . . .)

They aim to secure our communications and protect our privacy.

1

Electronic passport

An e-passport is a passport with an RFID tag embedded in it.

The RFID tag stores :

• the information printed on your passport,

• a JPEG copy of your picture.

The Basic Access Control (BAC) protocol is a key establishment protocol that has been
designed to also ensure unlinkability.

ISO/IEC standard 15408
Unlinkability aims to ensure that a user may make multiple uses of a service or
resource without others being able to link these uses together.

2

Electronic passport

An e-passport is a passport with an RFID tag embedded in it.

The RFID tag stores :

• the information printed on your passport,

• a JPEG copy of your picture.

The Basic Access Control (BAC) protocol is a key establishment protocol that has been
designed to also ensure unlinkability.

ISO/IEC standard 15408
Unlinkability aims to ensure that a user may make multiple uses of a service or
resource without others being able to link these uses together.

2

An attack on the BAC protocol

An attack against unlinkability on the BAC protocol [Chothia et al., 2010]

privac
y issue

The register - Jan. 2010

• This issue was due to overly specific error messages ;

• French passports were vulnerable.

3

Contactless payment

• In the first quarter of 2020, there was a 40%
growth in contactless transactions.

• In France, 4.6 billion of transactions were
paid contactless in 2020 (40%).

Authentication with physical proximity
We want to ensure that the transaction is performed by a legitimate credit card, but
actually the one close to the reader during the transaction.

4

Contactless payment is vulnerable to relay attack

securit
y issue

The Conversation - Aug. 2016

How does it work ?

−→ specific protocols, distance bounding protocols, have been designed to mitigate
relay attack (included in the EMV specification since 2016)

5

Contactless payment is vulnerable to relay attack

securit
y issue

The Conversation - Aug. 2016

How does it work ?

−→ specific protocols, distance bounding protocols, have been designed to mitigate
relay attack (included in the EMV specification since 2016)

5

How cryptographic protocols can be attacked ?

Several levels of attacks, which may exploit :

• weaknesses of cryptographic primitives ;

• flaws in the design of the protocol ;

• bugs in implementations.

Flaws in the design of the protocol

• can be mounted even assuming perfect cryptography,
↪→ replay attack, man-in-the middle attack, . . .

• subtle and hard to detect by “eyeballing” the protocol

6

How cryptographic protocols can be attacked ?

Several levels of attacks, which may exploit :

• weaknesses of cryptographic primitives ;

• flaws in the design of the protocol ;

• bugs in implementations.

Flaws in the design of the protocol

• can be mounted even assuming perfect cryptography,
↪→ replay attack, man-in-the middle attack, . . .

• subtle and hard to detect by “eyeballing” the protocol

6

Two additional examples of logical attacks

An authentication flaw on the Needham Schroeder protocol

A→ B : {A,NA}pub(B)

B → A : {NA,NB}pub(A)

A→ B : {NB}pub(B)

A→ B : {A,NA}pub(B)

B → A : {NA,NB ,B}pub(A)

A→ B : {NB}pub(B)

NS protocol (1978) NS-Lowe protocol (1995)

FREAK attack by Barghavan et al. (2015)

A logical flaw that allows a man-in-the-middle attacker to down-
grade connections from ’strong’ RSA to ’export grade’ RSA.

−→ websites affected by the vulnerability included those from the US federal
government

7

Two additional examples of logical attacks

An authentication flaw on the Needham Schroeder protocol

A→ B : {A,NA}pub(B)

B → A : {NA,NB}pub(A)

A→ B : {NB}pub(B)

A→ B : {A,NA}pub(B)

B → A : {NA,NB ,B}pub(A)

A→ B : {NB}pub(B)

NS protocol (1978) NS-Lowe protocol (1995)

FREAK attack by Barghavan et al. (2015)

A logical flaw that allows a man-in-the-middle attacker to down-
grade connections from ’strong’ RSA to ’export grade’ RSA.

−→ websites affected by the vulnerability included those from the US federal
government 7

How to verify the absence of logical flaws ?

• dissect the protocol and test their resilience against
well-known attacks ;
−→ this is not sufficient !

• perform a manual security analysis
−→ this is error-prone !

Our approach : formal verification using tools
We aim at providing a rigorous framework and verification tools (e.g.
Squirrel) to analyse security protocols and find their logical flaws.

8

How to verify the absence of logical flaws ?

• dissect the protocol and test their resilience against
well-known attacks ;
−→ this is not sufficient !

