
Analysing cryptographic protocols
using Tamarin

Stéphanie Delaune
14 june 2021

Univ Rennes, CNRS, IRISA, Spicy team

1 / 22

Formal verification of cryptographic protocols

Security protocol design is critical and error-prone as illustrated
by many attacks:

• SSL/TLS: FREAK, Logjam, …

Use formal methods to improve confidence:

• prove the absence of attacks under certain assumptions; or
• identify weaknesses

Many tools already exist:

• ProVerif, Tamarin, AKISS, DeepSec, AVISPA, Squirrel, …

Problem: trade-off between automation and completeness

2 / 22

Formal verification of cryptographic protocols

Security protocol design is critical and error-prone as illustrated
by many attacks:

• SSL/TLS: FREAK, Logjam, …

Use formal methods to improve confidence:

• prove the absence of attacks under certain assumptions; or
• identify weaknesses

Many tools already exist:

• ProVerif, Tamarin, AKISS, DeepSec, AVISPA, Squirrel, …

Problem: trade-off between automation and completeness
2 / 22

Tamarin prover

−→ mainly developped at ETH Zurich
https://tamarin-prover.github.io

• A verification tool for the symbolic model with induction, loops, mutable state

• Successfully used for many large-scale case studies: 5G AKA, TLS 1.3, EMV …

• Security protocol model based on multiset rewriting

• Constraint-solving algorithm for analysis of unbounded number of sessions

• Interactive and automatic modes

3 / 22

https://tamarin-prover.github.io

Interaction and automation

Tamarin’s interactive mode allows the user to in-
spect and direct proof search

• Gives the flexibility required for complex
case-studies

• Enables fine-tuning of models and proof
strategies

On the downside, Tamarin’s automatic mode often fails (compared to, e.g.,
ProVerif), even on relatively simple examples. −→ partial deconstructions.

Our contribution:
automatic handling of partial deconstructions
in most cases.

4 / 22

Interaction and automation

Tamarin’s interactive mode allows the user to in-
spect and direct proof search

• Gives the flexibility required for complex
case-studies

• Enables fine-tuning of models and proof
strategies

On the downside, Tamarin’s automatic mode often fails (compared to, e.g.,
ProVerif), even on relatively simple examples. −→ partial deconstructions.

Our contribution:
automatic handling of partial deconstructions
in most cases.

4 / 22

Interaction and automation

Tamarin’s interactive mode allows the user to in-
spect and direct proof search

• Gives the flexibility required for complex
case-studies

• Enables fine-tuning of models and proof
strategies

On the downside, Tamarin’s automatic mode often fails (compared to, e.g.,
ProVerif), even on relatively simple examples. −→ partial deconstructions.

Our contribution:
automatic handling of partial deconstructions
in most cases.

4 / 22

High-level view of Tamarin

In a nutshell

Modelling part:

• protocol and adversary: multiset rewriting
−→ a transition system which induces a set of traces

• security properties: a fragment of first-order logic
−→ this specifies “good” traces

Verification part – Tamarin tries to

• construct a counterexample trace, i.e. an attack; or
• provide a proof that all the traces produce by the system are good.

5 / 22

Basic ingredients

Terms – messages:

• built using funtion symbols, e.g. aenc/2, adec/2, pk/1 …
• interpreted modulo an equational theory.

Example:

aenc(⟨req, I, n⟩, pk(ltkR)) adec(aenc(x, pk(y), y) = x

Facts – think “sticky notes on the fridge”:

• user defined facts of two kinds: linear or persistent (prefixed with !)
• some special facts: Fr(n), In(t), Out(t), !K(t)

A state of a system is a multiset of facts, and rules specify the possible moves.

6 / 22

Basic ingredients

Terms – messages:

• built using funtion symbols, e.g. aenc/2, adec/2, pk/1 …
• interpreted modulo an equational theory.

