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Abstract. Derivability constraints represent in a symbolic way thénite set of
possible executions of a finite protocol, in presence of &itrary active attacker.
Solving a derivability constraint consists in computingrag@ified representation
of such executions, which is amenable to the verificationryf @ace) security
property. Our goal is to explain this method on a non-trigiainbination of primi-
tives.

In this chapter we explain how to model the protocol exeaigtiosing derivabil-
ity constraints, and how such constraints are interpretegending on the cryp-
tographic primitives and the assumed attacker capaBilieich capabilities are
represented as a deduction system that has some specifestepWe choose as
an example the combination of exclusive-or, symmetric ystawn/decryption and
pairing/unpairing. We explain the properties of the detuncsystem in this case
and give a complete and terminating set of rules that soleesability constraints.
A similar set of rules has been already published for thesaat Dolev-Yao at-
tacker, but it is a new result for the combination of primésvthat we consider.
This allows to decide trace security properties for this boration of primitives
and arbitrary finite protocols.

1. Introduction

A protocol specifies a set obles each of which is a template for a finite sequence of ac-
tions that send or receive messages. Each role may be iastg@rtny number of times;
the instances argessionsA traceof a protocol is a global sequence of actions that is an
interleaving of a finite number of sessions. A protocol hasymzossible traces, depend-
ing on how many sessions there are, and on the particulateating. Even when such
an ordering of actions is fixed, there are still many (acyualfiinitely many) possible in-
stances of a trace with the same sequence of actions, babaustruder may affect the
content of the messages by intercepting sent messagesrgimyfeeceived messages.

In this chapter, we introducgerivability constraintsSuch constraints represent in
a symbolic and compact way which trace instances are pessiben an interleaving of
actions is fixed. Then the existence of an attack can be esguless the satisfiability of
the derivability constraints, together with the negatibthe security goal. For instance,
if the security goal is the confidentiality of some datahen the protocol is secure if
the derivability contraints, together with the derivalyilbf s, is unsatisfiable. Hence, de-



ciding the satisfiability of a derivability constraint (teidper with some other formula)
yields, as a particular case, an alternative to the decédgorithm described in the previ-
ous chapter. We may however, in addition, consider otherg@roperties, that can be
expressed as properties of symbolic traces. Typical exesmgdlsuch properties include
agreement properties or timing properties.

Derivability constraints and their satisfiability were firstroduced in [33]. Since
then, the approach has been followed by many papers, whinth thie decidability of the
problem in many different settings, depending on the cryyatphic primitives and the
supposed properties that they satigfyg(exclusive-or [19,11], some algebraic properties
of modular exponentiation [10,34,15,8], monoidal equaidheories [24]).

In this chapter, we explain a method for simplifying deriig constraints when
the security primitives consist in exclusive-or, symnegémcryption/decryption and pair-
ing/unpairing. In principle, the same method can be appiedumerous other crypto-
graphic primitives, adapting however the underlying setimiplification rules. The pro-
cedure that we describe in this chapter is actually a garatain of the known proce-
dures for such primitives [19,11]: we provide with a constraimplification algorithm
that transforms a constraint into finitely many equivalent asimpler ones, callesblved
forms This allows us not only to decide the existence of a solytiom also to represent
all solutions. Such a feature is used in [16] for decidingérproperties such as authenti-
cation and key cycles in security protocols, and also in faéHeciding game-theoretic
security properties such as abuse-freeness. As far as we #moresult presented here
is new. Some proofs that are not detailed in this chapter edound in [18].

Finally, we claim that our decision procedure is simple: wl/@ive a few transfor-
mation rules that are applied to constraints until they aheesl. The difficult part is then
the design of a complete and terminating strategy. In thisdluctory chapter, we do not
try to get the best performance. There are many possiblen@atiions that we discuss
only briefly. We prove, however, the correctness, compégerand termination of the
constraint solving method, along the same lines as [16gXtainding the primitives with
an exclusive-or operator.

Before introducing the derivability constraints in Sent®y we discuss in Section 2
the intruder capabilities. The main idea of the constramhtisg technique is to search
for an intruder strategy, only considering strategiesahat'optimal”. In other words, an
intruder may have several ways to compute a given message, &owhich are simpler.
Then, when solving the derivability constraints, we onlgldor the last step of an
intruder’s proof that is “optimal”, until the constraintsslved.

Outline. In Section 2, we review the various ways of describing theugier's capa-

bilities. In Section 3, we introduce the constraint solvagproach and its relationship
with the security analysis of protocols. In Section 4, weegivmore detailed exposi-
tion of the constraint solving method, in the case of symimeincryption, pairing, and
exclusive-or.

2. Intruder capabilities
2.1. Messages

In the formal setting that is considered in this chapter,sages aréermsthat are built
from a set offunction symbols-. These function symbols allow us to represent crypto-



graphic primitives. Here is a sampling of typical functigmrols. We will not use all of
them.

pairing and projectionsz, y), 71 (z), andms(x);

symmetric encryption/decryptiodfz[}; , and{x[},*;

asymmetric encryption/decryptiofjz[}3, and{z [}, *;

private and public keys for asymmetric encryptidr(x), andpk(x).
signature and signature che¢k],, and[z],;

signature key and verification key for signatusg(z), andvk(zx);
hash functionhash(z);

exclusive-orz & y;

random numbers, symmetric keys:r, k, . ..

The set of term& (F) (or messages) is untyped in our definitions. A typed version
can be encoded using tags and possibly additional functiorbsls and rules. We as-
sume that typing and type-checking is performed in an eitplizy, which we believe is
the most conservative solution.

We may need to consider messages with unknown (arbitraryg;msven a set of
variables X, the setT (F, X) is the set of terms built fronF and the variables irk'.
We denote byvars(t) the set of variables that occurstinWe also usesubstitutions A
substitutiono = {x1 — t1,..., 2, — &, } is the simultaneous replacementgfwith ¢;
for everyl < ¢ < n. We require that na@; may occur in any;. We denote byo the
term that results from the application of the substitutioto the termt. Occasionally it
is convenient to regare as a conjunction of equationg = t; A ... Az, = t,. We
denote bytop(u) the top symbol of the term, i.e. the function symbol that occurs at its
root position.

2.2. Deductions

In a formal security analysis that follows the Dolev-Yao rabfR5], the intruder is as-
sumed capable of intercepting all messages in the netwndkdariving new messages
from prior messages by decomposing and composing them. Hiliy @f an intruder
to create a message from others can be inferred either friatiores in an equational
theory or from deduction rules expressing possible intrdéeivations. For example, the
intruder may derive: from {Ja[};, and the keyk either by noticing tha{{|a[};,[},° = a
or by applying the deduction rule:

{laaly, 22
T
Deduction rules state that any instance of the conclusionbeacomputed by the

intruder from a corresponding instance of the premisses.

Example 1 A possible set of deduction rules for asymmetric encryps@matures and
pairing is described below. There are several small vasasitthese rules, which we do
not describe here.
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The balance between equations or deduction rules to spiatifyder capabilities
depends on the rest of the formalization, and on the algostthat will be used in the
analysis. There is no choice if the message algebra is alfyebra that has no destruc-
tors. In particular, in a free algebra, decryptifya[},* and projectionr;((x, y)) opera-
tions are not available, and intruder decomposition cditiabiare necessarily modeled
by deduction rules. The loss of generality entailed by treeafsa free algebra, and the
cure for it, is discussed in [32] and [30]. As we will see beldinere are cryptographic
primitives such as exclusive-or (see Example 2) that cabeaxpressed fully and sat-
isfactorily with deduction rules. We need to model them kg tireans of an equational
theory. An equational theorly is a set of equations between terms. Given two texms
andv, we writeu =g v if the equation: = v is a consequence &f

Example 2 The equational theor§g for the exclusive-or operator is defined by the
following equations:

D (ydz)=(dy) d2 THYy=ydz
r®Exr=0 rP0==x

The symboib is a binary function symbol wheref@iss a constant. The two first equations
modeled the associativity and commutativity propertigbefs symbol whereas the two
last ones modeled the nilpotency and the fact ¢hiata neutral element.

For instance, consider three distinct constant symhglé, and c. We have that
(a®b) ®b=g, awhereast ®b #g, a @ c.

Having decided upon the split between deduction rules ard af quationg, we
can define théerivability relation denotedl” + u, that represents the intruder capability
to derive a messagefrom a set of available messaggs

Definition 1 (derivability relation) The derivability relationt is defined as the least
relation such that, wheff is a finite set of terms angland¢ are terms, we have that:

e T+ swhens e T,

e T I swhen there is a termsuch that =g s andT - ¢;
Uy ... U
e T + s if there is a deduction rulein and a substitutioro such

u
thats = uo andT + u;o for every: € {1,...,n}.

Example 3 LetT = {{al}3, 4, vk(b), [dk(b)lsx(r) }- Using the rules givenin Example 1,
we may model the deduction@from the set of term%’ as follows:



[dk(b)]sk(b) vk(b)
flal3xs) dk(b)

a

In many cases, equations likd|z[}; [}, ° = = can be oriented to form term rewriting
rules, in this casé{{=[}; [}, * — =. If the resulting term rewriting system eonvergent
any termu has a unique normal forml, which is obtained by applying the rewriting
rules in any order and as long as possible. In that ecajses a canonical representative
of the equivalence class afwith respect to=g, i.e.u =¢ v if, and only if, u| = v/.

If, in addition, there is no premisse of any deduction rulat thverlaps a left side of a
rewriting rule in a non-trivial way, we may simply apply a nwalization step after each
deduction step.

In some cases, it is not possible to get a finite convergenitiegisystem from the
set of equations, nor to turn the equations into finitely mdegluction rules. A typical
example is the set of equations given in Example 2 and thatvalbne to model the
exclusive-or operator. The associativity and commutgtiproperties of thep symbol
prevent us from getting a convergent rewriting system. Ugusuch symbols are con-
sidered as varyadic: we may write & - - - & u,,, Since the parentheses (and the ordering)
onuy,...,u, are irrelevant. Keeping such a flat representation is ussifute theAC
properties consist only in rearranging the arguments ®f@perator, without changing
the structure of the message. This requires, however, amtinfiyet recursive) set of
deduction rules, relying on an extended rewriting system.

From now on, we use only the deduction rules, rewrite ruleg egjuations displayed
in Figure 1. For simplicity, we only keep symmetric encrgptiand pairing, and do not
consider asymmetric encryption and signatures. Notidesthrae exclusive-or equations
have been oriented into rewrite rules; this set of rules isvement (modulo the equa-
tions): every term has a unique normal form modulo associativity and commuitgti
which we writet|. The set of equations then only consists of permutativeteans(on
flattened terms). We will omit the inddxin =g, leaving implicit both the flattening and
the possible permutation of arguments.

Example 4 LetT = {{al}q;, a @ {cl}j, bD {cl};}. We show that” I ¢, using the
rules described in Figure 1. First, we show that- {|c[}; andT + b. Indeed, the two
derivationsr; and sy described below are withesses of these facts.

a®{cl; bd{cl

al}s a®b
o s o)

a® {cl} " XOR)
{clt?

(XOR)




Deduction rules:

./L'l PR xn (XOR)
B —— foranyn € N
(21 @ - Dxp)d Y
T1 T2 (T1,T2) (@1, x2)
(P) 1) (U2)

<$17$2> 1 o
Ty T2 iy,

— (SE) ol 2 op)
{=1]}%, 1

Rewrite rules: TOrx DYy — Yy zdxr — 0 zd0 = 2z

Equations:z; © - - ® x, = 2,(1) ® - - © x,(») foranyn € N and any permutation.

Figure 1. Deduction rules, rewriting rules, and equations for entioyp pairing, and exclusive-or.

ad®{cly  b®{cl XOR)

— {lalties a®b (sD) a®{cli bd{cl (XOR)

a a®b
(XOR)

Now, it is easy to see thdt + c.
2.3. Proofs

The intruder’s deductions are represented as tree praois,the previous example. We
formalize these notions here.

Definition 2 (proof) A proof with respect to a set of deduction rulégand a conver-
gent rewriting systeriR) is a tree whose nodes are labeled with terms and such that, if
a node is labeled with a termh and its sons are labeled with termis . . ., ¢,,, then there

S815-.-,8 i .
is a deduction rule———" € 7 and a substitutiorr such thats;o = t; for every
S
1<i<mnandsol =t.

Thehypothesebyp(w) of a proofr are the labels of the leaves of Its conclusion
conc(r) is the label of the root of. The last deduction rulast(r) is the instance of the
deduction rule that yields the root. We say thas a proof ofT" - « if hyp(7) C T and
conc(w) = u. Finally, step(r) is the set of all labels of. A subproofof = is a subtree
of 7. Itis also a proof.

Example 5 In Example 4, the proof, is such thatstep(r1) = T'U {a @ b, a, {|c[}; },
conc(m) = {lcfy, hyp(m) =T = {{lallap, a ®{c[i3, b @ {cl}3}, andlast(m ) is an
instance of th&XOR deduction rule. More precisely, we have that:

last(m) = ° {|C|}{§|’ v ¢ (XOR).
Clrp




The instances of the deduction rul@d;), (U,), and (SD) and instances of the
(XOR) for which the conclusion is not headed withare calleddecompositionsMore
generally, an instance of a deduction rule is a decompasitiits conclusion is a sub-
term of the premisses and is irrelevant in the rewritingé&iqunal steps. By convention,
if 7 is reduced to a leaf, then we also say that(x) is a decomposition.

