Proving unlinkability using ProVerif
through desynchronized bi-processes

Stéphanie Delaune
Univ Rennes, CNRS, IRISA, Spicy team

CORGIS - February 6, 2023

&:IRISA

Formal verification of cryptographic protocols

Security protocol design is critical and error-prone as illustrated by
many attacks: FREAK, Logjam, ...

Use formal methods to improve confidence:

e prove the absence of attacks under certain assumptions; or
e identify weaknesses.
Many verification tools already exist:

e Proverif, Tamarin, AKISS, DeepSec, AVISPA, Squirrel, ...

1/21

Running example: Basic Hash protocol

new n

{n,h(n, k))

Reader

keDB

Each tag stores a secret key k that is never

I:i"((zl:l’“)) updated.

if 3kp, €|DB, 2 = h(z1, kg) J

ok

Readers have access to a database DB
containing all the keys.

else

ko

|
2/21

ProVerif in a nutshell

— mainly developped by Bruno Blanchet (Prosecco team, Inria Paris)
http://proverif.inria.fr/

An automatic tool to analyse protocols in the symbolic model.

successfully used for many large-scale case studies: TLS 1.3, ...
protocols are modelled using a process algebra;

both reachability and equivalence-based properties;

security analysis done for an unbounded number of sessions;

No miracle: the tool may return cannot be proved or never terminates.

3/21

http://proverif.inria.fr/

Unlinkability

(ISO/IEC 15408) P
“Ensuring that a user may make multiple uses of a service or e o ¥
resource without others being able to link these uses together."

4/21

Unlinkability

(ISO/IEC 15408) e ¥
ONNE- N
“Ensuring that a user may make multiple uses of a service or & ,::"A.s " .:g' %
. . . T v
resource without others being able to link these uses together. @

Informally, an observer/attacker can not observe the difference between:

1. a situation where the same device/tag may be used twice (or even more);
2. a situation where each device/tag is used at most once.

4/21

Unlinkability

(ISO/IEC 15408) e ¥
¢ v V¢ W
“Ensuring that a user may make multiple uses of a service or & ,:,"‘..:. " .;g' ¥
. . . T v
resource without others being able to link these uses together. @

Informally, an observer/attacker can not observe the difference between:
1. a situation where the same device/tag may be used twice (or even more);

2. a situation where each device/tag is used at most once.

More formally,
/ | new k.insert DB(k).(! Tag(k) |!Reader)
?

~
~

| new k.insert DB(k).(Tag(k) | Reader)

— the notion of equivalence remains to be defined
4

State-of-the art

ProVerif (but also Tamarin) can only prove a restricted form of equivalence, namely
diff-equivalence, which is too limitating to establish unlinkability.

'https://github.com /tamarin-prover/tamarin-prover /issues /324
5/21

State-of-the art

ProVerif (but also Tamarin) can only prove a restricted form of equivalence, namely
diff-equivalence, which is too limitating to establish unlinkability.

Some solutions to overcome this limitation:

Establish unlinkability using an indirect approach (sufficient conditions)
e.g. [Solene Moreau PhD thesis, 21]

Use restrictions: a feature available in Tamarin (2005), and in ProVerif (2022).

'https://github.com /tamarin-prover/tamarin-prover /issues /324
5/21

State-of-the art

ProVerif (but also Tamarin) can only prove a restricted form of equivalence, namely

diff-equivalence, which is too limitating to establish unlinkability.

Some solutions to overcome this limitation:

e Establish unlinkability using an indirect approach (sufficient conditions)
e.g. [Solene Moreau PhD thesis, 21]

e Use restrictions: a feature available in Tamarin (2005), and in ProVerif (2022).
Tamarin: incorrectly handled for equivalence!, now formally justify for Type-0
(very specific class) [Paradzik, 22]

ProVerif: Need to be manipulated with a lot of care. Restrictions for equivalence

discard bi-traces!

'https://github.com /tamarin-prover/tamarin-prover /issues /324
5/21

Our contributions

We design a transformation (in 2 steps) allowing us to transform a ProVerif model M
into another one M’ such that:

If ProVerif succeeds on M’ then equivalence holds on M.

6/21

Our contributions

We design a transformation (in 2 steps) allowing us to transform a ProVerif model M
into another one M’ such that:

If ProVerif succeeds on M’ then equivalence holds on M.

Our transformation contains two main steps:

1. We dissociate the two processes that forms that bi-process.
Possible using the option: allowDiffPatterns

2. We generate some axioms (and prove them correct) to help the analysis.

The transformation has been implemented and sucessfully used on several case studies.

6/21

High-level view of ProVerif

Protocols as processes

— a programming language with constructs for concurrency and communication

(applied-pi calculus [Abadi & Fournet, 01])

P,Q = 0 null process
| in(c,x); P input
| out(c,M); P output
| newn; P name generation
| letx=DinP else Q conditional
| P replication
| (P| Q) parallel composition

7/21

Protocols as processes

— a programming language with constructs for concurrency and communication

(applied-pi calculus [Abadi & Fournet, 01])

get tbl(x) st. D in P else Q@ lookup

P,Q = 0 null process
| in(c,x); P input
| out(c,M); P output
| newn; P name generation
| letx=DinP else Q conditional
| P replication
| (P| Q) parallel composition
| event(e); P event
| insert tbl/(M); P insertion
|
|

7/21

Messages/Computations as terms

Terms are built over a set of names A/, and function symbols ¥, U X4 equipped with
an equational theory E and rewriting rules for destructors.

8/21

Messages/Computations as terms

Terms are built over a set of names A/, and function symbols ¥, U X4 equipped with
an equational theory E and rewriting rules for destructors.

Example:

constructor symbols: ¥ = {(), proj;, proj,, h, true};
E = {proj;1((x1,x2)) = x1, proja({x1, x2)) = x2};
destructor symbols: ¥4 = {eq};

rewriting rule: eq(x, x) — true.

all the function symbols are public (available to the attacker);

8/21

Messages/Computations as terms

Terms are built over a set of names A/, and function symbols ¥, U X4 equipped with
an equational theory E and rewriting rules for destructors.

Example:

constructor symbols: ¥ = {(), proj;, proj,, h, true};
E = {proj;1((x1,x2)) = x1, proja({x1, x2)) = x2};
destructor symbols: ¥4 = {eq};

rewriting rule: eq(x, x) — true.

all the function symbols are public (available to the attacker);
Let & = {w — (n,h(n, k))}, and R = eq(h(proj;(w), k), projo(w)). We have that

R® =g eq(h(n, k), h(n, k)) — ok (written R} = ok)
8/21

Going back to Basic Hash

We consider:

T(k) = new n; out(c, (n, h(n, k))).
R =
in(c, y); get db(k) st. eq(h(proj;(y), k), proj(y)) in out(c, ok) else out(c, ko).

The real system corresponds to the following process:

I'R | (! new k; insert keys(k); ! T(k))

9/21

Semantics (some selected rules)

Labelled transition system over configurations:

(P;®;S)

_

. rame store
multiset of processes
knowledge of the attacker content of the database

10/21

Semantics (some selected rules)

Labelled transition system over configurations:

(P; ®;S)

o

. rame store
multiset of processes
knowledge of the attacker content of the database

our ({out(c, M); P} P; ;. 8) XM ((pY P& U {w; > M}; S) with i = |9
N ({in(c,x); Py w P #;8) 2R (rpix s M)} WP, 9;8) with ROy = M

GET-T ({get tbl(x) st. D in P else Q} W P; d;S) = ({P{x — M}} wP; d;S)
with tbl(M) € S, and D{x — M} =g true

10/21

Semantics (some selected rules)

Labelled transition system over configurations:

(P; ®;S)

o

. rame store
multiset of processes
knowledge of the attacker content of the database

our ({out(c, M); P} P; ;. 8) XM ((pY P& U {w; > M}; S) with i = |9
N ({in(c,x); Py w P #;8) 2R (rpix s M)} WP, 9;8) with ROy = M

GET-T ({get tbl(x) st. D in P else Q} W P; d;S) = ({P{x — M}} wP; d;S)
with tbl(M) € S, and D{x — M} =g true

— traces(K) = the set of execution traces starting from the configuration K. /
10/21

Trace equivalence

Static equivalence between frames: ® ~¢ ¢’
Any test that holds in ® also holds in " (and conversely).

Example: {wy — (n,h(n, k)); wa — k} s {w1 — (n,h(n, k)); wy — k'}

— with the test h(proj;(wi), w2) L projo(wy).

11/21

Trace equivalence

Static equivalence between frames: ® ~¢ ¢’
Any test that holds in ® also holds in " (and conversely).

Example: {wy — (n,h(n, k)); wa — k} s {w1 — (n,h(n, k)); wy — k'}
— with the test h(proj;(wi), w2) L projo(wy).
Trace equivalence between configurations: K ~; K.

For any execution trace K - (P; ®; S) there exists an execution K’ = (P'; ¢/, S')
such that ® ~; ¢ (and conversely)

Example:
'R | (!new k; insert keys(k);! T(k)) ~¢!R | (!new k; insert keys(k); T(k))

— an equivalence that ProVerif (and also Tamarin) is not able to prove directly.
11/21

Going back to diff-equivalence

How it works (or not)?

form a bi-process B using the operator choice[M| , MR];
both sides of the bi-processes have to evolve simulatenously to be declared in
diff-equivalence (and this implies fst(B) ~; snd(B))

— the semantics is given by a labelled transition system over bi-configurations
(P; ®; S) where messages and computations may contain the choice operator.

12/21

Going back to diff-equivalence

How it works (or not)?

e form a bi-process B using the operator choice[M, MR];
e both sides of the bi-processes have to evolve simulatenously to be declared in
diff-equivalence (and this implies fst(B) ~; snd(B))

— the semantics is given by a labelled transition system over bi-configurations
(P; ®; S) where messages and computations may contain the choice operator.

Example - Basic Hash protocol
B =R | (!new k; 'new kk; insert db(choice[k, kk|); T(choice[k, kk])
We have that
o fst(B) =R | !new k; !insert db(k); T(k) (x real situation *)

e snd(B) =!R | !!new kk; insert db(kk); T(kk) (x ideal situation *)
12/21

Why diff-equivalence is too strong?

B =R | ('new k; !new kk; insert db(choice[k, kk]); T(choice[k, kk])

Let's consider a scenario with:
1 reader;

2 tags: T(choicelk, kki]),
and T (choice[k, kk]).

13/21

Why diff-equivalence is too strong?

B =R | ('new k; !new kk; insert db(choice[k, kk]); T(choice[k, kk])

Let's consider a scenario with:

1 reader;
2 tags: T(choicelk, kki]),
and T (choice[k, kk]).

DB | left | right
line 1 k kky
line2 | k kko

The frame contains: wy = (ny, h(n, choice[k, kk1])).

13/21

Why diff-equivalence is too strong?

B =R | ('new k; !new kk; insert db(choice[k, kk]); T(choice[k, kk])

Let's consider a scenario with:

e 1 reader;

e 2 tags: T(choicelk, kki]),
and T (choice[k, kk]).

DB | left | right
line 1 k kky
line2 | k kko

The frame contains: wy = (ny, h(n, choice[k, kk1])).
On line 2, with wy in input for process R, the bi-process B will diverge.
R = in(c, y); get db(k) st. eq(h(proj;(y), k), proj,(y)) in out(c, ok) else out(c, ko).

— Thus, Proverif returns cannot be proved on this example.

13/21

Beyond ProVerif 2.00 [Blanchet et al., 2022]

— support for axioms, lemmas, and restrictions as in Tamarin.

Syntax: This gives the user the possibility to write correspondence queries of the form:
event(e;) A ... Aevent(e,) = ¢

with ¢, 9" = true | false | event(e) | M =N | M AN | A |V

Semantics: An execution trace T satisfies p (noted T t p) if whenever T contains
instances of event(e;) at some timepoint 7; for each 7, then T also satisfies 1.

14 /21

Beyond ProVerif 2.00 [Blanchet et al., 2022]

— support for axioms, lemmas, and restrictions as in Tamarin.

Syntax: This gives the user the possibility to write correspondence queries of the form:
event(e;) A ... Aevent(e,) = ¢

with ¢, 9" = true | false | event(e) | M =N | M AN | A |V

Semantics: An execution trace T satisfies p (noted T t p) if whenever T contains

instances of event(e;) at some timepoint 7; for each 7, then T also satisfies 1.

Example
event(once(xiq, Xsig)) N event(once(Xiq, Vsid)) = Xsid = Ysid

14 /21

Beyond ProVerif 2.00 [Blanchet et al., 2022]

— support for axioms, lemmas, and restrictions as in Tamarin.

Syntax: This gives the user the possibility to write correspondence queries of the form:
event(e;) A ... Aevent(e,) = ¢

with ¢, 9" = true | false | event(e) | M =N | M AN | A |V

Semantics: An execution trace T satisfies p (noted T t p) if whenever T contains

instances of event(e;) at some timepoint 7; for each 7, then T also satisfies 1.

Example
event(once(xiq, Xsig)) N event(once(Xiq, Vsid)) = Xsid = Ysid

Warning! When used on a biprocess, a (bi)restriction will discard bi-execution.

event(once(choice[_, xj4], choice|_, xsi4]))
A event(once(choice[_, xj4], choice[_, ysid])) = Xsid = Vsid
14 /21

Desynchronized bi-processes

We consider an extension of standard bi-processes using the allowDiffPatterns
option available in ProVerif since 2018.

— systematic use of choice[x!, xR] for variable bindings in let, get, and input.

15 /21

Desynchronized bi-processes

We consider an extension of standard bi-processes using the allowDiffPatterns
option available in ProVerif since 2018.

— systematic use of choice[x!, xR] for variable bindings in let, get, and input.
Example: B = in(c, choice[x", xR]); out(c, (x\, xR)).

— a standard bi-process can be written as a separated bi-process, i.e.
vars(fst(B)) N vars(snd(B)) = 0.

15 /21

Desynchronized bi-processes

We consider an extension of standard bi-processes using the allowDiffPatterns
option available in ProVerif since 2018.

— systematic use of choice[x!, xR] for variable bindings in let, get, and input.
Example: B = in(c, choice[x", xR]); out(c, (x\, xR)).

— a standard bi-process can be written as a separated bi-process, i.e.
vars(fst(B)) N vars(snd(B)) = 0.

Example: B is not separated. Actually, fst(B) is not closed, and makes no sense.

Non-separated and closed bi-processes have a well-defined semantics in Proverif and
we can study whether diff-equivalence holds on them. However, this does not imply:

fst(B) ~¢ snd(B)

15 /21

Our transformation

In a nutshell

Main Goal

Transform a ProVerif model M of unlinkability into another model M’ such that:

diff-equivalence is verified with ProVerif on the transformed model M’; and

diff-equivalence on M’ implies trace equivalence for the original model M.

16 /21

In a nutshell

Main Goal

Transform a ProVerif model M of unlinkability into another model M’ such that:
e diff-equivalence is verified with ProVerif on the transformed model M’; and
e diff-equivalence on M’ implies trace equivalence for the original model M.
Two main steps

1. duplicate the get instructions in M to dissociate the two parts of the bi-process;

2. add some axioms to help ProVerif to reason on our new model.

16 /21

Desynchronizing the two parts of the biprocess

Instead of performing a get instruction to access a bi-record in the keys table, we
perform two get instructions in a row to access two records in the keys table.

—— This allows us to choose two different records for the left and for the right.

17 /21

Desynchronizing the two parts of the biprocess

Instead of performing a get instruction to access a bi-record in the keys table, we
perform two get instructions in a row to access two records in the keys table.

—— This allows us to choose two different records for the left and for the right.

Example:
in(c,diff[x", xR]);
get db(diff[y",]) st. eq(projo(x"), h(proj; (x*, y*4))) in
get db(diff[, yR]) st. eq(proj,(xR), h(proj; (xR, yR))) in out(c, choice[ok, ok])
else out(c, choice[ok, ko])
else
get db(diff[, yR]) st. eq(proj,(xR), h(proj; (xR, yR))) in out(c, choice[ko, ok])
else out(c, choice[ko, ko])

17 /21

Refining the analysis in the failure branches

We illustrate this on a very simple example.

Before, . ..
B = insert tbl(ok);

get tbl(x) st. true in out(c, ok)
else out(c, choice[oky , okg])

and ProVerif can not proved equivalence (whereas it holds).

18/21

Refining the analysis in the failure branches

We illustrate this on a very simple example.

After, ...
B = event(Inserted(ok)); insert tb/(ok);

get tbl(x) st. true in out(c, ok)
else event(Fail());out(c, choice[ok , okg])

... together with the following axiom:

event(Fail()) A event(Inserted(diff[y", yR])) = false.

— On this model, ProVerif is able to conclude that equivalence holds.

18/21

Refining the analysis in the failure branches

We illustrate this on a very simple example.

After, ...
B = event(Inserted(ok)); insert tb/(ok);

get tbl(x) st. true in out(c, ok)
else event(Fail());out(c, choice[ok , okg])

... together with the following axiom:

event(Fail()) A event(Inserted(diff[y", yR])) = false.

— On this model, ProVerif is able to conclude that equivalence holds.

Going back to the Basic Hash protocol
event(FailL(x")) A event(Inserted(diff[y", yR])) = proj,(x-) # h(proj;(x-), y\)
event(FailR(xR)) A event(Inserted(dif£[y", yR])) = proj,(xR) # h(proj; (xR), yR)

18/21

Theorem

Let M = (By, 0, Ax, L) be a ProVerif standard model (By is separated), and
M' = (B',0,Ax U Ax', L) be the model obtained after applying our transformation.

Moreover, we assume that:

for all p € Ax, we have that traces(Bp) I- o;
for all p € Ax, we have that traces(Bj) F o;

ProVerif returns diff-equivalence is true on M’

We conclude that fst(Bp) ~ snd(Byp).

19/21

Implementation

The two steps of the transformation have been implemented (=~ 2k Ocaml LoC).

-
Case studies

Basic Hash, Hash-Lock, Feldhofer, a variant of LAK, OSK. 000

— ProVerif is able to conclude on all these examples ! S

20/ 21

Implementation

The two steps of the transformation have been implemented (=~ 2k Ocaml LoC).

Case studies

)
Basic Hash, Hash-Lock, Feldhofer, a variant of LAK, OSK. 0009‘
— ProVerif is able to conclude on all these examples ! S
—
S

20/21

Conclusion & Future Work

Our approach significantly improves automation regarding unlinkability.

Future Work

e better integration in ProVerif;
e beyond unlinkability;
e Other difficulty: dealing with mutable states.

Questions ?

21/21

	High-level view of ProVerif
	Our transformation