• perform a manual security analysis
−→ this is error-prone !

Our approach : formal verification using tools
We aim at providing a rigorous framework and verification tools (e.g.
Squirrel) to analyse security protocols and find their logical flaws.

8

How to verify the absence of logical flaws ?

• dissect the protocol and test their resilience against
well-known attacks ;
−→ this is not sufficient !

• perform a manual security analysis
−→ this is error-prone !

Our approach : formal verification using tools
We aim at providing a rigorous framework and verification tools (e.g.
Squirrel) to analyse security protocols and find their logical flaws.

8

Outline

• I. Symbolic versus Computational model

• II. A novel approach : the Squirrel prover

9

Part I

Two main families of models :
symbolic versus computational

10

Two main families of models

Symbolic models Computational models
[Dolev & Yao, 81] [Goldwasser & Micali, 84]

Messages are terms. Messages are bitstrings.

What the attacker can do. What the attacker can not do.
Everything else is allowed !1

Unclear guarantees. Stronger guarantees.

Amenable to automation. Harder to automate.

e.g. Proverif, Tamarin e.g. CryptoVerif

1 The attacker is a probabilistic polynomial-time Turing machine.

11

Two main families of models

Symbolic models Computational models
[Dolev & Yao, 81] [Goldwasser & Micali, 84]

Messages are terms. Messages are bitstrings.

What the attacker can do. What the attacker can not do.
Everything else is allowed !1

Unclear guarantees. Stronger guarantees.

Amenable to automation. Harder to automate.

e.g. Proverif, Tamarin e.g. CryptoVerif

1 The attacker is a probabilistic polynomial-time Turing machine. 11

Example : Basic Hash protocol

−→ [Weis et al., 03]

• Each tag stores a secret key k that is never
updated.

• Readers have access to a database DB
containing all the keys.

Security properties

• authentication : when the reader accepts a
message, it has indeed been sent by a
legitimate tag ;

• unlinkability : it is not possible to track tags.

12

Protocols as processes

−→ a programming language with constructs for concurrency and communication

(applied-pi calculus [Abadi & Fournet, 01])

P,Q := 0 null process
| in(c , x);P input
| out(c ,M);P output
| new n;P name generation
| if M = N then P else Q conditional
| !P replication
| (P | Q) parallel composition

| insert tbl(M);P insertion
| get tbl(x) st. M = N in P else Q lookup
| . . .

13

Protocols as processes

−→ a programming language with constructs for concurrency and communication

(applied-pi calculus [Abadi & Fournet, 01])

P,Q := 0 null process
| in(c , x);P input
| out(c ,M);P output
| new n;P name generation
| if M = N then P else Q conditional
| !P replication
| (P | Q) parallel composition
| insert tbl(M);P insertion
| get tbl(x) st. M = N in P else Q lookup
| . . .

13

Basic Hash protocol in the symbolic setting

−→ An abstract model, also known as Dolev-Yao model [Dolev &Yao, 81]

Modelling messages/computations

Σ = {〈 〉, proj1, proj2, h}
E = {proj1(〈x1, x2〉) = x1, proj2(〈x1, x2〉) = x2}

• all the function symbols are public (available to the attacker) ;
• no equation regarding the hash function.

Modelling protocols as processes, roughly a labelled transition system

! R | (! new k; insert DB(k); ! T(k))
where :

• T(k) = new n; out(c , 〈n, h(n, k)〉).
• R = in(c , y); get db(k) st. h(proj1(y), k) = proj2(y) in out(c , ok) else out(c, ko).

14

Basic Hash in the computational setting

−→ The cryptographer’s mathematical model for provable security

[Goldwasser & Micali, 84]

In computational model, properties only hold with overwhelming probability, under
some assumptions on cryptographic primitives

Some usual cryptographic assumptions for a hash function :

• Collision Resistance (CR) : « h(n, k) = h(n′, k) implies n = n′ »

• PseudoRandom Function (PRF) : « h(n, k) ∼ r »

• Existential UnForgeability (EUF) : . . .

15

Basic Hash in the computational setting : authentication

Existential UnForgeability (EUF)
There is a negligible probability of success for the following game, for any attacker A
(i.e. any PPTM) :

• Draw k uniformly at random.

• 〈u, v〉 := AO where O is the oracle x → h(x , k).

• Succeed if u = h(v , k) and O has not been called on v .

Security proof : « Reader accepts m implies m emitted by a legitimate tag. »

• Assume reader accepts some m such that proj2(m) = h(proj1(m), ki) for some i .
• By unforgeability, proj1(m) = nT for some session of tag Ti .
• The two projections of m are the two projections of the output of Ti . �

16

Basic Hash in the computational setting : authentication

Existential UnForgeability (EUF)
There is a negligible probability of success for the following game, for any attacker A
(i.e. any PPTM) :

• Draw k uniformly at random.

• 〈u, v〉 := AO where O is the oracle x → h(x , k).

• Succeed if u = h(v , k) and O has not been called on v .

Security proof : « Reader accepts m implies m emitted by a legitimate tag. »

• Assume reader accepts some m such that proj2(m) = h(proj1(m), ki) for some i .
• By unforgeability, proj1(m) = nT for some session of tag Ti .
• The two projections of m are the two projections of the output of Ti . �

16

Limitations of symbolic model

• Security assumptions can be imprecise (cf. EUF and PRF).

• Obtaining computational guarantees from the symbolic model is hard !

A fundamental problem
One should not specify what the attacker can do but what is safe.

The CCSA (Computational Complete Symbolic Attacker) approach,
now implemented in the Squirrel prover, does just this, while keeping
the modelling of messages as (abstract) terms with a computational
semantics, to allow verification via automated reasoning.

17

Limitations of symbolic model

• Security assumptions can be imprecise (cf. EUF and PRF).

• Obtaining computational guarantees from the symbolic model is hard !

A fundamental problem
One should not specify what the attacker can do but what is safe.

The CCSA (Computational Complete Symbolic Attacker) approach,
now implemented in the Squirrel prover, does just this, while keeping
the modelling of messages as (abstract) terms with a computational
semantics, to allow verification via automated reasoning.

17

Brief comparison of some exising verification tools

D
ee
pS

ec
/A

ki
ss

P
ro
V
er
if/

G
Sv

er
if

Ta
m
ar
in

Sq
ui
rr
el

C
ry
pt
oV

er
if

Ea
sy
C
ry
pt

unbounded traces
computational attacker
concrete security bounds
native concurrency
global mutable states
automation ↑ ↗ ↗ ↘ ↗ ↓

Disclaimer :
Squirrel is less mature
than any of the other
tools

18

Part II

A Novel approach :
the Squirrel prover

19

What is Squirrel ?

A proof assistant for veryfing cryptographic protocols in the
computational model.

https://squirrel-prover.github.io/

It is based on the CCSA approach :
G. Bana & H. Comon. CCS 2014.
A Computationally Complete Symbolic Attacker for Equivalence
Properties.

20

https://squirrel-prover.github.io/

History of Squirrel

Some papers related to Squirrel :

• 2012 : Towards Unconditional Soundess : CCSA Bana & Comon
• 2014 : CCSA for equivalence properties Bana & Comon
• 2017 : Some manual proofs of RFID protocols Comon & Koutsos
• 2021 : Introduction of the meta-logic and the Squirrel prover Baelde et al.
• 2022 : Mutable states and tactics to reason about them Baelde et al.

Whats’ new in 2023
A user manual and you can now play with Squirrel without installing it !

https://squirrel-prover.github.io/jsquirrel/

Current team : D. Baelde, A. Dallon, S. Delaune, C. Fontaine, C. Hérouard, C.
Jacomme, A. Koutsos, J. Lallemand, S. Riou, J. Sauvage, G. Scerri, . . .

−→ most of these people are at IRISA, LMF, and Inria Paris. 21

https://squirrel-prover.github.io/jsquirrel/

Squirrel prover

A tool for verifying security protocols in the computational model which takes in input :

• protocols written in a process algebra (as in symbolic models), and internally
translated into a system of actions ;

• reachability and equivalence properties.

Squirrel is a proof assistant, i.e. users prove goals using sequence of tactics :

• logical tactics : apply, intro, rewrite, . . .

• cryptographic tactics : fresh, prf, euf, collision-resistant, . . .

−→ All the reasoning about probabilities are hidden to the user, and each tactic is
proved to be sound (manually once and for all).

22

Squirrel prover

A tool for verifying security protocols in the computational model which takes in input :

• protocols written in a process algebra (as in symbolic models), and internally
translated into a system of actions ;

• reachability and equivalence properties.

Squirrel is a proof assistant, i.e. users prove goals using sequence of tactics :

• logical tactics : apply, intro, rewrite, . . .

• cryptographic tactics : fresh, prf, euf, collision-resistant, . . .

−→ All the reasoning about probabilities are hidden to the user, and each tactic is
proved to be sound (manually once and for all).

22

Going back to the Basic Hash protocol

The process is immediately translated into a system of actions, i.e. a set of triples :

(input ; test ; output). 23

Basic Hash as a system of actions

Tag is modelled with one action, namely T [i , k] :

• input@T [i , k] ;
• true ; and
• output@T [i , k] = 〈nT [i , k], h(nT [i , k], key [i])〉.

Reader is modelled with two actions, namely R1[j] and R2[j] :

• input@R1[j] ;
• ∃i .snd(input@R1[j]) = h(fst(input@R1[j]), key [i]) ;
• output@R1[j] = ok ;

• input@R2[j] ;
• ∀i .snd(input@R2[j]) 6= h(fst(input@R2[j]), key [i]) ;
• output@R2[j] = ko.

24

Basic Hash as a system of actions

Tag is modelled with one action, namely T [i , k] :

• input@T [i , k] ;
• true ; and
• output@T [i , k] = 〈nT [i , k], h(nT [i , k], key [i])〉.

Reader is modelled with two actions, namely R1[j] and R2[j] :

• input@R1[j] ;
• ∃i .snd(input@R1[j]) = h(fst(input@R1[j]), key [i]) ;
• output@R1[j] = ok ;

• input@R2[j] ;
• ∀i .snd(input@R2[j]) 6= h(fst(input@R2[j]), key [i]) ;
• output@R2[j] = ko.

24

Basic Hash - Authentication

−→ The proof script contains logical tactics (here intro, exists) and also a crypto tactic
(here euf).

25

Logical reasoning

−→ All tactics have been proved to be sound manually once and for all.

For crypto axioms, they have been designed first at the base logic level (CCSA), and
then lift at the meta-logic level, and their soundness have been established in two steps.

Example :

26

Squirrel offline Demo - authentication on Basic Hash

27

Squirrel offline Demo - authentication on Basic Hash

27

Squirrel offline Demo - authentication on Basic Hash

27

Squirrel offline Demo - authentication on Basic Hash

27

Squirrel offline Demo - authentication on Basic Hash

27

Squirrel offline Demo - authentication on Basic Hash

27

Squirrel offline Demo - authentication on Basic Hash

27

Benchmark

Protocol name LoC Assumptions Security Properties
Basic Hash 100 Prf, Euf authentication & unlinkability
Hash Lock 130 Prf, Euf authentication & unlinkability

LAK (with pairs) 250 Prf, Euf authentication & unlinkability
MW 300 Prf, Euf, Xor authentication & unlinkability

Feldhofer 270 Enc-Kp, Int-Ctxt authentication & unlinkability
Private authentication 100 Cca1, Enc-Kp anonymity

Signed DDH [ISO 9798-3] 240 Euf, Ddh authentication & strong secrecy
CANAuth 450 Euf authentication
SLK06 80 Euf authentication

YPLRK05 160 Euf authentication

−→ between 80 and 450 LoC (for the model and the proof script).

28

Conclusion

29

Formal symbolic verification

Take away :

• the two main tools today are ProVerif and Tamarin ;
• many success stories regarding reachability properties : they are able to analyse

quite complex protocols and scenarios (mostly automatically)

Work in progress :

• allow some user interactions to help the prover ;
−→ available in Tamarin from the beginning, and now available also in ProVerif
[Blanchet et al., S&P’22]

• some equivalence properties (e.g. unlinkability) are still challenging to analyse ;
• each tool has its own specificities (syntax, semantics, own features, . . .) : a need

for a platform to ease interactions
−→ Sapic+ platform [Cheval et al., USENIX’22] 30

Future developments on Squirrel

Squirrel is a new tool and it remains a lot to do . . .

Some work in progress :

more complex protocols ;

more powerful automation using e.g. SMT solvers ; (PhD of S. Riou)

study of the translation from processes to actions ; (PhD of C. Hérouard)

formally deriving crypto axioms / tactics from games ; (PhD of J. Sauvage)

analysing post-quantum or hybrid protocols

. . .

31

Advertisement

PEPR Cybersecurity (2022-2028)
Partners : 5 teams in France (Nancy, Paris, Rennes, Sophia)

https://pepr-cyber-svp.cnrs.fr

Job offers :

• PhDs

• Post-docs

• Engineers

−→ contact me : stephanie.delaune@irisa.fr 32

https://pepr-cyber-svp.cnrs.fr