Example 6 The following are instances of deduction rules, that arecdegositions:

fa@b)s D) fali @b bae c OR)
a®b {lalty

while the following are instances of deduction rules, that@ot decompositions:

a®b bdec a®b)s da {la®b])s ®b
0ob boe oo ewioe feomion o
a®c a®b

An instance of a deduction rule iscampositionf its premisses are subterms of the
conclusion. Typical examples of compositions are all tistginces of the deduction rules
(SE) and(P). Note that some instances of the deduction (XEOR) are compositions,
and some others are never compositions, nor decompositions

Example 7 Consider the following three instances of the deductios (OR):

a®b b a b adb bde

a adb adc

The first instance is a decomposition, the second instar@ednposition whereas the
third one is neither a composition nor a decomposition.

2.4. Normal proofs

Typical results concerning the deduction rules show thattérm can be derived then
there is anormal proof of it. The notion of normal proof will depend on the intruder
deduction system, but it has the property to avoid any urssaeg detour. Normal proofs
allow us to restrict the search space when looking for arlatta

We define below the normal proofs for the deduction systerargim Figure 1. We
simplify the proofs according to the rules presented in FégR. These rules simply
gather together successi@2€OR) deduction rules and otherwise, they only remove use-
less parts of the proofs. They are (strongly) terminatingoamal proofis a proof, that
is irreducible with respect to the rules of Figure 2. For othguational axioms or infer-
ence rules, there are also similar simplification and gatgewules [24]. There is how-
ever no general procedure that yields an appropriate nofinarmal proofs for arbitrary
equational theories.

“Locality” is a subformula property that holds on normal pf& In the definition
that follows,St(T") is the set of subterms af. Letu = u; ®. .. ® u,, be aterm such that
top(u;) # @ for everyi € {1,...,n}. Then, the strict direct subterms of also called
thefactorsof « and denotedact(u), are the individual arguments only.

Definition 3 (local proof) A local proofr of T' + w is a proof in which
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Figure 2. Proof normalization rules

e eitherlast(r) is a decomposition anskep(7) C St(7")
e orelsestep(r) C St(T U{u}).

This general property of proof systems is ensured by ourfproonalization process:
Lemma 1 If 7 is a normal proof ofl" - « thenr is a local proof ofT" - w.

Proof:

Let 7 be a normal proof of ' - u. Let us prove that is local by induction on the size of
m, i.e.its number of nodes.

Base caself 7 is reduced to a leaf, thene T andx is a local proof ofl" + w.

Induction stepWe distinguish two cases depending on whethst(r) is a decomposi-
tion or not.



1. If last(r) is not a decomposition, eithéryp(last(w)) are subterms of its con-
clusion g.g.an instance ofSE) or (P)) in which case we can simply use the
induction hypothesis, or else we have that

T e T
= { —— (XOR)
U

with conc(r;) ¢ St(u) for somes.

Letwu; = conc(m;) for j € {1,...,n}. We have that: = (u; & - - - & un)|. By
proof normalization, for every, eitherlast(r;) is not a decomposition, and then
top(u;) # @ or elselast(r;) is a decomposition and, by induction hypothesis,
step(w;) € St(T'). Consider an index such that, is maximal (with respect
to the subterm relation) in the sgt4, . .., u, }.

If last() is not a decomposition, thenp(ux) # ®. Furthermore, thanks to the
rewriting rules for®, we are in one of the following cases:

e vy, is a strict subterm of some;. This is ruled out by the maximality assump-
tion onuy,.

e u; = u; for somej # k. This is ruled out by the proof normalization rules.

e u; = u. This is ruled out by the proof normalisation rules

e uy € fact(ul) is a strict subterm of (i.e., it does not disappear in the normal-
isation ofu; @ ... D uy,).

Since only the last case is possible, every maximal terfwin . .., u, }, that
is not obtained by a decomposition, is a strict subtermx @fnd therefore, by
induction hypothesisstep(r;,) C St(ux) U St(T') € St(u)U St(T).
It follows that for every maximal term ifuy, . . ., u, }, we have thastep () C
St(u) U St(T). Then, for any termu;, there is a maximal term;, such that
u; € St(uy) and thereforeSt(u;)U St(T) C St(uy)U St(T) C St(u)U St(T).
It follows that, for everyi, step(m;) € St(u)U St(T), hencestep(r) C St(u)U
St(T).

2. Assume now thaast(r) is a decomposition. We consider all possible rules for
last(m).

Case 1:The proofr ends with an instance ¢t);) (or (U,)), i.e.
e
= {=w
u

with conc(m) is either a paifu, v) or a pair(v, u). In both cases, in order to get
a term whose top symbol is a pairigst(7;) must be either a pairing rule or a
decomposition rule. The first case is ruled out sinds a normal proof. Hence
we can apply the induction hypothesis and concludegtegi(m;) C St(T). It
follows thatstep(w) C St(T).

Case 2:The proofr ends with an instance ¢6D), i.e.

. { " (sp)

u

with conc(my) = {uf}s, conc(me) = v. Sinceconc(m) is headed with an en-
cryption symbollast(7;) must be either an instance (8E) or a decomposi-



tion. The first case is ruled out singds a normal proof, hendast () is a de-
composition. By induction hypothesitep(w1) C St(7'). In particular, we have
thatv € St(conc(w;)) € St(T'). Now, by induction hypothesis, we have that
step(mz) C St(T'U {v}) C St(T). It follows thatstep(r) C St(T).

Case 3:The proofr ends with an instance ¢KOR), i.e.

T e Tn
T = { —— (XOR)
U

Let u; = conc(r;) for everyj € {1,...,n}. By hypothesis, we know that
last(7) is a decomposition, thusp(u) # & andu € fact(u;) for somej €
{1,...,n}.

For everyj, last(w;) cannot be an instance of tf{&OR) deduction rule, be-
causer is a normal proof. Therefore, Iast(r;) is not a decomposition, then
top(u;) # @. It must then be a subterm of somg, k # j (actually a strict sub-

term sincer is a normal proof). Thus, the maximal terms{ia,, . . ., u,} with
respect to the subterm relation, are temmssuch thatast(r;) is a decomposi-
tion. By induction hypothesis, it follows that, for evefye {1,...,n}, we have

thatstep(r;) € St(T") and therefore we have thstep(r) C St(T').
O

As a consequence, the derivation problém,givenT" andu, the problem of decid-
ing whetheru is derivable fronil” or not, is in PTIME. We may indeed run a fixed point
computation algorithm on the s&t(7 U {u}). It will terminate in polynomial time, as
long as the one-step deducibility relation is decidableliiMiE, which is the case for our
rules in Figure 1, as well as in many other cases (see [24§reTare several other such
results for some classes of equational theorgeg.[24,9]). An overview of equational
properties that are relevant to security protocols is giada1].

3. Derivation constraints: definitions and examples
3.1. Introduction with an example

Consider the flawed handshake protocol example describeigjime 3, temporarily re-
turning to a larger set of operations. We want to check, foredfnumber of sessions (let
us call this thebounded scenarioase), whether or not there is an attack on the protocol
that compromises the secrgtwhich the participan3 generates and wishes to share
with the participantA. This security property turns out to be a trace propertyhabwe
can check it when we know which protocol traces are possible.

In the bounded scenario case, the number of messages thaixewranged is
bounded. However, as explained in Cha@rthere are still an infinite number of pos-
sible message instances. Hence the verification cannotri@mped by a simple enu-
meration of scenarii. The solution is to use a symbolic repméation of sequences of
messages, treating uninstantiated parameters as vatiable

Let us show how it works on the handshake protocol describdegure 3, when
there is one instance of the rale(with agent parametexrs andc) and one instance of
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Figure 3. Flawed handshake protocol

the role B (with agent parametefsanda). Therolesare simply threads, in which some
names are hidden: this corresponds to local random gemerdt be more precise, we
consider two threads expressed in a spi-calculus stylg,pattern matching:

Aa,e) : vk send (] [Flaoy}ue)- g€t ().
B(b,a) : vs. get ({|[z]sk(a) |};k(b)). send({s[}2).

Note that, in this scenario, the nam@ccurs free in bothi(a, ¢) and inB(b, a). It
cannot be renamed in any of the two threads: the namsieairedby these threads. Let us
see informally what the threadi(a, ¢) does in more detail. First it has c as parameters:
it is a program executed on behalf of an agentvho wishes to communicate with
Givena andc, it generates a fresh key (the vk construction). Then it constructs the
first encrypted message and sends it. Next, it waits for som&sage containing the
encryption of some value with k. When the message is received, it tries to decrypt
it with k. If this succeeds, then it retrieves the messag@therwise, if the decryption
fails, the program aborts (this is not specified here). ThestthB3 (b, a) works in a similar
way: first it waits for a message encrypted with its own pukdig, and extracts a value
signed byu. If the signature checks, it sends back the nonce (secez}rypted with the
(supposed) key.

Then, these roles are composed, using parallel compagitione hiding and possi-
bly replication, to buildscenarii For instanceA(q, ¢)||B(b, a) is a scenario where there
is one instance of the rold (with agent parameters andc) and one instance of the
role B (with agent parametefsanda).

The operational semantics of such threads is describedightlg different flavors)
in several papers such as [1,39,37]. The important featusethat each of these threads
is executed concurrently in a hostile environment: messé#us are sent over the net-
work can be intercepted and modified by an intruder. Theeefahat an agent gets is
the message that has been forged by the intruder from hisrdutnowledge and the
messages that circulated on the network. It is out of theesobghis chapter to define a
precise operational semantics of such a process algeler&(wpte?). It is not always
sufficient to consider a small system consisting of only dmead per role, for security
analysis. Conditions under which such small systems afecigunt are given by Lowe
and others [29,35,2].

In this scenario, we assume that the kek$a), pk(b), pk(c), vk(a), vk(b), vk(c)
are public, hence available to all agents, including theuder. The other keys are pri-
vate: they are normally held by their owners only. In thisrapée, we suppose thatis
compromised: this means that the secret ki#(g) andsk(c) are also available to the
intruder. Finally, the intruder knows the names of the agieamamelya, b andc. Thus,
the total initial intruder knowledge is the set of terms:



Tinit = {pk(a), pk(b), pk(c), vk(a), vk(b), vk(c), dk(c), sk(c), a, b, c}.

The next step is to construct the parallel composition otwwesessions. The paral-
lel composition has no more than six possible traces, whiehhe various interleavings
of the two ordered message actions of each of the two sessiogeneral, if there are
two sessions of lengthh andn, respectively, the number of interleavings is the number
of combinations” (m+n, m). However, not all of the interleavings aselvable A trace
is solvable if, and only if, there is a substitution for itgiedles such that the message
in eachget (u) action is derivable by the intruder from the intruder'siaiknowledge
plus the messages that have been sent in peord actions. This condition generates a
derivation constrainfor each received message.

Coming back to our running example, one of the interleaving i

send({[Flsx(a) (e 98t ({[Zlsx(a) Fpx(r) ) sS€NA({I[}2), get ({=[}3)

Is it solvable? There are twget actions, hence two derivation constraints:
?
Tinitv {| [k]sk(a) ‘};k(c) F {‘ [Z}sk(a) |};k(b)
?
Tinit, {| [k}sk(a) |};k(c)7 {|5|}Sz + {‘I|}Z

Note that the set of terms on the left of each derivation cairgtis actually a union
Tt U ..., but it simplifies the notation to write these sets as comapasated lists. The
?

C=

difference between a derivation constraint, denoteﬂ”lﬁyu, and a derivation, denoted
by T + w, is that the constraint asks for a substituttosuch thatl’'o + uo.

Example 8 The constraints i€ are simultaneously satisfied by the substitution
oc={z—k,z— s}

The fact that the second constraint is satisfied is obviouseéd, a normal proof of

Tinits {|[] sk(a) |}pk( {3, F {sl[};, is actually reduced to a leaf. The fact that the first
constraint is satlst)|ed takes some effort to see. A normalfpsgtnessing this fact is
described below.

(ks tox(ey  sk(c)
[k}sk(a) pk(b)
{1 (K sk(a) [oxo)

We still have to ask whether this trace violates the secgpagl of the protocol. It
does, because the intruder can obtaiinom (k] () and thens from {|z[}3. There is a
trick to help us figure this out: we add a ral&s) = get (s) to the protocol and the
scenario. An artificial role of this kind, introduced to tassecrecy property, is called a
listener. This means that the acti@et (s) must be included in each trace. This causes

?

a new constraint to be generated, of the fdrfm, ... F s



A substitution satisfying all the constraints, includimdgstone, will demonstrate that
the secret can be read by the intruder. This reduces detection of sgerelations to
the basic constraint solution problem.

Before proceeding with the method for solving constraiwesremark that there are
some easy optimizations that relieve us from considerirgyepossible trace. If both of
the traces...get (u). send(v’).... and....send(v’). get (u).... are possible, we can
discard the first one, because any substitution that satigfeeconstraints arising from
the first will also satisfy the second. Also, if a trace hassemutivesend actions, their
order is irrelevant, so one particular order is sufficietisTneans that, when counting
(or generating) interleavings, one need only consider thaber and order ofjet
actions in each session. By a similar argument, a listent@ramay always be placed
last in a trace.

The basic constraint solving approach, therefore, has tages: the first is to gen-
erate a sufficient set of traces, and the second is to geramndtattempt to solve the
constraint system arising from each trace. An alternafp@ach is used in [20]: while
generating traces, attempt to solve the current partiadtcaint system each timegget
action is added to a trace. If there is no solution, the daraae need not be extended,
eliminating a subtree of trace continuations. This appnozan lead to more solution
attempts in the worst case, but in practice it usually savesiderable time. Constraint
differentiation [4] offers another kind of optimization.

3.2. Derivation constraints

We can now formally define the notion of a derivation constraiystem, which is not
specific to our set of primitives/deduction rules.

Definition 4 (derivation constraint system) A derivation constraint systef consists
of a conjunction of equations and a sequence of derivatiosizaints:

? ? ? ?
TiFuir N AN, Fu, ANst=t1 AN... NSy, =t

whereT1, ..., T, are finite sets of terms. Moreover, we assume that:

e Monotonicity:(0 C Ty CTy--- C Ty,
e Determinacy:for every: € {1,...,n}, for everyu € T;, we have that
{u1,...,ui—1} UP F u, whereP is a finite set of ground terms.

We just saw, with the handshake protocol, how a sequencerightlen constraints
arises from a candidate trace of a protocol scenario. A cainstsequence arising this
way always satisfies the two properties mentioned abovegime finite seP of ground
terms, that represents the initial knowledge of the agents.

The first condition states that the intruder knowledge isdasing along the protocol
execution. The second condition states that the messagsich is emitted at some
stage, can be computed from all data that are possibly alaikt this stage. We do
not commit here to any particular program that computebut only state that such a
program must exist, if we assume that the corresponding &gsraccess to all data. This
is a reasonable assumption, that only rules out non-datéstici choices and possibly
some encodings of complex operations.



Let us remark that the monotonicity and determinacy coowtimply two impor-
tant properties:

e Origination: for everyi € {1,...,n}, for everya € vars(T;), there must be a
J < isuchthat € vars(u;). In particular, we have thatars(7;) = . Indeed,
if x ¢ {uy, -, u;—1}, thenz ¢ vars(u) for any termu that can be deduced from

{ul, teey ui_l} UP.
e Stability by instantiationif C is a derivation constraint system, then, for every
substitutiono, we have thaf o is also a derivation constraint system.

These two properties are actually what we need, and they ceplace the determi-
nacy property, yielding a more general (yet less naturdihidien of constraint systems
(see also [34]).

Example 9 Consider the following sets of derivation constraints:

? ?

Si=aklFz ANblFy

? ? ?
Sr=a,bbz A a b olls A a b Jylioty

? ?
Sz=a,bF{zf}; ANa bty

? ?
Si=a,bE{(z, ]} Na bty

The setS; is not a derivation constraint system since it violates th@atonicity
property. The sef is not a derivation constraint system, since it violatesd®einacy
(actually, it violates origination). The sé& is not a derivation constraint system since
is not derivable from{|z[}; U P for any set of ground term®. Intuitively, the agent
receiving{z[}; cannot retrievey and cannot retrieve: without having the key. This set
of derivation constraints could still be handled since itisfes the origination and any
instance of it also satisfies the origination. Lastfy, is a derivation constraint system.
In particular, we have thaf/(x, y)[}3,, k F .

In addition to these constructions, we may need to introdese variables along
with constraint simplifications. In order to keep the setalfiions, we may add existen-
tial quantifiers for these new variables, in front of a deitwaconstraint system.

Actually, we may consider some additional formulas withyaslight modifications
of the constraint solving technique. Typically, we may wistadd disequalities, either
because our threads contain conditionals or because weawéstpress agreement prop-
erties. The constraint solving algorithm is not modifiedtiluthe end; we only need to
add a simple test as a last step (see [16]). Similarly, meshijgconstraints (expressing
for instance typing information) or timing constraints daadded with minor changes.

Definition 5 (solution) Given a convergent set of rewrite rules (possibly modulo as-

sociativity and commutativity) and a set of derivation sutbat describe the intruder
?

capabilities (as in Figure 1), aolution of a set of derivation constrainG = 7 +
?
uy A --- ANT, F u,, together with a set of equatiorss is a substitutiors of its free

variables such that, for every T;0| F ;0] and, for every equatiom Zvin £, we
have thatuo| = vo|.



Example 10 Consider the following derivation constraint system (withequation):

T~
8

c— a® {clty, b {cli
{lals a @ {cliy, b {clt

The substitutioz — a @ b} is a solution. A witness of the fact thatsatisfies the last
derivation constraint is given in Example 4.

T~
o

3.3. Solved constraints

A variablez is solvedin a derivation constraint systehif it occurs as a member of an
equationz Z u, and nowhere else in the derivation constraint system. mbkrz is

?
pre-solvedf it occurs in a derivation constraifft - « such thate ¢ vars(T) and does

?
not occur in any termu, such thatl” + « is a derivation constraint such tHat C 7. A
derivation constraint systethis solvedif it is of the form

? ?
z1;t1/\.../\zm;tm/\T1I—axl/\.../\Tnl—xn

wherezy, ..., z,, are solved variables and, . . ., x,, are pre-solved variables. In partic-
ular, this implies that, . .., x,, are distinct variables.

Lemma 2 A solved constraint system has always at least one solwiinglly, infinitely
many solutions if it is not a trivial system).

Proof:
?

7 ?
LetT) + zq,...T, F z, be the derivation constraints that occur in the system, and
assume thdf; C ... C T,,. We construct a solution by induction an

Base casen = 0. In such a case, the equational part defines a substitutairisia
solution of the constraint.

Induction stepif n > 1, first chooser,0 = t; € T; and replacer; with ¢; in the

?
remainder of the constraint. After removing the constrdint- ¢, the resulting system
is still a derivation constraint system and it is still salvésince the variables; are
distinct). Then we apply the induction hypothesis. a

This lemma can be easily extended, considering additiasabdality (resp. mem-
bership) constraints [16]. For instance, if we wish to de@dsecurity property that can
be expressed with equalities (typically an agreement ptgpehen, as explained in in-
troduction, we consider the derivation constraint systemether with the negation of
these equalities. It is satisfiable if and only if the segupitoperty can be violated. If
the derivation constraint is in solved form and there is maar disequality, then the
above lemma implies that there is a solution, hence the isgquoperty is violated. In
other words, it suffices to simplify the derivation congttaiinto solved forms (which
may yield some replacements of the variables in the diséyyart) and then check the
satisfiability of the disequality part.



? ?

, ) ) R3: Thru~ Fz. TH (x,u)

. . . , )
Ri: TF(up,ug) ~ Thru ATHEF usy Ry: Thu~ Ja. TF (u,x)

? ? ? ? ? ?
Ry: THA{ul, ~ TFwuATrFu Ry: Thy~s 3o TH{uSATF2

? ? ?
Re: TrFa AT Fx ~TrxifTCT
?
R;: Tru ~ tLu ifteT

Figure 4. Naive constraint reduction rules

This idea can be applied to other security properties thageagent or confidential-
ity, as long as they can be expressed with a formula on the gariables as the variables
of the derivation constraints.

4. Solving a derivation constraint system
4.1. Constraint reduction

Constraint reductior(see [33]) is a relatively straightforward and efficient viaysolve
a derivation constraint system arising from a candidatéopmd trace. It solves a system
iteratively by reducing individual constraints until thgstem is solved.

Each reduction step should Beundin the sense that any solution of the reduced
constraint system is a solution of the original system. Athestep, several reductions
may be possible. Hence, reduction sequences form a brantki®. Some paths may
lead to a failure, while others yield solved forms, henceisohs. A desirable property
is thecompletenessf the reduction rules: if is a solution ofC, then there is a possible
reduction ofC into a constraint systed@, of whicho is a solution. In other words, there
is a path in the tree that will yield a solved constraint systd whicho is a solution.

We could simply get a sound and complete set of constrainttexh rules by guess-
ing the last intruder computation step. For instance in @esysvith only symmetric

0
encryption and pairing, given a constraifit- u such that is not a variable, for any
solutiono, the last step in the proof dfo F uo must be a pairing (this is only possible
if u is a pair) or an encryption (this is only possible:ifs a ciphertext), or a decryption
or a projection, or a trivial step (this is only possibleiif belongs tal's). This yields a
naive set of reduction rules, that is displayed in Figure 4.

The two first rules correspond to pairing and encryption. fiinee following rules
correspond to projections and decryption. Then, the lastisractually the only one
that builds a solution: we guess here that the proof is coegleas (the instance of)
u belongs to (the corresponding instance Bf)In addition to such rules, we need an
equality constraint solving rule:

t=u AC—oACo if o0 = mgu(t,u)



We do not include it in Figure 4 since this rule is a deternticisimplification rule: it
may be applied to any constraint without considering amgraditive simplification. By
conventiong =1 is a failure if the two terms are not unifiable.

Unfortunately, such rules are too naive: while sound andpieta, they will not
terminate, as the three rules that correspond to projectiod decryption (namelys,
R4 andRs) can be repeatedly applied any number of times. That is whgtaveot aim at
reproducing any possible intruder's computation, but @ame of its computations, and
at least one for each resulting term. This results in usiag#me set of rules as the above
one, however restricting the three ruRg R4 and,R5; while keeping completeness. This
is, in essence, what is performed in the decision procedwassd on constraint solving.

We now give a complete and terminating procedure, inclugirignitives such as
exclusive-or.

4.2. A constraint solving procedure for exclusive-or

We display in Figure 5 a set of constraint simplification suier a theory of exclusive-or,

pairing and symmetric encryption. The simplification ruéesctly reflect the intruder

capabilities. They must be applied “don’t know”: this is ageterministic procedure, in

which all possible applicable rules must be considered ifweh to get a completeness
result.

?
Ax : Tl—twt;u if ueT
?
C: Tl—f(tl,...,tn)le—tl AT, if £+ @
Cg: Tl—u@va}—u/\Tl—v
D, : TFthF( >/\tiu if (u,v) € St(T)
D, : Tl—thl—( v) A tlv if (u,v) € St(T)
Dgec : Tl—t ~ TI—{| I3 /\Tl—v/\t—u if {Jul}s € St(T)
Dg : Tl—thl—vl/\ /\Tl—vn/\t—vl@...@vn
ifl}l,..., ()
? ? , .
Geq: Thudv ~ TrwdvAu=w if we St(T USt(U)
andtop(u) € {{_[}*, ()}

Figure 5. Constraint transformation rules

In addition to these rules, equational constraints are Ifisgh and the resulting
substitutions are applied to the rest of the constraint:

U:  ¢cné— \/ Colro

o €mgu(€)

Here,mgu(€) denotes a complete set of most general unifier§ ofoduloEg. Such a
set is finite and has even more properties, as we will see ibeghema 8. Contrary to the



case of encryption and pairing only, the set of minimal ursfighough finite, may not
be reduced to a singleton.

Example 11 The equatior{x, z) ® (y, y) < (a,a) ® (b, b) has two most general unifiers
o1 ={x—a,y— b} andoy = {z — b,y — a}.

In addition, we simplify the constraints with the rules

? ? ?
S.:TFu AT Fu = Thu if 7T CT'

? ? ?
SQIT"ZL’ AN Tll—ul BIAN Tnl—un

? ? ?
- TrFx AN Ty,zbku, -+ ANT,zku,
if 71,...,T, are all left hand sides such tHAtC T;, andx ¢ T;.

We also use two simplifications of right members of constsairf the formz & ¢:

? ? ? ?
XRi:T'Fa ATFxz®t - T'Fx AT T if 7" CT

? ?
XRy : TFa@®t —» .ThryAos=ydt
if © ¢ vars(T) U vars(t) andXR; cannot be applied

By convention, newly quantified variables should not ocaaviusly in the con-
straint.

The rules of Figure 5 concerning pairing and symmetric gptaoy are very similar
to the naive rules of Figure 4. The only differences are tbe sbnstraints, that impose
the newly introduced terms to be already subterms of thet@ns We will show that
this is complete. On the other hand, this gives an upper baunthe possible right
members of the constraints, allowing us to derive a terrmgadtrategy.

Example 12 Consider the constraint system given in Example 10 and fachwh =
{z — a®b}isasolution. Letly = {a® {c}3, b® {c};} andT> = T U {{la}3}. We
have the following transformation sequence that leads teravdtion constraint system
in solved form for whicla is still a solution. For sake of simplicity, trivial equatie are
omitted.

”
? Tl Fx
? ? T\ Fx ?
ARRE Tz ? T,z ad {cf};
? _>S2 ? WDdec TQ,J? - {|C|}Z WD@ ?
Thkec Th,xFc ? To,zka
TQ,.’I}}_b ?

TQ,.T"_b



?
Tll_ﬂf

? ?
T ? Tk
? TQ,J]l_CL ?
~Ax  To,x b a Do ? A T,z b a N Ax
? Ty,xba@{cl 2
Tyztd : Ty.a b ol
To,x - b®{c[};
?
? T1 Fa ?
Ttz ? T Fx ?
v Ddec | T,z {laf}; T ? AT F
Ir,zka ’ Ty, = {al}
T,z x

The rules can actually be refined, for instance preventimg fpplying successively
twice Dg on a same constraint (two consecutiveules never occurs in a normal proof).
Some of the rules (for instan&eq) might even be unnecessary.

It is not very difficult to show that the simplification rulés, So, XRy, XRy, U pre-
serve the set of solutions, hence we may eagerly (and detistivally) apply these rules:

Lemma 3 (soundness and completeness of simplification rule¥he simplification rules
U,S1,S2, XR1, XRs are sound and complete: they preserve the set of solutions.

Then the rules of the Figure 5 are applied to simplified déidvaconstraints. It
remains now to prove three main properties:

1. The rules do transform the derivation constraints intive&on constraints, and
they do not introduce new solutions. This is stated in the iham.

2. If a derivation constraint system is not in solved fornerthfor every solutiomr,
there is a rule that can be applied and that yields anothesticont, of whicho
is a solution; this is theompletenesesult, which we eventually prove in Corol-
lary 1. This shows that every solution of a derivation caaistrcan be eventually
retrieved from a solved form.

3. Thereis a complete strategy such that there is no infiagaence of transforma-
tions. We will prove this last result Section 4.4.

Lemma 4 (soundness of transformation rules)The rules of Figure 5 are sound: they
transform a constraint systeéinto a constraint systeri’ such that any solution @’
is also a solution of.

4.3. Completeness of the transformation rules

The completeness would be straightforward for a set of rmailes such as the rules dis-
played in the Figure 4. We imposed however additional retstnis, typically that, for
decompositions, we may only consider the subtermiB.dFhis reflects the fact that we
may restrict our attention to normal proofs. However, oum&now contain variables.
Thanks to Lemma 1, ifr is a normal proof off ¢ - uo] such thatast(r) is a decom-
position, therstep(n) € St(T'¢l). This does not necessarily mean thgp(last(r))
are instances of terms i6t(7"), becauseSt(To]) € St(T")ol. The main difficulty for
showing the completeness is to get an analog of Lemma 1, leniéted to terms with
variables. This is what we start in Lemma 5, however with ghsly weaker conclusion.



Lemma 5 Let T be a finite set of terms; be a ground term in normal form and be
a substitution mapping the variables Bfto ground terms in normal form. We assume
moreover that, for every € vars(T), thereis &, C T and a proofr, , of T,ol F zo,

such thatlast(r, ) is not a decomposition and, for eveyye vars(T;), we have that
T, C T,. Letw be a normal proof of o | F w.

Y =
If last() is a decomposition, then

e either there ist € vars(T) and a subprooft’ of 7, , such thatconc(n’) = u
andlast(r’) is not a decomposition
e orelseu € St(T)ol

For everyuy € fact(u), we have that eithef'o| - uy, or elseuy € St(T')o].

It is actually not sufficient to consider normal proofs to whibe completeness of
our transformation rules. We have to consider normal prtitdi$ arealien-free In an
alien-free proof, we control the premisses of the instaont#ése XOR deduction rule.

Tn
(

Y
A proof 7 of To| + u is alien-freeif, for every subproof - XOR)

of , for everyi, eitherconc(m;) € St(T")ol or conc(mw;) € fact(v).

Lemma 6 LetT be a finite set of terms; be a substitution mapping the variablesiof
to ground terms in normal form and be a ground term in normal form. We assume
that, for every variabler € vars(T), there is aT,, C T and a normal proofr, , of
T,ol F zo such thatast(r, . ) is not a decomposition and, for eveyye vars(T),), we
have thatl}, C T,. We assume moreover here thats(T) C T andvars(T,) C T, for
every variabler.

If mo is a normal proof ofl'c| + wu, then there is a normal alien-free proafof

Tolt u.

Example 13 Consider the following derivation constraint system.

?
a,b,cdd, f, gtz
?
a,b,cdd, f,g,ce k, {zdd}s,zt (a,b) De

Leto = {& = (a,0) Dcdd® (f,9)}, Tx = {a,b,cdd, f, g}, andT = T, U
{c@e, k, {lz ®d[};, z}. We have thafz} = vars(T) C T, and() = vars(T,) C T;.
The proofr, , described below is a proof df, 0] - zo that does not end with a
decomposition.

a b f g

Te,o = C@d <a7b> <f7 g>
cdd®(a,b) & (f,9)

Letm, be the following proof of'c - (a,b) & e.



{z@diiol k [y

Ty = (l’@d)a’i che <fag>
(a,b) @ e

The proofry is a proof in normal form whose last step is not a decompasitio
According to Lemma 5, for every; € {(a,b),e}, we have that eitheT'o| F uy, or
us € St(T)ol. Indeed, we have thdfo - (a,b), ande € St(T)o]. Howeverr, is
not alien-free sincéf, g) is neither in St(7')o nor a factor of(a, b) & e. An alien-free
proofry of Tol F (a,b) @ e is given below:

a b {z®d}iol k
Ty = xo ¢c®d (a,b) cde (z®d)ol
(a,b) @ e

Lemma 7 There is a mapping from derivation constraint systems and substitutions to
a well-founded ordered set such that, for every derivatiomstraint systenC and every
solutiono of C, eitherC is in solved form or else there is a constraint syst&rauch that

C ~ (', ois a solution o', andu(C, o) > u(C’, o).

Note that this lemma does not prove the termination of ows;idince we only show
that,for every solutiorr, the derivation sequences of whiglis a solution is finite. There
might be however an infinite sequence of solutions, eacldiyigla longer derivation
sequence than the previous ones.

As a consequence of this lemma, we get a completeness s#atittg that, for every
solutiono of C, there is a solved system that can be derived ffoamd of whiche is a
solution:

Corollary 1 (completeness)If C is a derivation constraint system amdis a solution
of C, then there is a solved derivation constraint syst&rauch thatC ~* C’ ando is a
solution ofC’.

4.4. Termination

The termination can be ensured by a complete strategy ol application, as long
as unification reduces the number of variables. This prggsrtrue, at least, for the
combination of a free theory and the exclusive-or theory.

Lemma 8 Suppose that is a set of equations over the disjoint combination of the
theory of{®,0} and a free theory with (at least) symmetric encryption andipg.
Then either has no solution, or every substitution is a solutioné&gfor else there

is a finite complete set of unifiers of€ such that, for anyw € X, we have that
|vars(Eo)| < |vars(E)].

Proof (sketch):

To establish this result, we rely on the procedure desciiing®] for combining disjoint
equational theories. Given a system of equations, we:debe the maximal number
of independent equations i, i.e. we only consider equations that are not a logical



consequence of the other equations (with respect to thedmyed equational theory).
Then, we show that the difference betwegnand the number of variables, is non-
decreasing. This allows us to conclude. O

This says that the number of new variables introduced byithstiution is less than
the number of variables eliminated by the substitution. &emples below show that it
is sometimes needed to introduce new variables.

Example 14 We consider two sets that are made up of one equation only.

o Leté = {z = f(x®y)}. Thissethas mgu = {z — f(2),y — f(2) ® 2}
wherez is a new variable. We have that

|vars(Eo)| = |z| =1 < 2 = [{x,y}| = vars(E).

o Leté = {x = f(x ®y) @ z}. This set has mgu = {z — f(z') ® z,y —
f(z') @ 2’ @ z} wherez’ is a new variable. We have that

lvars(Eo)| = {2’ 2} = 2 < 3 = |[{z,y, 2}| = |vars(E)|.

We use the following strategy: the rulgsS,, So, XR1, XR, are applied eagerly (in
?
this order) and then the rules of Figure 5 are applied to atcinsT - u such that,
?

for anyT’ C T and every constrairif’ + v, we have that is a variable that does not
occur inT’. According to the results of the previous section, thistegw preserves the
completeness.

Let V(C) be the pair(n,m) such thatn is the number of unsolved variables ©f
andm is the number of variables ¢f that are neither solved nor pre-solved. Such pairs
are ordered lexicographically.

Lemma 9 LetC and(’ be two derivation constraint systems such that- C’, we have
thatV(C) > V(C’).

Proof (sketch):
Let us consider successively the transformation rulepitioly the simplification rules,
for which the statement is not straightforward.

e When applyindJ, either the equation is trivial (in which ca$¥C) remains con-
stant), or the equation is unsatisfiable (in which cd&@) is decreasing), or else,
thanks to Lemma 8, there are more variables that becomedsthiaa variables
that are introduced. Hence the first component (@) is strictly decreasing.

e When applyingXR., followed by a replacement of with y & ¢, the number
of unsolved variables is constant (vas unsolved before applying the rule and
becomes solved after the replacement with t). The number of non-pre-solved
variables is strictly decreasing sincevas not pre-solved before the rule andy
are both pre-solved after applying the rule.



e The other rules do not introduce new variables: the first ammept ofV(C) can
only decrease or remain constant. According to our strategynly situations in
which the number of pre-solved variables could decreasbéna transformation

?

rule is applied to a constraift 2 wherez is a variable. This may happen
with the rulesAx, D, , D,, Dgec, Dg, that mimic decompositions. But, in these
cases, at least one non trivial equation is added, whiclgjialfter applyindJ, a
strict decreasingness of the first componen? ().

O

Now, if a transformation preserve®(C), then there is no simplification by
U, XRy, XRy that takes place at this step (except trivial equations Ifficgtions), and
the side conditions of the rules ensure that no new subtepaaap. More precisely, let
T(C)= St(C)U{u|Tv,udv e St(C)}, then we have the following lemma.

Lemma 10 Let C and C’ be two derivation constraint systems such that- C’ and
V(C) =V(C'), thenT (C") C T(C).

It suffices then to cut looping branches in order to get a teating and complete
procedure: according to Lemma 9, from any infinite transttiom sequence we may
extract an infinite transformation sequer@&g~» C; ~» --- ~» C, ~» --- on which
V(Co) =V(C1) =---=V(Cy) = ---. Then, according to Lemma 10, the set of subterms
in any derivation constraint system of the sequence is beditg the set of subterms

?

of the original constraint syste}. Now, each individual constraifif F u can appear
only once in any constraint system, thank${o Therefore, there are only finitely many
derivation constraint systems that can be built once thefssibterms (more precisely
the set7 (C)) is fixed. This means that any infinite sequence of transfoomamust be
looping.

Now, remains to justify that cutting the loops still yields@mplete procedure. The
reason is that, according to the lemma 7, for every solutiof Cy, there is a sequence
Co ~ Cy ~» -+ ~ C, such thatr is a solution ofC,, andu(Co, o) > u(Cy, o), hence
the sequence does not include any loop, since the orderingeasures is well-founded.

As a conclusion of this section, we get a termination result:

Theorem 1 (Termination) There is a complete strategy such that any simplification se-
quence is finite and yields a solved form.

The termination proof does not give much information abamplexity. Further-
more, the strategy is quite rough and can be refined: therdllissne work to do, if
we wish to get the shortest simplification sequence. Foainmts we would need to avoid
repeating several times the same simplifications (as exgddn [16]).

With such an additional work, the simplification of congtitai might yield a NP
decision procedure for the satisfiability of derivation straint systems.

4.5. Further results

The constraint solving approach to the security of pro®ees introduced in [33]. In
the case of symmetric and asymmetric cryptography, it has lshown to yield a NP



decision procedure (for the existence of an attack) in [B8}. the same set of cryp-
tographic primitives as the one we have shown in this chaptdrwithout exclusive-
or, a full constraint solving procedure, preserving alusioins, is given in [16]. Such a
procedure allows us to decide more trace properties (suahtasntication, key cycles,
timeliness).

Extensions of decision results (for secrecy) to other firnes have been extensively
studied. For exclusive-or there are two concurrent putitoa [19,11]. However, these
results only provide decision results. In this respect,pioeedure that we gave in this
chapter is a new result, since it preserves all solutioresititd be used for deciding other
security properties.

The second most popular equational theories are modelirtg paarithmetic, in
particular modular exponentiation. There is no hope to gggraeral decision result for
the full arithmetic, as unification is already undecidafiibe first fragment considers
some properties of modular exponentiation that are sufiiéee modeling some classical
protocols [31,10,12]. In case of an Abelian group theorg,dbnstraint solving approach
is also proved to yield a decision procedure [38,34]. Thixtended, yet considering a
richer fragment of arithmetic in [8].

There are many more relevant equational theories, as deddri [21]. For instance
homomorphism properties are considered in [23,24], bligdatures in [22,6],... Some
classes of equational theories are considered, relyingconstraint solving approach in
[24,9].

Finally, we complete the tour by mentioning combinationsle€ision procedures:
for disjoint theories [13], hierarchical combinations [hd more [8].

All these works make use of techniques similar to derivatonstraint solving,
but they also use a “small attack property”, showing thag derivation constraint is
satisfiable, then there is a small solution. This kind of ltemilows us to restrict the set
of solutions that has to be considered; the constraintisgliiles (or their counterparts)
then do not necessarily preserve the solutions, but onlgepve the small solutions,
hence the satisfiability. In this chapter (as in [16,9]), wentva step further, preserving
the set of all solutions.

4.6. Software resources

There are a few specialized theorem provers that can delalseihe algebraic prop-
erties of cryptographic primitives [5,7,40]. There areocalgays of getting rid of some
equational axioms, and then using the verifiers that argydedifor free term algebras
[17,27,28]. Only some [33,4,40] are (currently) reallyiag on constraint solving tech-
nigques. But the recent theoretical advances in this areaim#ye next few years, yield
new tools based on these techniques.

5. Research directions

Much is known at this stage about the foundations of secprdtocol analysis. The basic
decidability and complexity results are known. Severak&zed software tools, and
methods for applying more general tools, are availabld) sfihggering improvements
in performance compared with a decade ago: seconds instéwmais to analyze most



protocols. More attention is needed now to the presentatidhe best algorithms, so
that future students, tool developers, and analysts wildde to build on clear and useful
knowledge rather than tricks hidden in software.

There is always a need to extend analysis approaches to mmrerkinds of cryp-
tographic primitives, such as bilinear pairings, used liptt curve cryptography, and
zero-knowledge proofs. Another persistent demand is talleamore kinds of secu-
rity goals, such as anonymity, fair exchange, group key mement, and properties ex-
pressed in terms of observational equivalence.

Observational equivalence deserves a special attentiaols one to state some
stronger security properties, typically that an attackemot learn anything relevant, be-
cause the process is indistinguishable from an ideal psdceshich all relevant infor-
mations have been shuffled or hidden.

The constraint solving approach is relevant for decidingivedences of processes.
It requires however significant new insights since the caingtsolving method that we
described in this chapter is complete only wwhatan attacker can deduce, but not w.r.t.
howit can be deduced. On the other hand, if an attacker hasetitfevays to deduce a
given message in two different experiments, he could djsigh between them.

At this stage in the development of security protocol arig)ytee most useful chal-
lenge for the research community might not be research aballrather a transfer of
the state of the art to the state of practice. A collaboratioresearchers, educators, and
tool builders may be necessary to create texts, expecsationd software that exhibits
the best of what is possible and explains how to use it. Afierkind of consolidation
step, it will be easier to see what is most important to do.next
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