Example:

aenc(⟨req, I, n⟩, pk(ltkR)) adec(aenc(x, pk(y), y) = x

Facts – think “sticky notes on the fridge”:

• user defined facts of two kinds: linear or persistent (prefixed with !)
• some special facts: Fr(n), In(t), Out(t), !K(t)

A state of a system is a multiset of facts, and rules specify the possible moves.
6 / 22

Multiset rewriting rules

Each rule has the following form: [l]−−[a]→[r] where:

• l, r are multisets of facts, and
• a is a multiset of annotations used for specifying properties

Some examples:

1. [!K(x1), !K(x2)]−−[K(aenc(x1, x2))]→[!K(aenc(x1, x2))]

2. [!K(x1), !K(x2)]−−[K(adec(x1, x2))]→[!K(adec(x1, x2))]

3. [Out(x)]−−[]→[!K(x)]
4. [!K(x)]−−[K(x)]→[In(x)]
5. []−−[]→[Fr(n)]

7 / 22

Multiset rewriting rules

Each rule has the following form: [l]−−[a]→[r] where:

• l, r are multisets of facts, and
• a is a multiset of annotations used for specifying properties

Some examples:

1. [!K(x1), !K(x2)]−−[K(aenc(x1, x2))]→[!K(aenc(x1, x2))]

2. [!K(x1), !K(x2)]−−[K(adec(x1, x2))]→[!K(adec(x1, x2))]

3. [Out(x)]−−[]→[!K(x)]
4. [!K(x)]−−[K(x)]→[In(x)]
5. []−−[]→[Fr(n)]

7 / 22

Toy example

Consider the following toy protocol between the initiator and the responder :

1. → : {req, I, n}pk(R)
2. → : {rep, n}pk(I)

rule Register_pk:
[Fr(~ltkA)]
--> [!Ltk($A, ~ltkA), !Pk($A, pk(~ltkA)), Out(pk(~ltkA))]

rule Rule_I:
[Fr(n), !Pk(R, pkR), !Ltk(I, ltkI)]

--[SecretI(I, R, n)]-> [Out(aenc{'req', I, n}pkR)]

8 / 22

Toy example

Consider the following toy protocol between the initiator and the responder :

1. → : {req, I, n}pk(R)
2. → : {rep, n}pk(I)

rule Register_pk:
[Fr(~ltkA)]
--> [!Ltk($A, ~ltkA), !Pk($A, pk(~ltkA)), Out(pk(~ltkA))]

rule Rule_I:
[Fr(n), !Pk(R, pkR), !Ltk(I, ltkI)]

--[SecretI(I, R, n)]-> [Out(aenc{'req', I, n}pkR)]

8 / 22

Toy example

Consider the following toy protocol between the initiator and the responder :

1. → : {req, I, n}pk(R)
2. → : {rep, n}pk(I)

rule Register_pk:
[Fr(~ltkA)]
--> [!Ltk($A, ~ltkA), !Pk($A, pk(~ltkA)), Out(pk(~ltkA))]

rule Rule_I:
[Fr(n), !Pk(R, pkR), !Ltk(I, ltkI)]

--[SecretI(I, R, n)]-> [Out(aenc{'req', I, n}pkR)]
8 / 22

Semantics

A set of protocol rules P induces a transition relation between states.

S⇝a
P (S ∖ l) ∪ r

where [l]−−[a]→[r] a ground instance of a rule, and l ⊆ S

• Executions

Exec(P) = {{}⇝a1
P . . .⇝an

P Sn | ∀n.Fr(n) apprears only once
on rhs of rules}

• Traces

Traces(P) = {[a1, . . . , an] | {}⇝a1
P . . .⇝an

P Sn ∈ Exec(P)}

9 / 22

Semantics

A set of protocol rules P induces a transition relation between states.

S⇝a
P (S ∖ l) ∪ r

where [l]−−[a]→[r] a ground instance of a rule, and l ⊆ S

• Executions

Exec(P) = {{}⇝a1
P . . .⇝an

P Sn | ∀n.Fr(n) apprears only once
on rhs of rules}

• Traces

Traces(P) = {[a1, . . . , an] | {}⇝a1
P . . .⇝an

P Sn ∈ Exec(P)}

9 / 22

Property specification

First-order logic interpreted over traces a1, . . . , an:

• message equality: t1 = t2
• action at a particular timepoint: A@#i
• timepoint ordering: #i < #j
• timepoint equality: #i = #j

Example: Secrecy for the nonce n.
lemma nonce_secrecy:

"not(
Ex A B s #i. SecretI(A, B, s) @ #i

& (Ex #j. K(s) @ #j)
)"

10 / 22

Property specification

First-order logic interpreted over traces a1, . . . , an:

• message equality: t1 = t2
• action at a particular timepoint: A@#i
• timepoint ordering: #i < #j
• timepoint equality: #i = #j

Example: Secrecy for the nonce n.
lemma nonce_secrecy:

"not(
Ex A B s #i. SecretI(A, B, s) @ #i

& (Ex #j. K(s) @ #j)
)"

10 / 22

Algorithm intuition (1/3)

A backward search algorithm starting form the conclusion.

11 / 22

Algorithm intuition (2/3)

A backward search algorithm that relies on some precomputations: the sources.
Sources are a combination of rules yiedling a particular fact as part of the result.

Example:

Computation of raw sources can stop in an incomplete stage (partial deconstruction)
if Tamarin lacks sufficient information about the origins of some fact.

12 / 22

Algorithm intuition (3/3)

−→ the proof of this lemma does not terminate due to partial deconstructions.

13 / 22

Algorithm intuition (3/3)

−→ the proof of this lemma does not terminate due to partial deconstructions. 13 / 22

Partial deconstructions

Example: Partial deconstruction

14 / 22

Example: Partial deconstruction

14 / 22

From raw sources to refined sources

To resolve these partial deconstructions, one has to write sources lemma detailing
the possible origins of the problematic fact.

Considering our running example:
the input is either the message sent by the initiator, or a message constructed
by the intruder.

−→ the previous raw source will lead to two refined sources:

1. either the variable is actually a nonce generated by the initiator;
2. or it a term already known by the attacker (such a detour is not useful).

Sources lemmas are used to refine the sources, but they also need to be proven
correct. −→ this can be done using Tamarin.

15 / 22

From raw sources to refined sources

To resolve these partial deconstructions, one has to write sources lemma detailing
the possible origins of the problematic fact.

Considering our running example:
the input is either the message sent by the initiator, or a message constructed
by the intruder.

−→ the previous raw source will lead to two refined sources:

1. either the variable is actually a nonce generated by the initiator;
2. or it a term already known by the attacker (such a detour is not useful).

Sources lemmas are used to refine the sources, but they also need to be proven
correct. −→ this can be done using Tamarin.

15 / 22

From raw sources to refined sources

To resolve these partial deconstructions, one has to write sources lemma detailing
the possible origins of the problematic fact.

Considering our running example:
the input is either the message sent by the initiator, or a message constructed
by the intruder.

−→ the previous raw source will lead to two refined sources:

1. either the variable is actually a nonce generated by the initiator;
2. or it a term already known by the attacker (such a detour is not useful).

Sources lemmas are used to refine the sources, but they also need to be proven
correct. −→ this can be done using Tamarin.

15 / 22

Source lemma on our example

First, we annotate the protocol rules:
rule Rule_I:

[Fr(n), !Pk(R, pkR),!Ltk(I, ltkI)]
--[I(aenc{'req', I, n}pkR), SecretI(I, R, n)]->

[Out(aenc{'req', I, n}pkR)]

rule Rule_R:
[In(aenc{'req', I, x}pk(ltkR)),

!Ltk(R, ltkR), !Pk(I, pkI)]
--[R(aenc{'req', I, x}pk(ltkR), x)]->
[Out(aenc{'rep', x}pkI)]

lemma typing [sources]:
"All x m #i. R(m,x)@#i ==>((Ex #j. I(m)@#j & #j < #i)

|(Ex #j. KU(x)@#j & #j < #i))"

16 / 22

Source lemma on our example

First, we annotate the protocol rules:
rule Rule_I:

[Fr(n), !Pk(R, pkR),!Ltk(I, ltkI)]
--[I(aenc{'req', I, n}pkR), SecretI(I, R, n)]->

[Out(aenc{'req', I, n}pkR)]

rule Rule_R:
[In(aenc{'req', I, x}pk(ltkR)),

!Ltk(R, ltkR), !Pk(I, pkI)]
--[R(aenc{'req', I, x}pk(ltkR), x)]->
[Out(aenc{'rep', x}pkI)]

lemma typing [sources]:
"All x m #i. R(m,x)@#i ==>((Ex #j. I(m)@#j & #j < #i)

|(Ex #j. KU(x)@#j & #j < #i))"
16 / 22

Algorithm Idea

Generalize idea & automate the approach:

1. Inspect the raw sources computed by Tamarin
2. For each partial deconstruction:

2.1 Identify the variables and facts causing the partial deconstruction
2.2 Identify rules producing matching conclusions
2.3 Add necessary annotations to the concerned rules

3. Generate a sources lemma using all annotations and add it to the input file

Note that Tamarin will verify the correctness of the generated lemma.

But we actually proved that the lemmas we generate are correct under some
assumptions (well-formed rules, subterm-convergent equational theory).

17 / 22

Algorithm Idea

Generalize idea & automate the approach:

1. Inspect the raw sources computed by Tamarin
2. For each partial deconstruction:

2.1 Identify the variables and facts causing the partial deconstruction
2.2 Identify rules producing matching conclusions
2.3 Add necessary annotations to the concerned rules

3. Generate a sources lemma using all annotations and add it to the input file

Note that Tamarin will verify the correctness of the generated lemma.

But we actually proved that the lemmas we generate are correct under some
assumptions (well-formed rules, subterm-convergent equational theory).

17 / 22

Implementation

We implemented the algorithm in Tamarin (available in version 1.6.0).

To enable automatic source lemma generation, run Tamarin with --auto-sources:

• If partial deconstructions are present and there is no sources lemma, the algorithm
generates a lemma and adds it to the theory.

• If there is already a lemma, or there are no partial deconstructions, Tamarin
runs as usual.

18 / 22

Case studies: SPORE

We tried numerous examples from the SPORE library:
Protocol Name Partial Dec. Resolved Automatic Time

Andrew Secure RPC 14 42.8s
Modified Andrew Secure RPC 21 134.3s
BAN Concrete Andrew Secure RPC 0 - 10.6s
Lowe modified BAN Andrew Secure RPC 0 - 29.8s
CCITT 1 0 - 0.8s
CCITT 1c 0 - 1.2s
CCITT 3 0 - 186.1s
CCITT 3 BAN 0 - 3.7s
Denning Sacco Secret Key 5 0.8s
Denning Sacco Secret Key - Lowe 6 2.7s
Needham Schroeder Secret Key 14 3.6s
Amended Needham Schroeder Secret Key 21 7.1s
Otway Rees 10 7.7s
SpliceAS 10 5.9s
SpliceAS 2 10 7.3s
SpliceAS 3 10 8.7s
Wide Mouthed Frog 5 0.6s
Wide Mouthed Frog Lowe 14 3.5s
WooLam Pi f 5 0.6s
Yahalom 15 3.1s
Yahalom - BAN 5 0.9s
Yahalom - Lowe 21 2.2s 19 / 22

Case studies: Tamarin repository

We also tested all examples from the Tamarin repository:
Name Partial

Dec. Resolved Automatic Time
(new)

Time
(previous)

Feldhofer (Equivalence) 5 3.8s 3.5s
NSLPK3 12 1.8s 1.8s
NSLPK3 untagged 12 - -
NSPK3 12 2.4s 2.2s
JCS12 Typing Example 7 0.3s 0.2s
Minimal Typing Example 6 0.1s 0.1s
Simple RFID Protocol 24 0.7s 0.5s
StatVerif Security Device 12 0.3s 0.4s
Envelope Protocol 9 25.7s 25.3s
TPM Exclusive Secrets 9 1.8s 1.8s
NSL untagged (SAPIC) 18 4.3s 19.9s
StatVerif Left-Right (SAPIC) 18 28.8s 29.6s
TPM Envelope (Equivalence) 9 - - -
5G AKA 240 - - -
Alethea 30 - - -
PKCS11-templates 68 - - -
NSLPK3XOR 24 - - -
Chaum Offline Anonymity 128 - - -
FOO Eligibility 70 - - -
Okamoto Eligibility 66 - - - 20 / 22

Conclusion & Future Work

• Automation in Tamarin often fails because of partial deconstructions
• Developed & implemented a new algorithm to automatically generate sources

lemmas
• Proved correctness of the generated lemmas
• Algorithm works well in practice, many examples become fully or at least partly

automatic
• Available in Tamarin 1.6.0
• Future work:

• Handle more general equational theories
• Handle partial deconstructions stemming from state facts (currenly under

submission at JCS)

21 / 22

Questions?

22 / 22

	High-level view of Tamarin
	Modelling in Tamarin
	Property specification
	Algorithm intuition

	Partial deconstructions
	What is the problem?
	Our algorithm to solve them
	Implementation and evaluation

