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Abstract Security protocols are small programs that are executed in hostile en-
vironments. Many results and tools have been developed to formally analyze the
security of a protocol in the presence of an active attacker that may block, inter-
cept and send new messages. However even when a protocol has been proved secure,
there is absolutely no guarantee if the protocol is executed in an environment where
other protocols are executed, possibly sharing some common keys like public keys or
long-term symmetric keys.

In this paper, we show that security of protocols can be easily composed. More
precisely, we show that whenever a protocol is secure, it remains secure even in an en-
vironment where arbitrary protocols satisfying a reasonable (syntactic) condition are
executed. This result holds for a large class of security properties that encompasses
secrecy and various formulations of authentication.

Keywords composition · security protocols · verification

1 Introduction

Security protocols are small programs that aim at securing communications over a
public network like the Internet. Considering the increasing size of networks and
their dependence on cryptographic protocols, a high level of assurance is needed in
the correctness of such protocols. The design of security protocols is difficult and
error-prone; many attacks have been discovered even several years after the publi-
cation of a protocol. Consequently, there has been a growing interest in applying
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formal methods for validating cryptographic protocols and many results have been
obtained. The main advantage of the formal approach is its relative simplicity which
makes it amenable to automated analysis. For example, the secrecy preservation
is co-NP-complete for a bounded number of sessions [38], and decidable for an un-
bounded number of sessions under some additional restrictions (e.g. [27,3,11,18,40]).
Many tools have also been developed to automatically verify cryptographic protocols
(e.g. [10,7,33,41,39,24]). Of course, considering formal models require the use of ab-
stract models that rules out some practical attacks. Recently, a new line of research
is aiming at obtaining higher guarantees using formal approaches (see e.g. [2,8]).

However even when a protocol has been proved secure for an unbounded number
of sessions, against a fully active adversary that can intercept, block and send new
messages, there is absolutely no guarantee if the protocol is executed in an environ-
ment where other protocols are executed, possibly sharing some common keys like
public keys or long-term symmetric keys. The interaction with the other protocols
may dramatically damage the security of a protocol. Consider for example the two
following naive protocols.

P1 : A→ B : {s}pub(B)
P2 : A→ B : {Na}pub(B)

B → A : Na

In protocol P1, the agent A simply sends a secret s encrypted under B’s public
key. In protocol P2, the agent sends some fresh nonce to B encrypted underB’s public
key. The agent B acknowledges A’s message by forwarding A’s nonce. While P1

executed alone easily guarantees the secrecy of s, even against active adversaries,
the secrecy of s is no more guaranteed when the protocol P2 is executed. Indeed, an
adversary may use the protocol P2 as an oracle to decrypt any message. More realistic
examples illustrating interactions between protocols can be found in e.g. [30].

Main contributions. The purpose of this paper is to investigate sufficient and rather
tight conditions for a protocol to be safely used in an environment where other
protocols may be executed as well. Our main contribution is to show that whenever
a protocol is proved secure when it is executed alone, its security is not compromised
by the interactions with any other protocol, provided that any two encrypted sub-
messages coming from two different protocol specifications cannot be unified. This
can be easily achieved by tagging protocols, that is by assigning to each protocol an
identifier (e.g. the protocol’s name) that should appear in any encrypted message.

We introduce a fragment of the logic PS-LTL (defined in [21]) for which our com-
position result holds. This fragment allows us to specify a class of security properties
that encompasses e.g. secrecy and various formulation of authenticity.

Continuing our example, let us consider the two slightly modified protocols.

P ′1 : A→ B : {1, s}pub(B)
P ′2 : A→ B : {2, Na}pub(B)

B → A : Na

Our main composition theorem ensures that P ′1 can be safely executed together
with P ′2, without compromising the secrecy of s.

Being able to share keys between protocols is a very desirable property as it
allows to save both memory (for storing keys) and time since generating keys is
time consuming in particular in the case of public key encryption. We provide in
Section 5.4 examples of protocols that share secret materials. For security reasons
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however, most protocols currently make use of different keys. In this paper, we pro-
vide a simple criteria for safely composing protocols that share keys.

The idea of adding an identifier in encrypted messages is not novel. It follows
the spirit of the rules proposed in the paper of Abadi and Needham on prudent
engineering practice for cryptographic protocols [1] (Principle 10). The use of unique
protocol identifiers is also recommended in [30,14] and has also been used in the
design of fail-stop protocols [28]. However, to the best of our knowledge, it has never
been proved that it is sufficient for securely executing several protocols in the same
environment. Note that some other results also use tags for different purposes. For
instance, Blanchet uses tags to exhibit a decidable class [11] but his tagging policy
is stronger since any two encrypted subterms in a protocol have to contain different
tags. Following our approach, Delaune et al. have recently showed [26] that tagging
hashes enable to preserve resistance against guessing attacks under composition.

Related work. A result closely related to ours is the one of Guttman and Thayer [29].
They show that two protocols can be safely executed together without damaging in-
teractions, as soon as the protocols are “independent”. The independence hypothesis
requires in particular that the set of encrypted messages that the two protocols han-
dle should be different. As in our case, this can be ensured by giving each protocol
a distinguishing value that should be included in the set of encrypted messages that
the protocol handles. However, the major difference with our result is that this hy-
pothesis has to hold not only on the protocol specification but also on any valid
execution of the protocol. In particular, considering again the protocol P ′2, an agent
should not accept a message of the form {2, {1,m}k}pub(B) while he might not be
able to decrypt the inside encryption and detect that it contains the wrong identifier.
A more detailed comparison can be found in Section 5.1.

Another result has been recently obtained by Andova et al. for a broader class of
composition operations [4]. Their result do not allow one to conclude when no typing
hypothesis is assumed (that is, when agents are not required to check the type of
each component of a message) or for protocols with ciphertext forwarding, that is,
when agents have to forward unknown message components.

Datta et al. (e.g. [25]) have also studied secure protocol composition in a broader
sense: protocols can be composed in parallel, sequentially or protocols may use other
protocols as components. However, they do not provide any syntactic conditions for a
protocol P to be safely executed in parallel with other protocols. For any protocol P ′

that might be executed in parallel, they have to prove that the two protocols P and P ′

satisfy each other invariants. Their approach is thus rather designed for component-
based design of protocols.

Our work is also related to those of Canetti et al. who study universal compos-
ability of protocols [12] in a different context (cryptographic model). They consider
composition in a broader sense than our composition result. Indeed, they both en-
able composition of a protocol with arbitrary other protocols and composition of
a protocol with copies of itself. However, in the initial approach [12], they do not
allow shared data between protocols, meaning that new encryption and signing keys
have to be generated for each component. Composition theorems that allow joint
states between protocols are proposed in further work (see e.g. [15,9,13]). Several
limitations on the applicability of the results are listed in a recent paper of Küsters
and Tuengerthal [31]. In [31], the authors propose a new construction for a joint
state theorem in the context of asymmetric encryption and signature (no symmetric
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encryption nor hash as in our formal model). This result allows in particular to com-
pose a protocol with arbitrary protocols using the same kind of construction: they
add an identifier in each encryption.

A preliminary version of our results has been presented at FSTTCS’07 [22].
However, in the conference version we prove composability for tagged protocols and
secrecy property only. We now consider a weaker hypothesis (non unifiable encrypted
messages) and a much larger class of security properties.

Plan of the paper. After some preliminaries (Section 2), we describe the model of
protocols in Section 3. In Section 4, we define the logic of security properties for which
our composition result holds. Then, in Section 5, we formally state our composition
result (Theorem 1) providing examples and discussion. The remaining of the paper
is devoted to the proof of this composition result by relying on constraint solving
techniques. We first show in Section 6 that we can control the form of minimal
attacks. Actually, this result is of independent interest since we provide a decision
procedure for solving constraint systems which is more efficient than the one proposed
in [23]. Then we explain in Section 7 how to simplify the formula representing the
security properties. The final proofs are in Section 8. To ease the understanding of
the result, we postpone some of the proofs in the Appendix.

2 Messages and Intruder Capabilities

2.1 Syntax

We use an abstract term algebra to model messages of a protocol. For this we fix sev-
eral disjoint sets. We consider an infinite set of agents A = {a, b, . . . , }, an infinite set
of names N = {n,m, k, . . .} and an infinite set of variables X = {x, y . . . ,X, Y . . .}.
Names are used to model atomic data such as nonces. Cryptographic primitives
are represented by function symbols. More specifically, we consider the signature
F = {enc, enca, sign, 〈 〉, init,h,priv} together with arities of the form ar(f) = 2 for
the four first symbols and ar(f) = 1 for the two last ones. The symbol init is a special
function symbol of arity 0, namely a constant. The symbol 〈 〉 represents the pairing
function. The terms enc(m, k) and enca(m, k) represent respectively the message m
encrypted with the symmetric (resp. asymmetric) key k whereas the term sign(m, k)
represents the message m signed by the key k. The function symbol h models a hash
function and the term priv(a) represents the private key of the agent a. For simplic-
ity, we confuse the agent names with their public key. The set of Terms is defined
inductively by the following grammar:

t, t1, t2, . . . ::= term
| x variable x ∈ X
| a agent a ∈ A
| n name n ∈ N
| priv(a) application of the symbol priv on a ∈ A
| h(t) application of h
| f(t1, t2) application of symbol f ∈ {enc, enca, sign, 〈 〉}

We write vars(t) (resp. names(t), agents(t)) for the set of variables (resp. names,
agents) occurring in t. A term is ground if and only if it has no variable. We write St(t)
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for the set of subterms of a term t. For example, let t = enc(〈a, b〉, k), we have that
St(t) = {t, 〈a, b〉, a, b, k}, vars(t) = ∅, names(t) = {k}, agents(t) = {a, b}. These
notions are extended as expected to sets of terms. Extended names are names, agents
or terms of the form priv(a). The set of Extended names associated to a term t,
denoted n(t), is

n(t) = names(t) ∪ {a,priv(a) | a ∈ agents(t)}.

For example, we have that n(enc(n, a)) = {n, a,priv(a)}. Substitutions are writ-
ten σ = {x1 7→ t1, . . . , xn 7→ tn} with dom(σ) = {x1, . . . , xn}. The substitution σ is
closed if and only if all the ti are ground. The application of a substitution σ to
a term t is written σ(t) or tσ. Two terms t1 and t2 are unifiable if t1σ = t2σ for
some substitution σ, otherwise there are non-unifiable. Lastly, we assume a set P of
predicates together with their arities.

2.2 Intruder capabilities

The ability of the intruder is modeled by a deduction system described in Figure 1
and corresponds to the usual Dolev-Yao rules. The first line describes the composition
rules. The two last lines describe the decomposition rules and the axiom. Intuitively,
these deduction rules say that an intruder can compose messages by pairing, signing,
hashing, encrypting messages provided he has the corresponding keys. Conversely, it
can decompose messages by projecting or decrypting provided it has the decryption
keys. For signatures, the intruder is also able to verify whether a signature sign(m, k)
and a message m match (provided she has the verification key), but this does not give
her any new message. That is why this capability is not represented in the deduction
system. We also consider an optional rule (Verification)

T ⊢ sign(u, v)

T ⊢ u

that expresses that an intruder can retrieve the whole message from its signature.
This property may or may not hold depending on the signature scheme, and that is
why this rule is optional. Our results hold in both cases (that is, when the deduction
relation ⊢ is defined with or without this rule).

A term u is deducible from a set of terms T , denoted by T ⊢ u if there exists
a proof, i.e. a tree such that the root is T ⊢ u, the leaves are of the form T ⊢ v
with v ∈ T (axiom rule) and every intermediate node is an instance of one of the
rules of the deduction system.

Example 1 The term 〈k1, k2〉 is deducible from the set T1 = {enc(k1, k2), k2}. A
proof of T1 ⊢ 〈k1, k2〉 is:

T1 ⊢ enc(k1, k2) T1 ⊢ k2

T1 ⊢ k1 T1 ⊢ k2

T1 ⊢ 〈k1, k2〉
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Pairing Signature Hash Sym./Asym. encryption

T ⊢ u T ⊢ v

T ⊢ 〈u, v〉

T ⊢ u T ⊢ v

T ⊢ sign(u, v)

T ⊢ u

h(u)

T ⊢ u T ⊢ v
f ∈ {enc, enca}

T ⊢ f(u, v)

1st Projection Verification (optional) Symmetric decryption

T ⊢ 〈u, v〉

T ⊢ u

T ⊢ sign(u, v)

T ⊢ u

T ⊢ enc(u, v) T ⊢ v

T ⊢ u

2nd Projection Axiom Asymmetric decryption

T ⊢ 〈u, v〉

T ⊢ v

u ∈ T
T ⊢ u

T ⊢ enca(u, v) T ⊢ priv(v)

T ⊢ u

Fig. 1 Intruder deduction system.

3 Models for security protocols

In this section we give a language for specifying protocols and define their execution
in the presence of an active adversary.

3.1 Syntax

We consider protocols specified in a language allowing parties to exchange messages
built from identities and randomly generated nonces using public key, symmetric en-
cryption and digital signatures. The individual behavior of each protocol participant
is defined by a role describing a sequence of events. The main events we consider
are communication events (i.e. message receptions and message transmissions) and
new events to model random numbers generation. To be able to specify a large class
of security properties (a logic of properties is given in Section 4), we also consider
status events. Those events are issued by participant to denote their current state in
the execution of a protocol role.

Definition 1 (event) An event is one of the following:

– a communication event, i.e. a message reception, denoted by rcv(m) or a message
transmission, denoted by snd(m), where m is a term; or

– a new event, denoted by new X where X is a variable; or
– a status event of the form P (t1, . . . , tn) where each ti is a term (not necessarily

ground) and P ∈ P is a predicate symbol of arity n.

Typically status events give information about the state of the principal. For
instance, we will consider a status event that indicates that the principal has started
or finished an execution. The set of variables of an event is defined as expected,
considering all the terms occurring in the event’s specification.

Definition 2 (roles) A role is a finite sequence of events e1; . . . ; eℓ such that

1. for any sent or status event ei, for any variable x ∈ vars(ei), we have that
x ∈
⋃

1≤j<i vars(ej), and
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2. a variable occurring in a new event does not appear previously in the sequence.

The length of a role is the number of events in its sequence.

We denote by Roles the set of roles. A k-party protocol is given by k such a
role. More formally, a k-party protocol is a mapping Π : [k] → Roles, where [k] =
{1, 2, . . . , k}. The condition stated in Definition 2 ensures that each variable which
appears in a sent or status event is either a nonce or has been introduced in a
previously received message. The set of variables, names or extended names of a
protocol is defined as expected, considering all the terms occurring in the role’s
specification.

The composition of two protocols Π1 and Π2, denoted by Π1 | Π2 is simply the
protocol obtained by the union of the roles of Π1 and Π2. If Π1 : [k1] → Roles and
Π2 : [k2] → Roles, then Π = Π1 | Π2 : [k1 + k2]→ Roles with Π(i) = Π1(i) for any
1 ≤ i ≤ k1 and Π(k1 + i) = Π2(i) for any 1 ≤ i ≤ k2 .

Example 2 Consider the famous Needham-Schroeder protocol [37].

A→ B : {Na, A}pub(B)

B → A : {Na, Nb}pub(A)

A→ B : {Nb}pub(B)

The agent A sends to B his name and a fresh nonce (a randomly generated value)
encrypted with the public key of B. The agent B answers by copying A’s nonce and
adds a fresh nonce NB, encrypted by A’s public key. The agent A acknowledges by
forwarding B’s nonce encrypted by B’s public key. For instance, let a, b, and c be
three agents. The role Π(1) corresponding to the first participant played by a talking
to c and the role Π(2) corresponding to the second participant played by b with a
are described below.

Π(1) := new X;
snd(enca(〈X, a〉, c));
rcv(enca(〈X,x〉, a));
snd(enca(x, c)).

Π(2) := rcv(enca(〈y, a〉, b));
new Y ;
snd(enca(〈y, Y 〉, a));
rcv(enca(Y, b)).

Note that, since our definition of role is not parametric, we have also to consider
a role corresponding to the first participant played by a talking to b for example. If
more agent identities need to be considered, then the corresponding roles should be
added to the protocol. It has been shown however that two agents are sufficient (one
honest and one dishonest) for proving security properties such as those we consider
in this paper [19]. In this example, we chose to not use status event. Actually, they
are meaningful to specify the security properties and have no real interest for the
description of the protocol itself. We will illustrate the usefulness of status events in
Section 4.

Clearly, not all protocols written using the syntax above are meaningful. In par-
ticular, some of them might not be executable. For instance, a k-party protocol where
Π(1) := rcv(h(x)); snd(x) is not executable since an agent is not able to extract the
content of a hash. A precise definition of executability is not relevant for our result.
We use instead a weaker hypothesis (see Theorem 1, Condition 2). In particular,
our combination result also holds for non executable protocols such as the one given
above.
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3.2 Semantics

We start with the description of the execution model of the protocol in the presence
of an active attacker. The model we consider is rather standard. The parties in the
system execute a (potentially unbounded) number of protocol sessions with each
other. A role may be executed in several sessions, using different nonces at each
session. Moreover, since the adversary may block, redirect and send new messages,
all the sessions might be interleaved in many ways. This is captured by the notion
of scenario.

Definition 3 (scenario) A scenario for a protocol Π : [k] → Roles is a sequence
sc = (r1, s1) · · · (rn, sn) such that 1 ≤ ri ≤ k, si ∈ N, the number of identical
occurrences of a pair (r, s) is smaller than the length of the role r, and whenever
si = sj then ri = rj .

The numbers ri and si represent respectively the involved role and the session num-
ber. An occurrence of (r, s) in sc means that the role r of session s executes its next
action. The condition on the number of occurrences of a pair ensures that such an
action is always available. The last condition ensures that a session number is not
reused on other roles.

Let Π = Π1 | Π2 be a protocol obtained by composition of Π1 and Π2 and let sc

be a scenario for Π. The scenario sc|Π1
is simply the sequence obtained from sc by

removing any element (r, s) where r is a role of Π2.

Given a protocol Π and a scenario sc, we can define the symbolic trace, i.e. a
sequence of events, associated to Π and sc. It corresponds to the sequence of events in
the order defined by the scenario. Variables occurring in new events are instantiated
by fresh names while the other variables are left unchanged. This symbolic trace
represents a potentially infinite number of concrete traces. Intuitively, the variables
can be instantiated in potentially infinite ways, depending on the messages sent by
the intruder. A trace is said to be ground if it contains no variable.

Definition 4 (symbolic trace associated to Π and sc) Given a scenario

sc = (r1, s1) · · · (rn, sn)

for a k-party protocol Π, the symbolic trace tr = e1; . . . ; eℓ associated to sc is defined
as follows. Let Π(j) = e

j
1; . . . ; e

j
kj

for 1 ≤ j ≤ k. Let pi = #{(rj , sj) ∈ sc | j ≤ i, sj =

si}, i.e. the number of previous occurrences in sc of the session si. We have pi ≤ kri
and ei = eripiσri,si where

– dom(σr,s) = {vars(eri ) | 1 ≤ i ≤ kr and eri is a new or a received event}, i.e.
variables occurring in Π(r),

– σr,s(X) = nX,s if X ∈ {Y | 1 ≤ i ≤ kr and eri = new Y }, where nX,s ∈ N .
– σr,s(x) = xs otherwise, where xs is a variable.

We assume that the names nx,s and the variables xs are fresh, that is, they are
supposed not to occur in any other protocol or security formula.

Example 3 Consider again the Needham-Schroeder protocol. Let Π(1) and Π(2)
be the two roles introduced in Example 2. Let s1 and s2 be two sessions numbers
(s1 6= s2) and sc = (1, s1)(1, s1)(2, s2)(2, s2)(2, s2)(1, s1)(1, s1). This is the scenario
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allowing us to retrieve the famous attack due to Lowe [32]. The symbolic trace
associated to Π and sc is given below:

tr = new nX,s1
; snd(enca(〈nX,s1

, a〉, c));
rcv(enca(〈ys2

, a〉, b)); new nY,s2
; snd(enca(〈ys2

, nY,s2
〉, a));

rcv(enca(〈nX,s1
, xs1
〉, a)); snd(enca(xs1

, c))

Appending an event e to a trace tr is written tr; e. The function length has the
usual meaning: length([ ]) = 0 and length(tr; e) = 1 + length(tr). The prefix trace
consisting of the first i events is denoted as tri, with tr0 = [ ] and trn = tr when
n ≥ length(tr).

Definition 5 (knowledge of a trace tr) Let tr be a trace. The knowledge of tr is
the set of terms given by K(tr) = {init} ∪ {u | snd(u) ∈ tr}.

An execution trace is an instance of such a symbolic trace. As usual, we are
only interested in valid execution traces - those traces where the attacker only sends
messages that he can compute from his knowledge and the messages he has seen on
the network.

Definition 6 (valid execution trace) Let T0 be a finite set of ground terms
(intuitively T0 represents the initial knowledge of the attacker). A ground execution
trace tr = e1; . . . ; eℓ is valid w.r.t. T0 if for all 1 ≤ i ≤ ℓ, whenever ei = rcv(m), we
have that T0 ∪ K(tri) ⊢ m.

Example 4 Let T0 = {a, b, c,priv(c)}. Let tr be the symbolic trace described in Ex-
ample 3 and σ = {ys2

7→ nX,s1
, xs1

7→ nY,s2
}. The trace trσ is valid w.r.t. T0.

Indeed, we have that

– T1
def
= T0, init, enca(〈nX,s1

, a〉, c) ⊢ enca(〈nX,s1
, a〉, b), and

– T1, enca(〈nX,s1
, nY,s2

〉, a) ⊢ enca(〈nX,s1
, nY,s2

〉, a).

In the next section, we define what it means for a protocol to satisfy a security
property. We introduce a logic for properties that encompasses classical properties
like secrecy and authentication.

4 Security Properties

In this section, we review a logic, called PS-LTL, for specifying security properties.
This logic is actually a (syntactic) fragment of the logic proposed in [21]. The logic
is based on linear temporal logic (LTL) with pure-past operators. PS-LTL provides
adequate flexibility, allowing one to specify several security properties like secrecy
and different forms of authentication among them aliveness, weak agreement and
non-injective agreement. Its semantics is defined as usual on execution traces.

4.1 PS-LTL: Syntax and Semantics

Compared to [21], we split off the status events (defined with predicates) from the
communication events (send, received or new events). Indeed, the first kind of events
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are used to specify security properties while the others are internal events describing
the execution of the protocol. The temporal operators should only concern status
events. That is why we divided the logic into two layers and (slightly) change the
semantics accordingly. The first layer consists in formula made up from status event,
temporal operators and the classical ¬,∨,∧,∃, and ∀ logical operators. The second
layer consists in formula made up from the first layer, the special predicate learn and
the classical ¬,∨,∧,∃, and ∀ logical operators.

Definition 7 (PS-LTL formula) A PS-LTL formula φ, is defined by the following
grammar:

ψ,ψi := true | P (t1, . . . , tn) | ¬ψ | ψ1 ∧ ψ2 | ψ1 ∨ ψ2 | Yψ | ψ1 Sψ2 | ∃x.ψ | ∀x.ψ

φ, φi := ψ | learn(m) | ¬φ | φ1 ∧ φ2 | φ1 ∨ φ2 | ∃x.φ | ∀x.φ

where the ti’s and m are terms (not necessarily ground)

Standard formulas true, ¬φ, φ ∧ φ and φ ∨ φ carry the usual meaning. The for-
mula learn(m) states that the attacker knows the term m whereas P (t1, . . . , tn) is a
status event. The formula Yψ means that ’yesterday ψ held’, while ψ1 Sψ2 means
that ’ψ1 held ever since a moment in which ψ2 held’. When x is a variable, we write
∃x.φ and ∀x.φ to bind x in φ, with the quantifiers carrying the usual meaning. Other
operators can be represented using the above defined operators. The abbreviations

false and⇒ are defined by false
def
= ¬true and φ1 ⇒ φ2

def
= ¬φ1∨φ2. We also used ♦ψ

as a shorthand for true Sψ.

In the sequel, we assume that PS-LTL formulas are closed, i.e. they contain no free
variables, and that each variable is quantified at most once (this can be easily ensured
by using renaming). We also assume that the variables occurring in a formula φ are
disjoint from the variables occurring in the considered execution trace tr. Given a
trace tr, we denote by tr the sequence of status events obtained by removing from tr

all the communication and new events. PS-LTL formulas are interpreted at some
position along a trace as stated in Definition 8.

Definition 8 (concrete validity) Let φ be a closed PS-LTL formula, tr be a
ground execution trace and T0 be a finite set of ground terms. We define 〈tr, T0〉 |= φ
as:

〈tr, T0〉 |= true

〈tr, T0〉 |= learn(m) iff T0 ∪ K(tr)∪ ⊢ m
〈tr, T0〉 |= ¬φ iff 〈tr, T0〉 6|= φ
〈tr, T0〉 |= φ1 ∧ φ2 iff 〈tr, T0〉 |= φ1 and 〈tr, T0〉 |= φ2

〈tr, T0〉 |= φ1 ∨ φ2 iff 〈tr, T0〉 |= φ1 or 〈tr, T0〉 |= φ2

〈tr, T0〉 |= ∃x.φ iff there exists a ground term t such that 〈tr, T0〉 |= φ[x 7→ t]
〈tr, T0〉 |= ∀x.φ iff for all ground term t we have that 〈tr, T0〉 |= φ[x 7→ t]

For the temporal formulas, only the status events are meaningful.

〈tr, T0〉 |= P (t1, . . . , tn) iff tr = tr′; P (t1, . . . , tn)
〈tr, T0〉 |= Yψ iff tr = tr′; e and 〈tr′, T0〉 |= ψ
〈tr, T0〉 |= ψ1 Sψ2 iff ∃i ∈ [0, length(tr)] such that

− 〈tri, T0〉 |= ψ2, and
− ∀j ∈ [i+ 1, length(tr)], we have 〈trj , T0〉 |= ψ1
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We now define the subset of PS-LTL formulas, namely PS-LTL-, over which our
composition result holds. We say a PS-LTL formula is quantifier-free if it does not
contain any quantifier (neither ∃, nor ∀). We will only consider security formulas
of the form ∀x1. . . . .∀xn.φ

′ where φ′ is quantifier-free. Note that, this means that
the attack formulas we consider are those of the form ∃x1, . . . ,∃xn.¬φ

′. We also
need to control the occurrences of learn(m). We say that a formula φ is positive
(resp. negative) if every occurrence of learn(m) in φ appears under an even (resp.
odd) number of negations. This restriction allows us to avoid negated deducibility
constraints.

Definition 9 (PS-LTL
+, PS-LTL

-) We say that φ is a universal negative for-
mula (resp. existential positive formula) if φ is of the form ∀x1. . . . .∀xn.φ

′ (resp.
∃x1. . . . .∃xn.φ

′) where φ′ is quantifier-free and negative (resp. positive). We denote
by PS-LTL- (resp. PS-LTL+) such a fragment.

In the remainder, we consider universal negative security formulas (PS-LTL- frag-
ment), i.e. existential positive attack formulas (PS-LTL+ fragment).

Definition 10 (Π |= φ) Let φ be a closed PS-LTL formula, tr be a symbolic trace
and T0 be a set of ground terms. We say that 〈tr, T0〉 |= φ if 〈trσ, T0〉 |= φ for every
substitution σ such that trσ is a valid execution trace.

Let Π be a protocol and T0 be a set of ground terms. We say that Π |= φ
w.r.t. T0, if 〈tr, T0〉 |= φ for all symbolic trace tr associated to some scenario of Π.

4.2 Writing Security Properties with PS-LTL

In this section, we show how to specify several security properties in PS-LTL-. We
illustrate this with the Needham-Schroeder protocol presented in Example 2.

Secrecy. We can easily specify the standard notion of secrecy, which is the inability
of an attacker to obtain the value of the secret. The secrecy of a long-term key,
e.g. priv(a), can be checked by the PS-LTL- formula ¬learn(priv(a)). We can also
express the secrecy of a nonce, e.g. the nonce generated by b for a in the role Π(2)
described in Example 2. For this, we have to introduce a status event, say nonce.
Thus, we modify the role of Π(2) by adding the status event nonce(Y ) just after the
event new Y . We obtain the two following roles:

Π(1) := new X;
snd(enca(〈X, a〉, c));
rcv(enca(〈X,x〉, a));
snd(enca(x, c)).

Π(2) := rcv(enca(〈y, a〉, b));
new Y ;
nonce(Y );
snd(enca(〈y, Y 〉, a));
rcv(enca(Y, b)).

Thus, now, we can require that the nonces generated by b for a has to be kept
secret. This can be done by the following PS-LTL- formula

∀x. (♦ nonce(x))⇒ ¬learn(x).

11



Consider the trace tr′ obtained from tr (described in Example 3) by inserting the
status event nonce(nY,s2

) just after the event new nY,s2
, i.e.

tr′ = new nX,s1
; snd(enca(〈nX,s1

, a〉, c)); rcv(enca(〈ys2
, a〉, b));

new nY,s2
; nonce(nY,s2

); snd(enca(〈ys2
, nY,s2

〉, a));
rcv(enca(〈nX,s1

, xs1
〉, a)); snd(enca(xs1

, c))

Consider the substitution σ and the set of ground terms T0 given in Example 4.
We have that 〈trσ, T0〉 |= ∃x.(♦ nonce(x)) ∧ learn(x). It is indeed easy to see that
〈trσ, T0〉 |= (♦ nonce(nY,s2

)), and 〈trσ, T0〉 |= learn(nY,s2
). This means that the pro-

tocol Π (modified version) does not satisfies the secrecy property stated above.

Temporary secret. Some protocols have to preserve secrecy, but only during a
period. For instance, in e-voting, it should be impossible for an attacker to learn a
vote before the opening phase. This can be easily expressed in PS-LTL-. For this, we
insert a status event opening in the protocol specification just before the beginning
of the opening phase. Then the formula can be written as follows:

∀x. (♦ vote(x) ∧ ¬♦ opening)⇒ ¬learn(x).

Fairness. In a fair contract signing protocols two agents A and B want to exchange
their signatures on a contract in such a way that at the end of the protocol either
both participants obtain the signed contract or none of them does so. This kind of
protocols either terminates in a final state where the exchange has been aborted or
in a final state where the exchange did succeed. For the purpose of our example,
we suppose that the role modelling the participant P (either A or B) is annotated
as follows: the event Pend(c) indicates that the role is in a final state for some
contract c; the event Pcontract(c) indicates that P successfully received the signed
contract. Then, fairness for A can be modelled as

∀x. Aend(x)⇒ (♦Acontract(x) ∨ ¬♦Bcontract(x))

The formula says that for any contract whenever A is in a final state (Aend(x)), ei-
therA did obtain the contract signed byB (formalized by the formula ♦Acontract(x)),
orB did not obtain the contract signed byA (formalized by the formula ¬♦Bcontract(x)).

We also cover various form of authentication except injective agreement, which
would require counting events in a trace. This would require an extension of the
logic.

Aliveness. This property is the weakest form of authentication in Lowe’s hierar-
chy [34].

A protocol satisfies aliveness if, whenever an honest agent completes a run of
the protocol, apparently with another honest agent B, then B has previously
run the protocol.

12



Note that B may not necessarily believe that he was running the protocol with A.
Also, B may not have run the protocol recently. The aliveness of principal B to
initiator A can be specified in our formalism. First, we have to consider two status
events start and end. We insert them at the beginning and at the end of each role
respectively. For instance, in Π(1), we insert start(a) at the beginning and end(a, c) at
the end. This expresses the fact that the role is executed by a with c. We insert start(b)
and end(b, a) in Π(2). Now, the aliveness property can be specified as follows:

(end(a, b)⇒ ♦ start(b)) ∧ (end(b, a)⇒ ♦ start(a))

This corresponds to the fact that the property end(x, y) ⇒ start(y) has to be satis-
fied when x and y are both honest agents. For the Needham-Schroeder public-key
protocol, the aliveness property is satisfied.

Weak agreement. Weak agreement is slightly stronger than aliveness.

A protocol guarantees weak agreement if, whenever an honest agent completes
a run of the protocol, apparently with another honest agent B, then B has
previously been running the protocol, apparently with A.

The weak agreement property can also been expressed in our formalism. We
have again to add status events start and end in our specification. However, the
predicate start will have also two parameters: start(a, c) expresses the fact that a
has started a session with c. Now, the weak agreement property can be specified as
follows:

(end(a, b)⇒ ♦ start(b, a)) ∧ (end(b, a)⇒ ♦ start(a, b))

For the Needham-Schroeder public-key protocol, it is well-known that this property
is not satisfied: b can complete a session apparently with a whereas a has never
started a session with b.

We can also express some refinements of these properties by distinguishing the
case where an agent starts a session as an initiator or as a responder. Moreover, we
can also express the fact that the two agents agreed on some data D. This allows us
to express the non-injective agreement security property.

5 Composition result

Even if a protocol is secure for an unbounded number of sessions, its security may
collapse if the protocol is executed in an environment where other protocols sharing
some common keys are executed. A first example has been informally given in Intro-
duction. In Sections 5.1 and 5.2, we introduce and discuss the hypotheses we need
to safely compose protocols, providing counter-examples that justify the necessity of
our hypotheses. Our main result is formally stated in Section 5.3.

5.1 Disjoint encryption

To avoid a ciphertext from a protocol Π1 to be decrypted in another protocol Π2, we
consider protocols that satisfies disjoint encryption. This notion is formally defined
below (see Definition 11) and relies on the following notion of encrypted subterms.
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An encrypted term is a term of the form enc(u, v), enca(u, v), sign(u, v) for some
terms u, v or h(u) for some term u. Given a set of terms T , we denote by EncSt(T )
the set of encrypted subterms of T , i.e.

EncSt(T ) = {t′ ∈ St(T ) | t is an encrypted term}.

This notation is extended as expected to events and PS-LTL formula. Given a pro-
tocol Π, consider the substitution σ such that dom(σ) = {X | newX ∈ Π} and
Xσ = nX for any X ∈ dom(σ). We define EncSt(Π) as follows:

EncSt(Π) = {EncSt(e)σ | e ∈ Π}.

Note that we instantiate the variables under new events. This reflects that parties
will check the nonces they have generated on their own. For example, consider the
two following protocols. Let Π1 be a protocol with only one role:

Π1(1) := new X; snd(enca(X, a)); rcv(enca(〈X,X〉, a)); Fail

The agent sends to itself a message of the form enca(N,pub(A)) and waits for
enca(〈N,N〉,pub(A)), in which case he raises the status event Fail, where Fail is
a predicate of arity 0. The protocol Π1 will never reach the status event Fail. Let
now Π2 be a protocol with only one role:

Π2(1) := new Y ; snd(enca(〈Y, Y 〉, a))

Even if Π1 is composed with Π2, Π1 will never reach the status event Fail. How-
ever, if we did not instantiate variables under new events, the two encrypted terms
enca(〈X,X〉, a) and enca(〈Y, Y 〉, a) would be unifiable.

Definition 11 (disjoint encryption) Let T1 and T2 be two sets of terms. We say
that T1 and T2 have disjoint encryption if vars(T1) ∩ vars(T2) = ∅ and for every
encrypted terms t′1 ∈ EncSt(T1) and t′2 ∈ EncSt(T2), we have that t′1 and t′2 are
non-unifiable.

Two protocols Π1 and Π2 (we assume that they do not share any variable) have
disjoint encryption if EncSt(Π1) and EncSt(Π2) have disjoint encryption.

Example 5 The role Π(1) and Π(2) described in Example 2 do not have disjoint en-
cryption since enca(〈nX , x〉, a) and enca(〈y, nY 〉, a) are unifiable. Anyway, we know
that these two roles can not be safely composed (Lowe’s attack). However, two proto-
cols having disjoint key material, e.g. Needham-Schroeder-Lowe public key protocol
and Needham-Schroeder symmetric key protocol have disjoint encryption.

However, protocols that use common keys (e.g. common public keys) may not en-
joy the disjoint encryption property. A way to force disjoint encryption is to use tag.
Requiring that two protocols satisfy disjoint encryption can be very easily achieved
in practice: it is sufficient for example to add the name of the protocol in each
encrypted term.

Definition 12 (well-tag, α-tag) Let α be a ground term. A term t is α-tagged if
EncSt(t) ⊆ {f(〈α, t1〉, t2), h(〈α, t1〉) | f ∈ {enc, enca, sign}, t1, t2 ∈ Terms}. A term
is said to be well-tagged if it is α-tagged for some ground term α.

A protocol Π is α-tagged is any term occurring in the role of the protocol is
α-tagged. A protocol is said well-tagged if it is α-tagged for some ground term α.
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The following proposition is an easy consequence of the previous definition since
two terms which are respectively α and β-tagged (α 6= β) have necessarily disjoint
encryption.

Proposition 1 Let Π1 and Π2 be two well-tagged protocols such that Π1 is α-tagged
and Π2 is β-tagged with α 6= β. Then the protocols Π1 and Π2 have disjoint encryp-
tion.

Proof Since Π1 and Π2 are respectively α-tagged and β-tagged, we have that

– EncSt(Π1) ⊆ {f(〈α, t1〉, t2), h(〈α, t1〉) | f ∈ {enc, enca, sign}, t1, t2 ∈ Terms},
– EncSt(Π2) ⊆ {f(〈β, t1〉, t2), h(〈β, t1〉) | f ∈ {enc, enca, sign}, t1, t2 ∈ Terms}.

Now, since α and β are not unifiable, it is easy to conclude. �

Note that (as opposite to [29]) we do not require that the agents check that
nested encrypted terms are correctly tagged. For example, let Π be a protocol with
one role as follows:

Π(1) = rcv(enca(〈α, x〉, a)); snd(enca(〈α, x〉, b)).

The message enca(〈α, enc(a, k)〉, a) (which is not correctly tagged) would be ac-
cepted by the agent playing the role.

5.2 Controlling the position of critical long-term keys

Disjoint encryption is not a sufficient condition. Indeed critical long-term keys should
not be revealed in clear. Consider for example the following two protocols. Note that
they satisfy disjoint encryption since P4 has no encrypted subterm.

P3 : A→ B : {α, s}kab P4 : A→ B : kab

The security of protocol P3 is compromised by the execution of P4. Thus we
will require that long-term keys (except possibly the public ones) do not occur in
plaintext in the protocol. This is not a real restriction since not disclosing the long
term private keys in plaintext (even under encryption) corresponds to a prudent
practice.

Definition 13 (plaintext) The set plaintext(t) of plaintext of a term t is the set
of extended names and variables that occurs in plaintext. It is recursively defined as
follows.

plaintext(u) = {u} if u is a variable, an agent or a name
plaintext(priv(u)) = {priv(u)}
plaintext(〈u1, u2〉) = plaintext(u1) ∪ plaintext(u2)
plaintext(h(u)) = plaintext(u)
plaintext(f(u1, u2)) = plaintext(u1) for f ∈ {enc, enca, sign}

This notation is extended to set of terms and events. For protocols, we define
plaintext(Π) as follows:

plaintext(Π) = {plaintext(e) | e ∈ Π and e is a communication event}.
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Using our syntax, some protocols may still reveal critical keys in a hidden way.
Consider for example the following one role (α-tagged) protocol.

Π(1) = snd(enc(〈α, a〉, kab)); rcv(enc(〈α, a〉, x)); snd(x).

While the long-term key kab does not appear in plaintext, the key kab is revealed after
simply one normal execution of the role. This protocol is however not realistic since
it cannot be executed. Indeed, an unknown value cannot be learned (and sent) if it
does not appear previously in plaintext. Thus we will further require (Condition 2 of
Theorem 1) that a variable occurring in plaintext in a sent message, has to previously
occur in plaintext in a received message.

5.3 Composition result

We show that two protocols can be safely composed as soon as they satisfy the dis-
joint encryption assumption and that critical long-term keys do not appear in plain-
text. We also require that PS-LTL formulas also enjoy disjoint encryption with Π2.

Theorem 1 (Main result) Let Π1 = [k1] → Roles, Π2 = [k2] → Roles be two
protocols having disjoint encryption and such that Π2 contains no status event. Let
T0 (intuitively the initial knowledge of the intruder) be a set of extended names. Let
KC = (n(Π1) ∪ n(Π2)) r T0 be the set of critical extended names and φ be a closed
PS-LTL

- formula. Moreover, we assume that

1. critical extended names do not appear in plaintext, i.e.

KC ∩ (plaintext(Π1) ∪ plaintext(Π2)) = ∅.

2. for any role e1, . . . , eℓ of Π1 or Π2, for any i such that ei is a sent event, for
any variable x ∈ plaintext(ei), we have that x ∈ plaintext(ej) for some new or
received event ej such that j < i.

3. EncSt(φ) and EncSt(Π2) have disjoint encryption.

If Π1 |= φ for T0 then Π1 | Π2 |= φ for T0.

We first discuss the hypotheses of the theorem. We have seen in Sections 5.1
and 5.2 that conditions 1 and 2 are necessary conditions. Note that condition 2 is
actually satisfied by any realistic (executable) protocol since a party can send in
plaintext only values that he knows already in plaintext. Condition 1 ensures that
constant names that are not public do not appear in plaintext in Π1 nor Π2. This
applies typically to the long-term private keys of protocols. These keys should indeed
not be sent in plaintext. Note that this restriction does not apply to fresh keys or
nonces generated during the execution of the protocols. Fresh keys and nonces are
of course allowed to be sent in plaintext.

Condition 3 on the formula is not a real restriction since the security prop-
erty should talk about protocol Π1 thus if encrypted terms appear in the security
property, they should be encrypted terms from Π1, which have disjoint encryption
with Π2. We also require that Π2 does not contain status event since we are inter-
ested to establish a security property on Π1. It is a necessary condition as shown by
the example below:
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Example 6 Consider the two following 1-party protocols Π1 and Π2:

Π1 = rcv(x1); event(x1); snd(enc(〈α, x1〉, k)) Π2 = new X; snd(enc(〈β,X〉, k)).

Let T0 = {α, β} and φ = ∃x.event(enc(〈β, x〉, k)). The conditions 1 and 2 stated in
Theorem 1 are satisfied whereas condition 3 is not. We have that Π1 | Π2 |= φ for the
initial knowledge T0 whereas Π1 6|= φ. Thus we have that ¬φ is a PS-LTL- formula
and Π1 |= ¬φ while Π1 | Π2 6|= ¬φ.

We prove our combination result by contradiction and we first need to show that
messages from two combined protocols do not need to be mixed up to mount an
attack. For this purpose, we refine in Section 6 an existing decision procedure that
allows us to control the form of the execution traces. Second, we show in Section 7
how to simplify the fragment of PS-LTL+ formula. Lastly, we provide a full proof of
Theorem 1 in Section 8.

5.4 Applications

Security protocols can be analyzed using several existing tools, e.g. [10,7]. The se-
curity of a protocol Π is however guaranteed provided that no other protocols share
any of the private data of Π. Our result shows that, once the security of an isolated
protocol has been established, this protocol can be safely executed in environments
that may use some common data provided disjoint encryption is satisfied (and that
long term private keys are not sent in plaintext). This condition is easy to check but
might not be satisfied by existing protocols. A simple way to ensure it is to add the
name of the protocol each time a party performs an encryption.

For security reasons however, most protocols actually make use of different keys.
In this paper, we provide a simple criteria for safely composing protocols that share
keys. This would allow to save both memory (for storing keys) and time since gener-
ating keys is time consuming in particular in the case of public key encryption. For
example, the SSL protocol should contain the name “ssl2.0” in any of its encrypted
messages. This would ensure that no armful interaction can occur with any other
protocols even if they share some data with the SSL protocol, provided that these
other protocols are also tagged. In other words, to avoid armful interaction between
protocols, one should simply use a tagged version of them.

There are also situations were running different protocols with common keys
already occur. We provide three examples of such cases.

– It is often the case that several versions of a protocol can be used concurrently.
In this case and for backward compatibility reasons, the same keys can be used
in the different versions of the protocol, which may lead to potentially dangerous
interactions.

– When encrypting emails the same public key can be used for two distinct en-
cryption protocols: the PGP protocol (Pretty Good Privacy) and its open source
version OpenPGP. Note that the PGP protocol contains also other sub-protocols
such as digitally signing message, all sharing the same public-key infrastructure.

– In the slightly different context of APIs, J. Clulow [17] discovered an attack when
the VISA PIN verification values (PVV) protocol and the IBM CCA API share
the same verification key.
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6 Simplifying Constraint Systems

6.1 Constraint Systems

Constraint systems are quite common (see e.g. [38,20,23]) to model the execution of
security protocols. We recall here their formalism.

Definition 14 (constraint system) A constraint system C is either ⊥ or a finite
sequence of expressions (Ti  ui)1≤i≤n, called constraints, where each Ti is a finite
set of terms, called the left-hand side of the constraint, and each ui is a term, called
the right-hand side of the constraint, such that:

– init ∈ T1 and Ti ⊆ Ti+1 for every i such that 1 ≤ i < n;
– if x ∈ vars(Ti) then ∃ j < i such that Tj = min{T | (T  u) ∈ C, x ∈ vars(u)}

(for the inclusion relation) and Tj ( Ti.

A solution of C is a closed substitution θ with dom(θ) = vars(C) such that for every
(T  u) ∈ C, we have that Tθ ⊢ uθ. The empty constraint system is always satisfiable
whereas ⊥ denotes an unsatisfiable system.

A constraint system C is usually denoted as a conjunction of constraints C =
∧

1≤i≤n(Ti  ui) with Ti ⊆ Ti+1, for all 1 ≤ i < n. The second condition in Def-
inition 14 says that each time a new variable is introduced, it first occurs in some
right-hand side. The left-hand side of a constraint system usually represents the mes-
sages sent on the network, while the right-hand side represents the message expected
by the party.

Definition 15 Let Π be a protocol and sc be a scenario of Π. Let tr be a symbolic
trace associated to Π and sc and T0 be a finite set of terms. The constraint system
C(tr) associated to tr and T0 is defined as follows:

C(tr) := {T0 ∪ K(tri)  u | tri = tri−1; rcv(u) and 0 ≤ i ≤ length(tr)}.

Note that C(tr) satisfies the requirements given in Definition 14. In particular,
the second condition is ensured thanks to the condition 1 of Definition 2. It is easy
to establish the following result:

Lemma 1 Let tr be a symbolic trace associated to a protocol Π and a scenario sc.
Let σ be a substitution and T0 be a finite set of terms. We have that

trσ is valid if and only if σ is a solution to C(tr).

6.2 Simplification Rules

To prove our combination result, we first refine an existing decision procedure for
solving constraint systems. Several decision procedures exist [36,20,23,38,16] for
solving constraint systems. Some of them [36,20,23,16] are based on a set of sim-
plification rules allowing a general constraint system to be reduced to some simpler
one, called solved, on which satisfiability can be easily decided. A constraint system
is said solved [23] if it is different from ⊥ and if each of its constraints is of the
form T  x, where x is a variable. Note that the empty constraint system is solved.
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Solved constraint systems are particularly simple since they always have a solution.
Indeed, let T1 be the smallest (w.r.t. inclusion) left-hand side of a constraint. From
the definition of a constraint system we have that init ∈ T1 and has no variable. Then
the substitution τ defined by xτ = init for every variable x is a solution since T ⊢ xθ
for any constraint T  x of the solved constraint system. Given a constraint sys-
tem C, we say that Ti is a minimal unsolved left-hand side of C if Ti is a left-hand
side of C and for all T  u ∈ C such that T ( Ti, we have that u is a variable.

The simplification rules we consider are given below. These are the simplification
rules proposed in [23] except that we forbid unification between terms headed by
pairs in the rules R2 and R3.

R1 : C ∧ T  u  C if T ∪ {x | T ′  x ∈ C, T ′ ( T} ⊢ u

R2 : C ∧ T  u  σ Cσ ∧ Tσ  uσ if σ = mgu(t, u) where t ∈ St(T ), t 6= u,
and t, u are neither variables nor pairs

R3 : C ∧ T  u  σ Cσ ∧ Tσ  uσ if σ = mgu(t1, t2), t1, t2 ∈ St(T ), t1 6= t2,
and t1, t2 are neither variables nor pairs

R4 C ∧ T  u  σ Cσ ∧ Tσ  uσ if σ = mgu(t2, t3) where enca(t1, t2) ∈ St(T ),
priv(t3) ∈ plaintext(T ) and t2 6= t3

R5 : C ∧ T  u  ⊥ if vars(T ∪ {u}) = ∅ and T 6⊢ u

R6 : C ∧ T  f(u1, . . . , un)  C ∧ {T  ui | 1 ≤ i ≤ n}
for f ∈ {〈〉, enc, enca, sign,h}

All the rules are indexed by a substitution (when there is no index then the
identity substitution is assumed). We write C  ∗σ C

′ if there are constraint sys-
tems C1, . . . , Cn such that C  σ0

C1  σ1
. . . σn C

′ and σ = σ0σ1 . . . σn.

Since our rules are a subset of the rules of [23], our rules still transform a con-
straint system into a constraint system. Similarly, correction and termination are
also ensured by [23]. It remains to show that they still form a complete decision
procedure. This is formally stated in Theorem 2. Intuitively, unification between
pairs is useless since pairs can be decomposed in order to perform unification on
its components. Then, it is possible to build again the pair if necessary. Note that
this is not always possible for encryption since the key used to decrypt or encrypt
may be unknown by the attacker. Proving that forbidding unification between pairs
still leads to a complete decision procedure required in particular to introduce a new
notion of minimality for tree proofs for deduction. The fact that unification between
pairs is useless has also been proved in [16] for another set of simplification rules.

Let T1 ⊆ T2 ⊆ . . . ⊆ Tn. We say that a proof π of Ti ⊢ u is left-minimal if for
any j < i such that Tj ⊢ u, π′ is a proof of Tj ⊢ u where π′ is obtained from π by
replacing Ti with Tj in the left-hand side of each node of π.

Definition 16 (simple) We say that a proof π is simple if

1. any subproof of π is left-minimal,

2. a composition rule of the form
u1 u2

u
is not followed by a decomposition rule

leading to u1 or u2,
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3. any term of the form 〈u1, u2〉 obtained by application of a decomposition rule or
an axiom rule is directly followed by a projection rule.

Example 7 Let T1 = {a} and T2 = {a, enc(〈a, b〉, k), k}. We have that T2 ⊢ 〈a, b〉.

T2 ⊢ enc(〈a, b〉, k) T2 ⊢ k

T2 ⊢ 〈a, b〉

However, this proof is not a simple proof of T2 ⊢ 〈a, b〉. The term 〈a, b〉 has been
obtained by an application of a decomposition rule. Thus we have to decompose it.
A simple proof of T2 ⊢ 〈a, b〉 is described below:

T2 ⊢ a

T2 ⊢ enc(〈a, b〉, k) T2 ⊢ k

T2 ⊢ 〈a, b〉

T2 ⊢ b

T2 ⊢ 〈a, b〉

Then, we are able to prove completeness by relying on this notion of simple proof
and on the following lemmas whose proofs are given in Appendix A. Our proof of
Lemma 2 is similar to the one given in [23] with their own notion of simple proof
(incomparable with the one we consider here). Nevertheless, we recall its proof in
appendix for the sake of completeness. The proof of Lemma 3 is more involved and
strongly relies on our notion of simple proof.

Lemma 2 Let C be an unsolved constraint system, θ be a solution of C and Ti  ui
be a minimal unsolved constraint of C. Let u be a term. If there is a simple proof of
Tiθ ⊢ u having the last rule an axiom or a decomposition then there is t ∈ St(Ti)rX
such that tθ = u.

Lemma 3 Let C be an unsolved constraint system, θ be a solution of C and Ti  vi
be a minimal unsolved constraint of C such that

1. for all t1, t2 ∈ St(Ti) such that t1 6= t2

t1θ = t2θ implies t1 or t2 is a variable or a pair

2. for all enca(t1, t2) ∈ St(Ti) and priv(t3) ∈ plaintext(Ti)

t2θ = t3θ implies t2 = t3.

Assume ui ∈ St(Ti) r X and Tiθ ⊢ uiθ. Then Ti ∪ {x | T  x ∈ C, T ( Ti} ⊢ ui.

Theorem 2 Let C be an unsolved constraint system.

1. (Correctness) If C  ∗σ C
′ for some constraint system C′ and some substitution σ

and if θ is a solution of C′ then σθ is a solution of C.
2. (Completeness) If θ is a solution of C, then there exist a solved constraint sys-

tem C′ and substitutions σ, θ′ such that θ = σθ′, C  ∗σ C
′ and θ′ is a solution

of C′.
3. (Termination) There is no infinite chain C  σ1

C1 . . . σn Cn.

20



Proof Correction and termination are still ensured by [23]. Thus, we only have to
show that the rules still form a complete decision procedure. Let C be an unsolved
constraint system and θ be a solution of C. We show that there is a constraint
system C′ and a solution τ of C′ such that C  σ C

′ and θ = στ . Together with the
termination property, this allows us to conclude that there exist a solved constraint
system C′′ and substitutions σ′, θ′ such that θ = σ′θ′, C  ∗σ′ C

′′ and θ′ is a solution
of C′′.

Consider the minimal unsolved constraint Ti  ui of C. We have that ui is not a
variable whereas uj is a variable for all j < i. Firstly, assume that ui = 〈v1, v2〉 for
some terms v1, v2. In such a case, let C′ be the constraint system obtained from C
by applying R6 with f = 〈〉 and τ = θ. Since Tiθ ⊢ uiθ, we have also that Tiθ ⊢ v1θ
and Tiθ ⊢ v2θ meaning that τ = θ is a solution of C′.

Now, assume that ui is neither a variable nor a pair and consider a simple proof
of Tiθ ⊢ uiθ. Depending on the last applied rule in this proof, we consider two cases.

1. The last rule is a composition.
Suppose that it is the symmetric encryption rule. Hence, there are w1, w2 such
that Tiθ ⊢ w1 and Tiθ ⊢ w2 and enc(w1, w2) = uiθ. Since ui is not a vari-
able, there exist v1, v2 such that ui = enc(v1, v2). Let C′ be the constraint sys-
tem obtained from C by applying the simplification rule R6 on the constraint
Ti  enc(v1, v2). Since v1θ = w1 and v2θ = w2, the substitution θ is also a solu-
tion to C′. For the other composition rules the same reasoning holds, applying
this time the corresponding R6 rule.

2. The last rule is an axiom or a decomposition.
Applying Lemma 2 we obtain that there is t ∈ St(Ti) r X such that tθ = uiθ.
We distinguish two cases:
– t 6= ui. Note that ui is neither a pair nor a variable. Since tθ = uiθ we easily

deduce that t is not a pair. Moreover t is not a variable, hence we can apply
the simplification rule R2.

– t = ui. In such a case, we have that ui ∈ St(Ti) r X . Either there are two
distinct non variable and non pair terms t1, t2 ∈ St(Ti) such that t1θ = t2θ
and we apply the simplification rule R3. Or, there are enca(t1, t2) ∈ St(Ti),
priv(t3) ∈ plaintext(Ti) for some terms t1, t2, t3 such that t2 6= t3, and t2θ =
t3θ. In such a case, we apply the simplification rule R4. Otherwise, we deduce
from Lemma 3 that the simplification rule R1 can be applied. �

Note that this result is of independent interest. Indeed, we provide a more efficient
decision procedure for solving constraint systems, thus for deciding secrecy for a
bounded number of sessions. Of course, the theoretical worst-case complexity remains
the same (NP). Our complete set of simplification rules has been used in [6,5]. In [6],
they improve existing decidability results in the context of verification protocols for
an unbounded number of sessions. They bound the size of messages “for free” under
a reasonable (syntactic) assumption on protocols. This condition is very similar to
our notion of disjoint encryption. In [5], they propose a transformation which maps
a protocol that is secure for a single session to a protocol that is secure for an
unbounded number of sessions. Our set of simplification rules is used to establish
the correctness of their transformation.
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7 Simplifying PS-LTL Formulas

In order to establish our combination result for the PS-LTL formulas, we proceed in
two steps. Following the approach of [21], we first show how to translate a closed PS-
LTL+ formula into an equivalent elementary formula (EF ) (see Section 7.1) using
the transformation T described in Section 7.2. Then, we will show in Section 8 how
to prove our combination result for the corresponding fragment of the translated
formulas.

7.1 Elementary Formulas

Definition 17 (Elementary formula) Elementary formulas EF are defined by the
grammar:

π := true | t1 = t2 | T  m | ¬π | π ∨ π | π ∧ π | ∃x. π

where t1, t2 and m are terms, T is a finite set of terms and x is a variable.

The set of free variables of π, denoted by free(π), is defined as usual. Sometimes, we
write t1 6= t2 instead of ¬[t1 = t2].

Definition 18 Let π be an EF formula and σ be a closed substitution such that
dom(σ) = free(π). Then σ |=′ π is defined inductively as follows:

σ |=′ true

σ |=′ t1 = t2 iff t1σ = t2σ
σ |=′ T  m iff Tσ ⊢ mσ
σ |=′ ¬π iff σ 6|=′ π
σ |=′ π1 ∨ π2 iff σ |=′ π1 or σ |=′ π2

σ |=′ π1 ∧ π2 iff σ |=′ π1 and σ |=′ π2

σ |=′ ∃x.π iff ∃t ∈ Terms such that t is ground and σ |=′ π[x 7→ t]

7.2 Translating PS-LTL+ Formulas

We consider the fragment PS-LTL+ that is made up of existential and positive PS-
LTL formulas and we provide a translation in elementary formula for this fragment.
Hence, we assume that φ is of the form ∃x̃.φ′ where the formula φ′ is quantifier-free.
We define a translation T(φ, tr, T0) from a PS-LTL+ formula φ, a symbolic trace tr

and an initial intruder knowledge T0 into an EF formula. T(φ, tr, T0) is the EF formula
resulting from applying the transformation described below.

T(true, tr, T0) → true

T(learn(m), tr, T0) → T0 ∪ K(tr)  m
T(¬φ, tr, T0) → ¬T(φ, tr, T0)

T(φ1 ∧ φ2, tr, T0) → T(φ1, tr, T0) ∧T(φ2, tr, T0)
T(φ1 ∨ φ2, tr, T0) → T(φ1, tr, T0) ∨T(φ2, tr, T0)

T(∃x.φ, tr, T0) → ∃x.T(φ, tr, T0)

22



For the temporal formulas, we first replace the 2nd parameter tr by tr, i.e. we
remove from tr all the communication and new events.

T(P (t1, . . . , tn), [ ], T0) → ¬true

T(P (t1, . . . , tn), tr; Q(t′1, . . . , t
′
m), T0) → ¬true if P 6= Q or n 6= m

T(P (t1, . . . , tn), tr; P (t′1, . . . , t
′
n), T0) → t1 = t′1 ∧ . . . ∧ tn = t′n

T(Yψ, [ ], T0) → ¬true

T(Yψ, tr; e, T0) → T(ψ, tr, T0)
T(ψ1 Sψ2, [ ], T0) → T(ψ2, [ ], T0)

T(ψ1 Sψ2, tr; e, T0) → T(ψ2, tr; e, T0)∨
(T(ψ1, tr; e, T0) ∧T(ψ1 Sψ2, tr, T0))

The following lemma states that the translation T is correct, i.e. it preserves the
semantics of PS-LTL+ w.r.t. the semantics of EF .

Lemma 4 Let φ be a closed PS-LTL
+ formula, tr be a (symbolic) trace, T0 be a

finite set of ground terms and σ be a closed substitution with vars(tr) = dom(σ).
Then we have that

〈trσ, T0〉 |= φ if and only if σ |=′ T(φ, tr, T0).

Moreover, atomic formula of the form T  m occurs positively in T(φ, tr, T0), i.e.
any occurrence of T  m in T(φ, tr, T0) appears under an even number of negation.

The proof can be easily done by induction on the number of rewriting steps to
obtain the EF formula associated to T(φ, tr, T0). This has been done in [21] in a
rather similar setting.

8 Proof of our combination result

This section is devoted to the proof of Theorem 1. The proof is done in three main
steps. First, Theorem 2 serves as a key result for proving that if there exists a
substitution σ such that trσ is valid and 〈trσ, T0〉 |= φ, then there exists one, say θ,
where messages from Π1 and Π2 are not mixed up. Second, conditions 1-3 allow us
to control the position of the critical extended names KC: those names do not occur
in plaintext position. This is the purpose of Section 8.1. Third, thanks to the two
previous steps, we prove that terms issued from Π2 are not useful for deducing terms
issued from Π1. This is formally stated and proved in Section 8.2. In Section 8.3, we
complete the proof of Theorem 1.

8.1 Existence of a solution without any mixing

In this subsection, we show that when there exists a solution, there is one, say θ, sat-
isfying some particular conditions (see Proposition 2). First of all, messages from Π1

and Π2 are not mixed-up. This is obtained by observing that the simplification rules
enable us to build θ step by step through unification of subterms of Π1 and Π2.
Now, since unification between pairs is forbidden, the rules R2 and R3 only involve
subterms issued from the same protocol (thanks to the disjoint encryption hypoth-
esis). Second, conditions 1-3 allow us to control the position of the critical extended
names KC.
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The left-hand side of a constraint system C, denoted by lhs(C), is the maximal
left-hand side of the constraints of C. The right-hand side of a constraint system C,
denoted by rhs(C), is the set of right-hand sides of its constraints.

Definition 19 (well-formed) Let T be a set of terms and KC be a set of extended
names. A constraint system C is well-formed w.r.t. T and KC if

– lhs(C) ∪ rhs(C) ⊆ T ,
– the constraint system C satisfies the plaintext origination property, that is if
x ∈ plaintext(T ′) ∩ X for some (T ′  u′) ∈ C then

T px
def
= min{T ′′ | (T ′′  u′′) ∈ C and x ∈ plaintext(u′′)}

exists and T px ( T ′.
– KC ∩ plaintext(lhs(C)) = ∅.

Lemma 5 Let T1 and T2 be two sets of terms having disjoint encryption and KC be a
set of extended names. Let C be a well-formed constraint system w.r.t. St(T1)∪St(T2)
and KC. Let C′ and σ be such that C  σ C

′ with C′ satisfiable. Then, we have that

1. T1σ and T2σ have disjoint encryption,
2. names(Tiσ) ⊆ names(Ti) for i = 1, 2, and
3. the constraint system C′ is well-formed w.r.t. St(T1σ) ∪ St(T2σ) and KC.

We define the set Sinit of terms of the form 〈init, 〈init . . .〉〉. Formally, Sinit is the
smallest set such that init ∈ Sinit and for any t ∈ Sinit, 〈init, t〉 ∈ Sinit.

Lemma 6 Let C be a constraint system in solved form and DEq be a finite set of
disequations such that τ is a solution of C∧DEq. There exists a solution τ ′ of C∧DEq

such that for every variable x ∈ dom(τ ′), we have that xτ ′ ∈ Sinit.

The proof of the two lemmas above can be found in Appendix B.1.

Proposition 2 Let T0 and KC be two sets of extended names. Let T1 and T2 be two
sets of terms having disjoint encryption and C be a well-formed constraint system
w.r.t. T0 ∪ T1 ∪ T2 and KC. Let DEq be a finite set of disequations and Eq be a
finite set of equations such that {t1, t2 | t1 = t2 ∈ Eq} ⊆ T1. Let θ be a solution of
C ∧ Eq ∧ DEq. There exists a solution θ′ of C ∧ Eq ∧ DEq such that

1. T1θ
′ and T2θ

′ have disjoint encryption, and
2. names(Tiθ

′) ⊆ names(Ti), for i = 1, 2.

Proof Let T0, T1, T2, KC, C, DEq, Eq and θ as explained above. Let ρ and σ be two
substitutions such that θ = ρσ and ρ = mgu(Eq). Thanks to our completeness result
(Theorem 2), we know that there exists a constraint system C′ in solved form and a
substitution σ′ such that Cρ ∗σ′ C

′. Moreover, we know that there exists τ solution
of C′ such that σ = σ′τ . The substitution τ is also a solution of DEqρσ′. Hence, by
applying Lemma 6, we know that there exists a solution τ ′ of C′ ∧DEqρσ′ such that
xτ ′ is a pair of init for any x ∈ dom(τ ′). Let θ′ = ρσ′τ ′. By construction, we have
that θ′ is a solution of C ∧Eq∧DEq. It remains to show the two points stated in the
proposition.
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By hypothesis, the sets T1 and T2 have disjoint encryption. Since we have that
{t1, t2 | t1 = t2 ∈ Eq} ⊆ T1, we can easily show (by relying on the unification
algorithm given in [35]) that St(T1ρ) ⊆ (St(T1) r X )ρ. Thus, we have that T1ρ
and T2ρ = T2 have disjoint encryption. Then, thanks to Lemma 5, we obtain that:

– T1ρσ
′ and T2ρσ

′ = T2σ
′ have disjoint encryption,

– names(Tiρσ
′) ⊆ names(Tiρ) ⊆ names(Ti) for i = 1, 2.

From these facts, we easily deduce that T1θ
′ and T2θ

′ have disjoint encryption
and also that names(Tiθ

′) ⊆ names(Ti) for i = 1, 2. �

8.2 Getting rid of the terms coming from Π2

In this subsection, we prove that terms issued from Π2 are not useful for deducing
terms issued from Π1. For this, we establish that T ⊢ u implies T ⊢ u where · is
a function that keep the terms issued from Π1 unchanged and projects the terms
issued from Π2 on the special constant init. The proof is done by induction on the
proof witnessing T ⊢ u. It requires in particular the introduction of a new locality
lemma for deduction of ground terms (Lemma 7).

Given a set Names of names (Names ⊆ N ) and a set ETerms of terms, we define the
function · inductively as follows:

– u = init if u ∈ Names,
– u = u if u is an agent, or a name such that u 6∈ Names,
– f(u1, . . . , un) = init if f(u1, . . . , un) ∈ EncSt(ETerms)
– f(u1, . . . , un) = f(u1, . . . , un) otherwise

In the remaining we assume given a set of names Names and a set of terms
ETerms. The function · is defined w.r.t. to these two sets. Intuitively, Names will be
the fresh names introduced by Π2 and ETerms will be the encrypted terms introduced
by Π2. Thanks to the disjoint encryption property, these terms will be disjoint from
the terms coming from Π1.

Our locality lemma relies on the following definition. The proofs of Lemmas 7
and 8 can be found in Appendix B.2.

Definition 20 (Stplain(t)) Let t be a ground term. The set Stplain(t) of subterms
of t that appear at a plaintext position is inductively defined as follows:

– Stplain(u) = {u} if u is an extended name
– Stplain(f(u1, u2)) = {f(u1, u2)} ∪ Stplain(u1) if f ∈ {enc, enca, sign}
– Stplain(h(u)) = {h(u)} ∪ Stplain(u)
– Stplain(〈u1, u2〉) = {〈u1, u2〉} ∪ Stplain(u1) ∪ Stplain(u2).

Lemma 7 (locality) Let T be a set of terms and u be a term such that T ⊢ u.
Let π be a proof of T ⊢ u which is minimal w.r.t. its number of nodes. Then π only
involves terms in St(T ∪ {u}). Moreover, if π ends with a decomposition rule or the
axiom rule then π only involves terms in St(T ) and u ∈ Stplain(T ).
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Lemma 8 Let T0 be a set of terms such that names(T0) ∩ Names = ∅ and init ∈ T0.
Let v be a term such that plaintext(v) ⊆ T0 ∪ Names and EncSt(v) ⊆ EncSt(ETerms).
Then, we have that T0 ⊢ v.

Proposition 3 Let T0 be a set of extended names such that names(T0)∩Names = ∅
and init ∈ T0. Let T1 and T2 be two sets of terms such that:

– names(T1) ∩ Names = ∅ and EncSt(T1) ∩ EncSt(ETerms) = ∅,
– plaintext(T2) ⊆ T0 ∪ Names and EncSt(T2) ⊆ EncSt(ETerms).

Let u be a term such that T0, T1, T2 ⊢ u. We have also that T0, T1 ⊢ u.

Proof We first establish that T0, T1, T2 ⊢ u. Let π be a proof of T0, T1, T2 ⊢ u which
is minimal w.r.t. its number of nodes. We will show that T0, T1, T2 ⊢ u by induction
on the proof, depending on the last rule that has been applied.

– If the last rule is an axiom. In such a case, we have that u ∈ T0 ∪ T1 ∪ T2. We
easily deduce that u ∈ T0 ∪ T1 ∪ T2. This allows us to conclude.

– If the last rule is a composition. Either u = init and we easily conclude. Oth-
erwise, suppose for example that the last rule is the symmetric decryption rule.
In such a case, we have that u = enc(u1, u2) and u = enc(u1, u2). By induction
hypothesis, we know that T0, T1, T2 ⊢ u1 and T0, T1, T2 ⊢ u2. Hence, we deduce
that T0, T1, T2 ⊢ enc(u1, u2), that is T0, T1, T2 ⊢ u.

– If the last rule is a decomposition, for example the symmetric decryption rule.
In such a case, we have that

π1 =

{ . . .

T0, T1, T2 ⊢ enc(u, v) π2 =

{ . . .

T0, T1, T2 ⊢ v

T0, T1, T2 ⊢ u

If enc(u, v) 6∈ EncSt(ETerms), then by applying our induction hypothesis, we
easily conclude since enc(u, v) = enc(u, v). Now, we have to consider the case
where enc(u, v) ∈ EncSt(ETerms), i.e. enc(u, v) = init. By minimality of the proof
we know that π1 ends either with an axiom rule or with a decomposition rule.
Hence, we have that enc(u, v) ∈ Stplain(T0 ∪ T1 ∪ T2) thanks to Lemma 7. Since
enc(u, v) ∈ EncSt(ETerms) and EncSt(T1)∩EncSt(ETerms) = ∅, we deduce that
enc(u, v) ∈ Stplain(T2), thus u ∈ Stplain(T2). Since plaintext(T2) ⊆ T0 ∪ Names,
we deduce that plaintext(u) ⊆ T0 ∪ Names. Since enc(u, v) ∈ EncSt(ETerms), we
also have that EncSt(u) ⊆ EncSt(ETerms). Lemma 8 allows us to conclude that
T0 ⊢ u. For the asymmetric decryption rule and the optional signature rule, a
similar reasoning holds. For the projection rules, the reasoning is even easier since
we have 〈u1, u2〉 = 〈u1, u2〉 thus we can always applied the induction hypothesis.

Hence, we have shown that T0, T1, T2 ⊢ u. By hypothesis, we know that T0 is a set
of extended names such that names(T0) ∩ Names = ∅. Thus, we easily deduce that
T0 = T0. By hypothesis, we have that names(T1) ∩ Names = ∅ and EncSt(T1) ∩
EncSt(ETerms) = ∅. Thus, we have that T1 = T1. Now, by applying Lemma 8 on
each term v ∈ T2, we easily obtain that T0 ⊢ v. From all these facts, we easily deduce
that T0, T1 ⊢ u. �
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8.3 Proof of Theorem 1

Our main composition result relies on the following proposition, which relates the
traces of Π1 | Π2 with the traces of Π1.

Proposition 4 Let Π1 = [k1] → Roles and Π2 = [k2] → Roles be two proto-
cols having disjoint encryption and such that Π2 contains no status event. Let T0

(intuitively the initial knowledge of the intruder) be a set of extended names. Let
KC = (n(Π1) ∪ n(Π2)) r T0 be the set of critical extended names and φ be a closed
PS-LTL

+ formula. Moreover, we assume that

1. critical extended names do not appear in plaintext, i.e.

KC ∩ (plaintext(Π1) ∪ plaintext(Π2)) = ∅.

2. for any role e1, . . . , eℓ of Π1 or Π2, for any i such that ei is a sent event, for
any variable x ∈ plaintext(ei), we have that x ∈ plaintext(ej) for some new or
received event ej such that j < i.

3. EncSt(φ) and EncSt(Π2) have disjoint encryption.

Let k = k1 + k2 and sc be a scenario for Π1 | Π2. Let tr be the symbolic trace
associated to sc and T0. Let sc′ = sc|Π1

and tr′ be the symbolic trace associated to sc′

and T0. If there exists σ such that trσ is valid and 〈trσ, T0〉 |= φ then there exists σ′

such that tr′σ′ is valid and 〈tr′σ′, T0〉 |= φ.

Proof Let Π1 : [k1]→ Roles, Π2 : [k2]→ Roles, T0 and φ defined as in Proposition 4.
Let k = k1 + k2 and sc be a scenario for Π1 | Π2. Let tr be the symbolic trace
associated to Π1 | Π2 and sc. Let sc′ := sc|Π1

and tr′ be the symbolic trace associated
to Π1 and sc′. Since φ is a PS-LTL+ formula, we have that φ is of the form ∃x̃.φ0

for some PS-LTL+ formula φ0 without any quantifier.

Let σ be a substitution such that trσ is valid and 〈trσ, T0〉 |= φ. Thus, thanks to
Lemma 4, we have that σ |=′ T(φ, tr, T0). We have that T(φ, tr, T0) = ∃x̃.ψ0 for some
EF formula ψ0 without any quantifier. Moreover, thanks to Lemma 4 we have that
atomic formulas of the form T  m appear under an even number of negations. We
transform ψ0 into its disjunctive normal form, thus ψ0 =

∨

1≤j≤ℓ ψj We know that

there exists j such that trσ is valid and σ |=′ ∃x̃.ψj . Moreover, the EF formula ψj
can be written as Ded ∧ Eq ∧ DEq where:

– Ded is a finite set of deduction constraints of the form T0 ∪ K(tr)  m for some
term m,

– Eq (resp. DEq) is a finite set of equations (resp. disequations) of the form t1 = t2
(resp. t1 6= t2) where t1 ∈ St(φ) and t2 ∈ St(e) for some e ∈ tr.

We assume that the variables x̃ do not occur in tr. Thus, we have that:

– σ is a solution of C := C(tr); Ded. (Lemma 1). Note also that C is a constraint
system which satisfies the plaintext origination property. This is due to the fact
that the protocols we consider satisfy condition 2 (stated in Proposition 4).

– t1σ = t2σ for every t1 = t2 ∈ Eq,
– t1σ 6= t2σ for every t1 6= t2 ∈ DEq.
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Let C′ = C(tr′); Ded′ where Ded′ = {(T0 ∪ K(tr′)  m) | (T0 ∪ K(tr)  m) ∈ Ded}.
We have to show that C′ ∧ Eq∧DEq has a solution which would mean that Π1 does
satisfy ∃x̃.ψj , and thus Π1 satisfies φ.

The constraint systems C and C′ are as follows:

C :=



































T0  u1

T0, v1  u2

T0, v1, v2  u3

· · ·  · · ·
T0, v1, . . . , vn  m1

· · ·  · · ·
T0, v1, . . . , vn  mk

C′ :=



































T0  ui1
T0, vi1  ui2
T0, vi1 , vi2  ui3
· · ·  · · ·
T0, vi1 , . . . , vin  m1

· · ·  · · ·
T0, vi1 , . . . , vin  mk

where i1, . . . , in is a sequence obtained from 1 . . . n by removing the elements corre-
sponding to a step of the protocol Π2. The k last deduction constraints correspond
to those in Ded (resp. Ded′).

Before applying Proposition 2, we have to check that all the hypotheses are
satisfied. Let

– T1 = {ui1 , vi1 , . . . , uin , vin ,m1, . . . ,mk} ∪ {t1, t2 | t1 = t2 ∈ Eq}
– T2 = {uj , vj | 1 ≤ j ≤ n and j 6∈ {i1, . . . , in}}.

First of all, we have that T1 and T2 are two sets of terms having disjoint encryp-
tion. This is because terms in T1 come from Π1 and φ whereas terms in T2 come
from Π2. We have also that C is well-formed w.r.t. T0 ∪ T1 ∪ T2 and KC. Hence, we
apply Proposition 2 in order to deduce that there exists a solution θ of C ∧Eq∧DEq

and such that:

1. T1θ and T2θ have disjoint encryption, and
2. names(Tiθ) ⊆ names(Ti) for i = 1, 2.

Let θ′ = θ|V where V is the set of variables which appear in C′ ∧ Eq ∧ DEq. To
conclude, it remains to show that θ′ is a solution of C′.

Let Names = {img(σr,s)∩N | (r, s) ∈ sc and r > k1}, i.e. all the names generating
during the execution of Π2 and ETerms = T2θ. We have that Names∩names(T0) = ∅
and Names ∩ KC = ∅. Note also that EncSt(T1θ) ∩ EncSt(ETerms) = ∅ since T1θ
and T2θ have disjoint encryption.

Let T ⊢ u be a constraint in C. Either the corresponding constraint has been
removed in C′. Otherwise, we have that T = T0 ∪ {v1, . . . , vj} for some j and the
corresponding constraint in C′ is T ′ ⊢ u where T ′ = T0 ∪ {vi1 , . . . , vij}. Moreover, in
such a case, we have that u ∈ T1, and thus uθ ∈ T1θ. Thanks to the fact that θ is a
solution of C, we know that: T0, v1θ, v2θ, . . . , vjθ ⊢ uθ. Thanks to Proposition 3, we
obtain that T0, vi1θ, . . . , vijθ ⊢ uθ, i.e. T ′θ′ ⊢ uθ′ since uθ = uθ and θ′ = θ|vars(C′). �

We are now ready to complete the proof of Theorem 1.

Proof Assume by contradiction that Π1 | Π2 6|= φ for the initial knowledge T0. It
means that there exists a scenario sc for which the symbolic trace tr associated to
Π1 | Π2 and sc satisfies the following requirement:
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there exists a substitution σ such that trσ is valid and 〈trσ, T0〉 |= ¬φ.

Let sc′ = sc|Π1
and tr′ be the symbolic trace associated to Π1 and sc. Thanks to

Proposition 4 (note that ¬φ is a PS-LTL+ formula), we easily deduce that there
exists σ′ such that tr′σ′ is valid and 〈tr′σ′, T0〉 |= ¬φ. This means that Π1 6|= φ, thus
a contradiction. �

9 Conclusion

In this paper, we have shown that secure protocols can be safely executed in the
presence of other protocols, as soon as encrypted sub-messages from different mes-
sages are not unifiable. This can be easily achieved by tagging protocols, that is,
adding a protocol identifier in each encrypted message. Our result holds for a large
class of security properties that encompasses secrecy and various formulations of
authenticity.

We foresee composition results in a more general way. In this paper, protocols
are composed in the sense that they can be executed in the same environment.
We plan to develop composition results where protocols can use other protocols
as sub-programs. For example, a protocol could use a secure channel, letting the
implementation of the secure channel underspecified. This secure channel could be
then possibly implemented by any protocol establishing session keys.
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2003.

17. J. Clulow. The design and analysis of cryptographic APIs for security devices. Master’s
thesis, University of Natal, Durban, South Africa, 2003. Chapter 3.

18. H. Comon-Lundh and V. Cortier. New decidability results for fragments of first-order
logic and application to cryptographic protocols. In Proc. 14th Int. Conf. on Rewriting
Techniques and Applications (RTA’2003), volume 2706 of LNCS, pages 148–164. Springer-
Verlag, June 2003.

19. H. Comon-Lundh and V. Cortier. Security properties: two agents are sufficient. Science
of Computer Programming, 50(1-3):51–71, 2004.

20. H. Comon-Lundh and V. Shmatikov. Intruder deductions, constraint solving and insecurity
decision in presence of exclusive or. In Proc. 18th Annual Symposium on Logic in Comp.
Sc. (LICS’03), pages 271–280. IEEE Comp. Soc. Press, 2003.

21. R. Corin. Analysis Models for Security Protocols. PhD thesis, University of Twente, 2006.
22. V. Cortier, J. Delaitre, and S. Delaune. Safely composing security protocols. In Proc. 27th

Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS’07), volume 4855 of LNCS, pages 352–363. Springer, 2007.

23. V. Cortier and E. Zalinescu. Deciding key cycles for security protocols. In Proc. 13th In-
ternational Conference on Logic for Programming, Artificial Intelligence, and Reasoning
(LPAR’06), volume 4246 of LNCS, pages 317–331. Springer, 2006.

24. C. Cremers. Scyther - Semantics and Verification of Security Protocols. Ph.D. dissertation,
Eindhoven University of Technology, 2006.

25. A. Datta, A. Derek, J. C. Mitchell, and A. Roy. Protocol composition logic (PCL). Electr.
Notes Theoretical Computer Science, 172:311–358, 2007.

26. S. Delaune, S. Kremer, and M. D. Ryan. Composition of password-based protocols. In
Proc. of the 21st IEEE Computer Security Foundations Symposium (CSF’08), pages 239–
251, Pittsburgh, PA, USA, 2008. IEEE Computer Society Press.

27. N. Durgin, P. Lincoln, J. Mitchell, and A. Scedrov. Undecidability of bounded security
protocols. In Proc. of the Workshop on Formal Methods and Security Protocols, 1999.

28. L. Gong and P. Syverson. Fail-stop protocols: An approach to designing secure protocols.
In Proc. 5th International Working Conference on Dependable Computing for Critical
Applications, pages 44–55, 1995.

29. J. D. Guttman and F. J. Thayer. Protocol independence through disjoint encryption.
In Proc. 13th Computer Security Foundations Workshop (CSFW’00), pages 24–34. IEEE
Comp. Soc. Press, 2000.

30. J. Kelsey, B. Schneier, and D. Wagner. Protocol interactions and the chosen protocol
attack. In Proc. 5th International Workshop on Security Protocols, volume 1361 of LNCS,
pages 91–104. Springer, 1997.
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A Completeness of our simplification rules

Let T1 ⊆ T2 ⊆ . . . ⊆ Tn. Given a left-minimal proof π of Ti ⊢ u, we say that π is a
proof of level j if j = min{k | Tk ⊢ u and 1 ≤ k ≤ n}.

Lemma 9 If Ti ⊢ u then there is a simple proof of it.

Proof The notion of simple proof given in [23] is different from ours. However, a
simple proof (according to the definition given in [23]) necessarily satisfies the two
first conditions of our definition. Hence by using their result, we know that if Ti ⊢ u
then there is a proof π of it which satisfies the conditions 1 and 2 of our definition.
Now, let π be a proof of level j that satisfies the conditions 1 and 2 of Definition 16.
We show that there exists a simple proof π′ of Ti ⊢ u having the same level, i.e. j.
We show this result by induction on m where m represents the number of nodes in π
that violates condition 3.

Base case: m = 0. In such a case, we easily conclude. Indeed since m = 0, we have
that π satisfies the condition 3. Thus, by definition, π is a simple proof.

Induction step: m > 0. In such a case, we show that we can transform the proof π
into a proof π′ having the same level and such that the number of nodes violating
condition 3 is m − 1. Then, it will be easy to conclude by applying the induction
hypothesis. Let π1 be a subproof of π whose root corresponds to the node that
violates condition 3. We consider, among all these subproofs, one which is minimal
in the sense that in π1, the only node that violates the condition is its root.

The term 〈u1, u2〉 that violates the condition is obtained by a decomposition rule
whereas it is not immediately followed by a projection rule. This means that it is
followed by a composition rule. We illustrate the situation when this last rule is an
encryption rule. The proof π1 has the following form:

π1 :=







. . .
decompo.

Ti ⊢ 〈u1, u2〉 Ti ⊢ v
compo.

Ti ⊢ {〈u1, u2〉}v

The idea is to replace this subproof π1 of π by π′1 obtained by decomposing the
term 〈u1, u2〉 with the projection rules until we obtain terms not headed with the
symbol 〈 〉. Then, by using the pairing rule, we can build again the term 〈u1, u2〉.
Lastly, we apply the composition rule as in π1. The proof π′1 obtained in this way
has the same level that π1. Hence, the proof π′, obtained from π by replacing the
subproof π1 by π′1, is left-minimal. It is also clear that condition 2 is satisfied since
the composition rules introduced in π′1 are not directly followed by a decomposition
rule. Lastly, we have removed one node violating condition 3 without introducing
any such node. This allows us to conclude by using our induction hypothesis. �

Let C be a constraint system and x ∈ vars(C). We define Tx as follows

Tx = min{T | (T  u) ∈ C and x ∈ vars(u)}.

Note that, by definition of a constraint system, Tx is well-defined.

Lemma 2 Let C be an unsolved constraint system, θ be a solution of C and Ti  ui
be a minimal unsolved constraint of C. Let u be a term. If there is a simple proof of
Tiθ ⊢ u having the last rule an axiom or a decomposition then there is t ∈ St(Ti)rX
such that tθ = u.
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Proof Consider a simple proof π of Tiθ ⊢ u. Let j be minimal such that the proof
π′ obtained from π by replacing Ti with Tj is a proof of Tjθ ⊢ u. Depending on the
last applied rule in the proof, we consider two cases.

– Either the last rule is an axiom.
Then u ∈ Tjθ and hence there is t ∈ Tj such that tθ = u. If t is a variable then
Tt  t is a constraint in C with Tt ( Tj (thanks to the definition of a constraint
system). Hence Ttθ ⊢ tθ, that is Ttθ ⊢ u, which contradicts the minimality of j.

– Or the last rule is a decomposition.
Suppose w.l.o.g. that it is a symmetric decryption. Then, in such a case, there
exists w such that Tjθ ⊢ enc(u,w) and Tjθ ⊢ w. By simplicity of the proof, the
last rule applied to obtain enc(u,w) can not be a composition. Hence, it is either
an axiom or a decomposition. Then, applying the induction hypothesis we have
that there is t ∈ St(Tj), t not a variable, such that tθ = enc(u,w). It follows that
t = enc(t′, t′′) with t′θ = u. If t′ is a variable then Tt′θ ⊢ t

′θ, that is Tt′θ ⊢ u
which contradicts the minimality of j. Hence t′ is not a variable. For the other
decomposition rules, the same reasoning holds. �

In order to prove Lemma 3, we need the following lemma.

Lemma 10 Let T be a set of terms and u be a term such that T ⊢ u. Then, we have
that plaintext(u) ⊆ plaintext(T ).

Proof let π be a proof of T ⊢ u. We prove this result by induction on the depth of
π. We can have:

– The last rule is an axiom. Then u ∈ T , thus plaintext(u) ⊆ plaintext(T ).
– The last rule is a composition. Suppose for example that it is the symmetric

encryption rule. Then u = enc(u1, u2), T ⊢ u1 and T ⊢ u2. By definition, we
have that plaintext(u) = plaintext(u1). Hence, we easily conclude by applying
our induction hypothesis on T ⊢ u1. The other cases are similar.

– The last rule is a decomposition. Suppose for example that it is the symmetric
decryption rule. In such a case, we have that T ⊢ enc(u, v) and T ⊢ v for some
term v. By induction hypothesis, plaintext(enc(u, v)) ⊆ plaintext(T ). Hence, we
easily conclude that plaintext(u) ⊆ plaintext(T ). The other cases are similar. �

Let t be a term, we denote by comp(t) the components of the term t. This notion
is formally defined as follows: comp(〈t1, t2〉) = comp(t1) ∪ comp(t2) and comp(t) = t
otherwise.

Lemma 3 Let C be an unsolved constraint system, θ be a solution of C and Ti  vi
be a minimal unsolved constraint of C such that

1. for all t1, t2 ∈ St(Ti) such that t1 6= t2

t1θ = t2θ implies t1 or t2 is a variable or a pair

2. for all enca(t1, t2) ∈ St(Ti) and priv(t3) ∈ plaintext(Ti)

t2θ = t3θ implies t2 = t3.

Assume ui ∈ St(Ti) r X and Tiθ ⊢ uiθ. Then Ti ∪ {x | T  x ∈ C, T ( Ti} ⊢ ui.

For any Ti left-hand side of a constraint system C, we define

T+
i = Ti ∪ {x | T  x ∈ C, T ( Ti} ⊢ ui.
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Proof Let j be minimal such that Tjθ ⊢ uiθ. Thus j ≤ i and Tj ⊆ Ti. Consider a
simple proof of Tjθ ⊢ uiθ. We reason by induction on the depth of the proof. We can
have that:

– The proof is reduced to an application of the rule axiom possibly followed by
several application of the projection rules until the resulting term is not a pair.
Since the proof is a simple proof, we have that uiθ is not a pair. Hence, ui is not
a pair.
There exists t ∈ Tj such that uiθ ∈ comp(tθ). Either uiθ = t′θ for some t′ ∈
comp(t) r X or uiθ ∈ comp(xθ) for some x ∈ comp(t) ∩ X . In the first case,
we easily deduce that neither ui nor t′ is a pair or a variable and hence by
hypothesis (point 1), we have that ui = t′ and hence T+

i ⊢ ui. In the second case,
we have that Txθ ⊢ xθ. Thus Txθ ⊢ uiθ which contradicts the minimality of j,
since Tx ( Tj .

– The proof ends with an application of a decomposition rule possibly followed by
several applications of the projection rules until the resulting term is not a pair.
Note that, since the proof is a simple proof, we have that uiθ is not a pair. Hence
ui is not a pair.

Symmetric decryption rule. In such a case there exist w1, w2 such that Tjθ ⊢
enc(w1, w2), Tjθ ⊢ w2 and uiθ ∈ comp(w1). The last rule applied to obtain
Tjθ ⊢ enc(w1, w2) was not a composition by simplicity of the proof. We can
hence apply Lemma 2 and obtain that there is t ∈ St(Tj) r X such that tθ =
enc(w1, w2). Since t is not a variable, we have that t = enc(t1, t2) with t1θ = w1

and t2θ = w2. Either uiθ = pθ for some p ∈ comp(t1) r X or uiθ ∈ comp(xθ)
for some x ∈ comp(t1) ∩ X . In the second case, we have that Txθ ⊢ xθ. Thus
Txθ ⊢ uiθ which contradicts the minimality of j, since Tx ( Tj . In the first
case, we easily deduce that neither ui nor p is a variable or a pair and hence by
hypothesis (point 1), we have that ui = p. We can apply the induction hypothesis
on Tjθ ⊢ enc(t1, t2)θ (this subproof is simple) to obtain that T+

i ⊢ enc(t1, t2).
Now, if t2 is a variable then t2 ∈ T

+
i , thus T+

i ⊢ t2. Otherwise, if t2 is not a
variable then, by induction hypothesis on Tjθ ⊢ t2θ (this subproof is a simple
one), we obtain T+

i ⊢ t2. Hence, in both cases, we obtain that T+
i ⊢ t2. Then,

together with T+
i ⊢ enc(t1, t2) and ui ∈ comp(t1), it follows that T+

i ⊢ ui.

Signature rule. This case is similar to the previous one.

Asymmetric decryption rule. In such a case there exist w1, w2 such that Tjθ ⊢
enca(w1, w2), Tjθ ⊢ priv(w2) and uiθ ∈ comp(w1). We easily obtain (as in the
previous case) that T+

i ⊢ enca(t1, t2) and T+
i ⊢ priv(t3) with t2θ = t3θ. Thanks to

Lemma 10, we deduce that priv(t3) ∈ plaintext(Ti). Then by hypothesis (point 2),
we deduce that t2 = t3, it follows that T+

i ⊢ t1 and since ui ∈ comp(t1), we have
that T+

i ⊢ ui.
– The last rule is a composition.

Suppose that it is the symmetric encryption rule. Then uiθ = enc(w1, w2) and
Tjθ ⊢ w1 and Tjθ ⊢ w2. Since ui is not a variable, we have that ui = enc(v′1, v

′
2),

v′1θ = w1 and v′2θ = w2. If v′1 (resp. v′2) is a variable then v′1 (resp. v′2) is in T+
i

(this is because vj ∈ St(Ti)). Otherwise, we apply our induction hypothesis (note
that the two subproofs are simple). Hence, in both cases, we have that T+

i ⊢ v
′
1

and also that T+
i ⊢ v

′
2. Hence, we easily deduce that T+

i ⊢ ui. For the other
composition rules the same reasoning holds. �
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B Proofs of our Composition Result

B.1 Existence of a solution without any mixing

Before proving Lemma 5, we first state some useful lemmas. Lemma 11 can be proved
by induction on the algorithm that computes the most general unifier (see [35]).

Lemma 11 Let T1 and T2 be two sets of terms having disjoint encryption and con-
sider t, t′ ∈ EncSt(T1 ∪ T2) two terms that are unifiable. Let σ = mgu(t, t′). Then T1σ
and T2σ have disjoint encryption and names(Tiσ) ⊆ names(Ti) for i = 1, 2.

Lemma 12 Let KC be a set of extended names, C be a constraint system satisfying
the plaintext origination property such that KC ∩ plaintext(lhs(C)) = ∅ and σ be a
substitution. If Cσ is satisfiable, then KC ∩ plaintext(lhs(Cσ)) = ∅.

Proof Suppose Cσ is satisfiable. Let θ be a solution of Cσ and let θ′ = σθ. We show
the result by contradiction. Assume that there exists a constraint T  u ∈ C such
that KC ∩ plaintext(Tσ) 6= ∅. This implies that KC ∩ plaintext(Tσθ) 6= ∅, thus there
exists k ∈ KC such that:

– either k ∈ plaintext(T );
– or k ∈ plaintext(xθ′) for some x ∈ plaintext(T ).

The first case is impossible by hypothesis. Let x be the minimal variable verifying
such a condition, that is the variable that is introduced in plaintext by the minimal
constraint. Let T ′  u′ ∈ C be the minimal constraint such that x ∈ plaintext(u′).
We have that T ′θ′ ⊢ u′θ′ since θ′ is a solution of C. We have that k ∈ plaintext(u′θ′),
thus by Lemma 10, we have that k ