
Proving unlinkability using ProVerif

through desynchronized bi-processes

Stéphanie Delaune

Univ Rennes, CNRS, IRISA, Spicy team

CORGIS - February 6, 2023

Formal verification of cryptographic protocols

Security protocol design is critical and error-prone as illustrated by

many attacks: FREAK, Logjam, . . .

Use formal methods to improve confidence:

• prove the absence of attacks under certain assumptions; or

• identify weaknesses.

Many verification tools already exist:

• Proverif, Tamarin, AKISS, DeepSec, AVISPA, Squirrel, . . .

1 / 21

Running example: Basic Hash protocol

• Each tag stores a secret key k that is never

updated.

• Readers have access to a database DB

containing all the keys.

2 / 21

ProVerif in a nutshell

−→ mainly developped by Bruno Blanchet (Prosecco team, Inria Paris)

http://proverif.inria.fr/

An automatic tool to analyse protocols in the symbolic model.

• successfully used for many large-scale case studies: TLS 1.3, . . .

• protocols are modelled using a process algebra;

• both reachability and equivalence-based properties;

• security analysis done for an unbounded number of sessions;

• No miracle: the tool may return cannot be proved or never terminates.

3 / 21

http://proverif.inria.fr/

Unlinkability

(ISO/IEC 15408)

“Ensuring that a user may make multiple uses of a service or

resource without others being able to link these uses together.”

Informally, an observer/attacker can not observe the difference between:

1. a situation where the same device/tag may be used twice (or even more);

2. a situation where each device/tag is used at most once.

More formally,
! new k .insert DB(k).

(
! Tag(k) | ! Reader

)
?
≈

! new k .insert DB(k).
(

Tag(k) | ! Reader
)

−→ the notion of equivalence remains to be defined

4 / 21

Unlinkability

(ISO/IEC 15408)

“Ensuring that a user may make multiple uses of a service or

resource without others being able to link these uses together.”

Informally, an observer/attacker can not observe the difference between:

1. a situation where the same device/tag may be used twice (or even more);

2. a situation where each device/tag is used at most once.

More formally,
! new k .insert DB(k).

(
! Tag(k) | ! Reader

)
?
≈

! new k .insert DB(k).
(

Tag(k) | ! Reader
)

−→ the notion of equivalence remains to be defined

4 / 21

Unlinkability

(ISO/IEC 15408)

“Ensuring that a user may make multiple uses of a service or

resource without others being able to link these uses together.”

Informally, an observer/attacker can not observe the difference between:

1. a situation where the same device/tag may be used twice (or even more);

2. a situation where each device/tag is used at most once.

More formally,
! new k .insert DB(k).

(
! Tag(k) | ! Reader

)
?
≈

! new k .insert DB(k).
(

Tag(k) | ! Reader
)

−→ the notion of equivalence remains to be defined
4 / 21

State-of-the art

ProVerif (but also Tamarin) can only prove a restricted form of equivalence, namely

diff-equivalence, which is too limitating to establish unlinkability.

Some solutions to overcome this limitation:

• Establish unlinkability using an indirect approach (sufficient conditions)

e.g. [Solène Moreau PhD thesis, 21]

• Use restrictions: a feature available in Tamarin (2005), and in ProVerif (2022).

Tamarin: incorrectly handled for equivalence1, now formally justify for Type-0

(very specific class) [Paradzik, 22]

ProVerif: Need to be manipulated with a lot of care. Restrictions for equivalence

discard bi-traces!

1https://github.com/tamarin-prover/tamarin-prover/issues/324
5 / 21

State-of-the art

ProVerif (but also Tamarin) can only prove a restricted form of equivalence, namely

diff-equivalence, which is too limitating to establish unlinkability.

Some solutions to overcome this limitation:

• Establish unlinkability using an indirect approach (sufficient conditions)

e.g. [Solène Moreau PhD thesis, 21]

• Use restrictions: a feature available in Tamarin (2005), and in ProVerif (2022).

Tamarin: incorrectly handled for equivalence1, now formally justify for Type-0

(very specific class) [Paradzik, 22]

ProVerif: Need to be manipulated with a lot of care. Restrictions for equivalence

discard bi-traces!

1https://github.com/tamarin-prover/tamarin-prover/issues/324
5 / 21

State-of-the art

ProVerif (but also Tamarin) can only prove a restricted form of equivalence, namely

diff-equivalence, which is too limitating to establish unlinkability.

Some solutions to overcome this limitation:

• Establish unlinkability using an indirect approach (sufficient conditions)

e.g. [Solène Moreau PhD thesis, 21]

• Use restrictions: a feature available in Tamarin (2005), and in ProVerif (2022).

Tamarin: incorrectly handled for equivalence1, now formally justify for Type-0

(very specific class) [Paradzik, 22]

ProVerif: Need to be manipulated with a lot of care. Restrictions for equivalence

discard bi-traces!

1https://github.com/tamarin-prover/tamarin-prover/issues/324
5 / 21

Our contributions

We design a transformation (in 2 steps) allowing us to transform a ProVerif model M
into another one M′ such that:

If ProVerif succeeds on M′ then equivalence holds on M.

Our transformation contains two main steps:

1. We dissociate the two processes that forms that bi-process.

Possible using the option: allowDiffPatterns

2. We generate some axioms (and prove them correct) to help the analysis.

The transformation has been implemented and sucessfully used on several case studies.

6 / 21

Our contributions

We design a transformation (in 2 steps) allowing us to transform a ProVerif model M
into another one M′ such that:

If ProVerif succeeds on M′ then equivalence holds on M.

Our transformation contains two main steps:

1. We dissociate the two processes that forms that bi-process.

Possible using the option: allowDiffPatterns

2. We generate some axioms (and prove them correct) to help the analysis.

The transformation has been implemented and sucessfully used on several case studies.

6 / 21

High-level view of ProVerif

Protocols as processes

−→ a programming language with constructs for concurrency and communication

(applied-pi calculus [Abadi & Fournet, 01])

P,Q := 0 null process

| in(c, x);P input

| out(c,M);P output

| new n;P name generation

| let x = D in P else Q conditional

| !P replication

| (P | Q) parallel composition

| event(e);P event

| insert tbl(M);P insertion

| get tbl(x) st. D in P else Q lookup

| . . .

7 / 21

Protocols as processes

−→ a programming language with constructs for concurrency and communication

(applied-pi calculus [Abadi & Fournet, 01])

P,Q := 0 null process

| in(c, x);P input

| out(c,M);P output

| new n;P name generation

| let x = D in P else Q conditional

| !P replication

| (P | Q) parallel composition

| event(e);P event

| insert tbl(M);P insertion

| get tbl(x) st. D in P else Q lookup

| . . .
7 / 21

Messages/Computations as terms

Terms are built over a set of names N , and function symbols Σc ∪ Σd equipped with

an equational theory E and rewriting rules for destructors.

Example:

• constructor symbols: Σc = {〈 〉, proj1, proj2, h, true};
• E = {proj1(〈x1, x2〉) = x1, proj2(〈x1, x2〉) = x2};
• destructor symbols: Σd = {eq};
• rewriting rule: eq(x , x)→ true.

• all the function symbols are public (available to the attacker);

Let Φ = {w 7→ 〈n, h(n, k)〉}, and R = eq(h(proj1(w), k), proj2(w)). We have that

RΦ =E eq(h(n, k), h(n, k))→ ok (written RΦ⇓ = ok)

8 / 21

Messages/Computations as terms

Terms are built over a set of names N , and function symbols Σc ∪ Σd equipped with

an equational theory E and rewriting rules for destructors.

Example:

• constructor symbols: Σc = {〈 〉, proj1, proj2, h, true};
• E = {proj1(〈x1, x2〉) = x1, proj2(〈x1, x2〉) = x2};
• destructor symbols: Σd = {eq};
• rewriting rule: eq(x , x)→ true.

• all the function symbols are public (available to the attacker);

Let Φ = {w 7→ 〈n, h(n, k)〉}, and R = eq(h(proj1(w), k), proj2(w)). We have that

RΦ =E eq(h(n, k), h(n, k))→ ok (written RΦ⇓ = ok)

8 / 21

Messages/Computations as terms

Terms are built over a set of names N , and function symbols Σc ∪ Σd equipped with

an equational theory E and rewriting rules for destructors.

Example:

• constructor symbols: Σc = {〈 〉, proj1, proj2, h, true};
• E = {proj1(〈x1, x2〉) = x1, proj2(〈x1, x2〉) = x2};
• destructor symbols: Σd = {eq};
• rewriting rule: eq(x , x)→ true.

• all the function symbols are public (available to the attacker);

Let Φ = {w 7→ 〈n, h(n, k)〉}, and R = eq(h(proj1(w), k), proj2(w)). We have that

RΦ =E eq(h(n, k), h(n, k))→ ok (written RΦ⇓ = ok)
8 / 21

Going back to Basic Hash

We consider:

• T(k) = new n; out(c, 〈n, h(n, k)〉).

• R =

in(c, y); get db(k) st. eq(h(proj1(y), k), proj2(y)) in out(c , ok) else out(c , ko).

The real system corresponds to the following process:

! R | (! new k ; insert keys(k); ! T(k))

9 / 21

Semantics (some selected rules)

Labelled transition system over configurations:

(P ; Φ;S)

multiset of processes
frame

knowledge of the attacker

store

content of the database

Out ({out(c ,M);P}] P; Φ;S)
out(c,wi)−−−−−→ ({P}] P; Φ ∪ {wi 7→ M};S) with i = |Φ|

In ({in(c , x);P}] P; Φ;S)
in(c,R)−−−−→ ({P{x 7→ M}}] P; Φ;S) with RΦ⇓ =E M

Get-T ({get tbl(x) st. D in P else Q}] P; Φ;S)
τ−→ ({P{x 7→ M}}] P; Φ;S)

with tbl(M) ∈ S, and D{x 7→ M}⇓ =E true

−→ traces(K) = the set of execution traces starting from the configuration K .

10 / 21

Semantics (some selected rules)

Labelled transition system over configurations:

(P ; Φ;S)

multiset of processes
frame

knowledge of the attacker

store

content of the database

Out ({out(c ,M);P}] P; Φ;S)
out(c,wi)−−−−−→ ({P}] P; Φ ∪ {wi 7→ M};S) with i = |Φ|

In ({in(c , x);P}] P; Φ;S)
in(c,R)−−−−→ ({P{x 7→ M}}] P; Φ;S) with RΦ⇓ =E M

Get-T ({get tbl(x) st. D in P else Q}] P; Φ;S)
τ−→ ({P{x 7→ M}}] P; Φ;S)

with tbl(M) ∈ S, and D{x 7→ M}⇓ =E true

−→ traces(K) = the set of execution traces starting from the configuration K .

10 / 21

Semantics (some selected rules)

Labelled transition system over configurations:

(P ; Φ;S)

multiset of processes
frame

knowledge of the attacker

store

content of the database

Out ({out(c ,M);P}] P; Φ;S)
out(c,wi)−−−−−→ ({P}] P; Φ ∪ {wi 7→ M};S) with i = |Φ|

In ({in(c , x);P}] P; Φ;S)
in(c,R)−−−−→ ({P{x 7→ M}}] P; Φ;S) with RΦ⇓ =E M

Get-T ({get tbl(x) st. D in P else Q}] P; Φ;S)
τ−→ ({P{x 7→ M}}] P; Φ;S)

with tbl(M) ∈ S, and D{x 7→ M}⇓ =E true

−→ traces(K) = the set of execution traces starting from the configuration K .
10 / 21

Trace equivalence

Static equivalence between frames: Φ ∼s Φ′.

Any test that holds in Φ also holds in Φ′ (and conversely).

Example: {w1 7→ 〈n, h(n, k)〉; w2 7→ k} 6∼s {w1 7→ 〈n, h(n, k)〉; w2 7→ k ′}

−→ with the test h(proj1(w1),w2)
?
= proj2(w1).

Trace equivalence between configurations: K ≈t K
′.

For any execution trace K
tr−→ (P; Φ;S) there exists an execution K ′ tr−→ (P ′; Φ′;S ′)

such that Φ ∼s Φ′ (and conversely)

Example:

! R | (! new k ; insert keys(k); ! T(k)) ≈t ! R | (! new k ; insert keys(k); T(k))

−→ an equivalence that ProVerif (and also Tamarin) is not able to prove directly.

11 / 21

Trace equivalence

Static equivalence between frames: Φ ∼s Φ′.

Any test that holds in Φ also holds in Φ′ (and conversely).

Example: {w1 7→ 〈n, h(n, k)〉; w2 7→ k} 6∼s {w1 7→ 〈n, h(n, k)〉; w2 7→ k ′}

−→ with the test h(proj1(w1),w2)
?
= proj2(w1).

Trace equivalence between configurations: K ≈t K
′.

For any execution trace K
tr−→ (P; Φ;S) there exists an execution K ′ tr−→ (P ′; Φ′;S ′)

such that Φ ∼s Φ′ (and conversely)

Example:

! R | (! new k ; insert keys(k); ! T(k)) ≈t ! R | (! new k ; insert keys(k); T(k))

−→ an equivalence that ProVerif (and also Tamarin) is not able to prove directly.

11 / 21

Going back to diff-equivalence

How it works (or not)?

• form a bi-process B using the operator choice[ML,MR];

• both sides of the bi-processes have to evolve simulatenously to be declared in

diff-equivalence (and this implies fst(B) ≈t snd(B))

−→ the semantics is given by a labelled transition system over bi-configurations

(P; Φ;S) where messages and computations may contain the choice operator.

Example - Basic Hash protocol

B =!R | (! new k; !new kk; insert db(choice[k , kk]); T(choice[k, kk])

We have that

• fst(B) = !R | ! new k; !insert db(k); T(k) (* real situation *)

• snd(B) =!R | ! ! new kk; insert db(kk); T(kk) (* ideal situation *)

12 / 21

Going back to diff-equivalence

How it works (or not)?

• form a bi-process B using the operator choice[ML,MR];

• both sides of the bi-processes have to evolve simulatenously to be declared in

diff-equivalence (and this implies fst(B) ≈t snd(B))

−→ the semantics is given by a labelled transition system over bi-configurations

(P; Φ;S) where messages and computations may contain the choice operator.

Example - Basic Hash protocol

B =!R | (! new k; !new kk; insert db(choice[k , kk]); T(choice[k, kk])

We have that

• fst(B) = !R | ! new k; !insert db(k); T(k) (* real situation *)

• snd(B) =!R | ! ! new kk; insert db(kk); T(kk) (* ideal situation *)

12 / 21

Why diff-equivalence is too strong?

B = !R | (! new k; !new kk; insert db(choice[k , kk]); T(choice[k, kk])

Let’s consider a scenario with:

• 1 reader;

• 2 tags: T (choice[k , kk1]),

and T (choice[k , kk2]).

The frame contains: w1 = 〈n1, h(n, choice[k , kk1])〉.

DB left right

line 1 k kk1

line 2 k kk2

On line 2, with w1 in input for process R, the bi-process B will diverge.

R = in(c , y); get db(k) st. eq(h(proj1(y), k), proj2(y)) in out(c , ok) else out(c , ko).

−→ Thus, Proverif returns cannot be proved on this example.

13 / 21

Why diff-equivalence is too strong?

B = !R | (! new k; !new kk; insert db(choice[k , kk]); T(choice[k, kk])

Let’s consider a scenario with:

• 1 reader;

• 2 tags: T (choice[k , kk1]),

and T (choice[k , kk2]).

The frame contains: w1 = 〈n1, h(n, choice[k , kk1])〉.

DB left right

line 1 k kk1

line 2 k kk2

On line 2, with w1 in input for process R, the bi-process B will diverge.

R = in(c , y); get db(k) st. eq(h(proj1(y), k), proj2(y)) in out(c , ok) else out(c , ko).

−→ Thus, Proverif returns cannot be proved on this example.

13 / 21

Why diff-equivalence is too strong?

B = !R | (! new k; !new kk; insert db(choice[k , kk]); T(choice[k, kk])

Let’s consider a scenario with:

• 1 reader;

• 2 tags: T (choice[k , kk1]),

and T (choice[k , kk2]).

The frame contains: w1 = 〈n1, h(n, choice[k , kk1])〉.

DB left right

line 1 k kk1

line 2 k kk2

On line 2, with w1 in input for process R, the bi-process B will diverge.

R = in(c , y); get db(k) st. eq(h(proj1(y), k), proj2(y)) in out(c , ok) else out(c , ko).

−→ Thus, Proverif returns cannot be proved on this example.

13 / 21

Beyond ProVerif 2.00 [Blanchet et al., 2022]

−→ support for axioms, lemmas, and restrictions as in Tamarin.

Syntax: This gives the user the possibility to write correspondence queries of the form:

event(e1) ∧ . . . ∧ event(en)⇒ ψ

with ψ,ψ′ = true | false | event(e) | M = N | M 6= N | ψ ∧ ψ′ | ψ ∨ ψ′

Semantics: An execution trace T satisfies ρ (noted T ` ρ) if whenever T contains

instances of event(ei) at some timepoint τi for each i , then T also satisfies ψ.

Example
event(once(xid , xsid)) ∧ event(once(xid , ysid)) =⇒ xsid = ysid

Warning! When used on a biprocess, a (bi)restriction will discard bi-execution.

event(once(choice[, xid], choice[, xsid]))

∧ event(once(choice[, xid], choice[, ysid])) =⇒ xsid = ysid

14 / 21

Beyond ProVerif 2.00 [Blanchet et al., 2022]

−→ support for axioms, lemmas, and restrictions as in Tamarin.

Syntax: This gives the user the possibility to write correspondence queries of the form:

event(e1) ∧ . . . ∧ event(en)⇒ ψ

with ψ,ψ′ = true | false | event(e) | M = N | M 6= N | ψ ∧ ψ′ | ψ ∨ ψ′

Semantics: An execution trace T satisfies ρ (noted T ` ρ) if whenever T contains

instances of event(ei) at some timepoint τi for each i , then T also satisfies ψ.

Example
event(once(xid , xsid)) ∧ event(once(xid , ysid)) =⇒ xsid = ysid

Warning! When used on a biprocess, a (bi)restriction will discard bi-execution.

event(once(choice[, xid], choice[, xsid]))

∧ event(once(choice[, xid], choice[, ysid])) =⇒ xsid = ysid

14 / 21

Beyond ProVerif 2.00 [Blanchet et al., 2022]

−→ support for axioms, lemmas, and restrictions as in Tamarin.

Syntax: This gives the user the possibility to write correspondence queries of the form:

event(e1) ∧ . . . ∧ event(en)⇒ ψ

with ψ,ψ′ = true | false | event(e) | M = N | M 6= N | ψ ∧ ψ′ | ψ ∨ ψ′

Semantics: An execution trace T satisfies ρ (noted T ` ρ) if whenever T contains

instances of event(ei) at some timepoint τi for each i , then T also satisfies ψ.

Example
event(once(xid , xsid)) ∧ event(once(xid , ysid)) =⇒ xsid = ysid

Warning! When used on a biprocess, a (bi)restriction will discard bi-execution.

event(once(choice[, xid], choice[, xsid]))

∧ event(once(choice[, xid], choice[, ysid])) =⇒ xsid = ysid
14 / 21

Desynchronized bi-processes

We consider an extension of standard bi-processes using the allowDiffPatterns

option available in ProVerif since 2018.

−→ systematic use of choice[xL, xR] for variable bindings in let, get, and input.

Example: B = in(c , choice[xL, xR]); out(c , 〈xL, xR〉).

−→ a standard bi-process can be written as a separated bi-process, i.e.

vars(fst(B)) ∩ vars(snd(B)) = ∅.

Example: B is not separated. Actually, fst(B) is not closed, and makes no sense.

Non-separated and closed bi-processes have a well-defined semantics in Proverif and

we can study whether diff-equivalence holds on them. However, this does not imply:

fst(B) ≈t snd(B)

15 / 21

Desynchronized bi-processes

We consider an extension of standard bi-processes using the allowDiffPatterns

option available in ProVerif since 2018.

−→ systematic use of choice[xL, xR] for variable bindings in let, get, and input.

Example: B = in(c , choice[xL, xR]); out(c , 〈xL, xR〉).

−→ a standard bi-process can be written as a separated bi-process, i.e.

vars(fst(B)) ∩ vars(snd(B)) = ∅.

Example: B is not separated. Actually, fst(B) is not closed, and makes no sense.

Non-separated and closed bi-processes have a well-defined semantics in Proverif and

we can study whether diff-equivalence holds on them. However, this does not imply:

fst(B) ≈t snd(B)

15 / 21

Desynchronized bi-processes

We consider an extension of standard bi-processes using the allowDiffPatterns

option available in ProVerif since 2018.

−→ systematic use of choice[xL, xR] for variable bindings in let, get, and input.

Example: B = in(c , choice[xL, xR]); out(c , 〈xL, xR〉).

−→ a standard bi-process can be written as a separated bi-process, i.e.

vars(fst(B)) ∩ vars(snd(B)) = ∅.

Example: B is not separated. Actually, fst(B) is not closed, and makes no sense.

Non-separated and closed bi-processes have a well-defined semantics in Proverif and

we can study whether diff-equivalence holds on them. However, this does not imply:

fst(B) ≈t snd(B)

15 / 21

Our transformation

In a nutshell

Main Goal

Transform a ProVerif model M of unlinkability into another model M′ such that:

• diff-equivalence is verified with ProVerif on the transformed model M′; and

• diff-equivalence on M′ implies trace equivalence for the original model M.

Two main steps

1. duplicate the get instructions in M to dissociate the two parts of the bi-process;

2. add some axioms to help ProVerif to reason on our new model.

16 / 21

In a nutshell

Main Goal

Transform a ProVerif model M of unlinkability into another model M′ such that:

• diff-equivalence is verified with ProVerif on the transformed model M′; and

• diff-equivalence on M′ implies trace equivalence for the original model M.

Two main steps

1. duplicate the get instructions in M to dissociate the two parts of the bi-process;

2. add some axioms to help ProVerif to reason on our new model.

16 / 21

Desynchronizing the two parts of the biprocess

Instead of performing a get instruction to access a bi-record in the keys table, we

perform two get instructions in a row to access two records in the keys table.

−→ This allows us to choose two different records for the left and for the right.

Example:

in(c, diff[xL, xR]);

get db(diff[yL,]) st. eq(proj2(xL), h(proj1(xL, yL))) in

get db(diff[, yR]) st. eq(proj2(xR), h(proj1(xR, yR))) in out(c , choice[ok, ok])

else out(c , choice[ok, ko])

else

get db(diff[, yR]) st. eq(proj2(xR), h(proj1(xR, yR))) in out(c, choice[ko, ok])

else out(c , choice[ko, ko])

17 / 21

Desynchronizing the two parts of the biprocess

Instead of performing a get instruction to access a bi-record in the keys table, we

perform two get instructions in a row to access two records in the keys table.

−→ This allows us to choose two different records for the left and for the right.

Example:

in(c, diff[xL, xR]);

get db(diff[yL,]) st. eq(proj2(xL), h(proj1(xL, yL))) in

get db(diff[, yR]) st. eq(proj2(xR), h(proj1(xR, yR))) in out(c , choice[ok, ok])

else out(c , choice[ok, ko])

else

get db(diff[, yR]) st. eq(proj2(xR), h(proj1(xR, yR))) in out(c, choice[ko, ok])

else out(c , choice[ko, ko])

17 / 21

Refining the analysis in the failure branches

We illustrate this on a very simple example.

Before, . . .
B = insert tbl(ok);

get tbl(x) st. true in out(c , ok)

else out(c, choice[okL, okR])

. . . and ProVerif can not proved equivalence (whereas it holds).

. . . together with the following axiom:

event(Fail()) ∧ event(Inserted(diff[yL, yR]))⇒ false.

−→ On this model, ProVerif is able to conclude that equivalence holds.

Going back to the Basic Hash protocol

event(FailL(xL)) ∧ event(Inserted(diff[yL, yR]))⇒ proj2(xL) 6= h(proj1(xL), yL)

event(FailR(xR)) ∧ event(Inserted(diff[yL, yR]))⇒ proj2(xR) 6= h(proj1(xR), yR)

18 / 21

Refining the analysis in the failure branches

We illustrate this on a very simple example.

After, . . .
B = event(Inserted(ok)); insert tbl(ok);

get tbl(x) st. true in out(c , ok)

else event(Fail());out(c , choice[okL, okR])

. . . together with the following axiom:

event(Fail()) ∧ event(Inserted(diff[yL, yR]))⇒ false.

−→ On this model, ProVerif is able to conclude that equivalence holds.

Going back to the Basic Hash protocol

event(FailL(xL)) ∧ event(Inserted(diff[yL, yR]))⇒ proj2(xL) 6= h(proj1(xL), yL)

event(FailR(xR)) ∧ event(Inserted(diff[yL, yR]))⇒ proj2(xR) 6= h(proj1(xR), yR)

18 / 21

Refining the analysis in the failure branches

We illustrate this on a very simple example.

After, . . .
B = event(Inserted(ok)); insert tbl(ok);

get tbl(x) st. true in out(c , ok)

else event(Fail());out(c , choice[okL, okR])

. . . together with the following axiom:

event(Fail()) ∧ event(Inserted(diff[yL, yR]))⇒ false.

−→ On this model, ProVerif is able to conclude that equivalence holds.

Going back to the Basic Hash protocol

event(FailL(xL)) ∧ event(Inserted(diff[yL, yR]))⇒ proj2(xL) 6= h(proj1(xL), yL)

event(FailR(xR)) ∧ event(Inserted(diff[yL, yR]))⇒ proj2(xR) 6= h(proj1(xR), yR)

18 / 21

Main result

Theorem

Let M = (B0, ∅,Ax ,L) be a ProVerif standard model (B0 is separated), and

M′ = (B ′, ∅,Ax ∪ Ax ′,L) be the model obtained after applying our transformation.

Moreover, we assume that:

• for all % ∈ Ax , we have that traces(B0) ` %;

• for all % ∈ Ax , we have that traces(B ′
0) ` %;

• ProVerif returns diff-equivalence is true on M′.

We conclude that fst(B0) ≈t snd(B0).

19 / 21

Case studies

Implementation

The two steps of the transformation have been implemented (≈ 2k Ocaml LoC).

Case studies

Basic Hash, Hash-Lock, Feldhofer, a variant of LAK, OSK.

−→ ProVerif is able to conclude on all these examples !

20 / 21

Case studies

Implementation

The two steps of the transformation have been implemented (≈ 2k Ocaml LoC).

Case studies

Basic Hash, Hash-Lock, Feldhofer, a variant of LAK, OSK.

−→ ProVerif is able to conclude on all these examples !

20 / 21

Conclusion & Future Work

Our approach significantly improves automation regarding unlinkability.

Future Work

• better integration in ProVerif;

• beyond unlinkability;

• Other difficulty: dealing with mutable states.

Questions ?

21 / 21

	High-level view of ProVerif
	Our transformation

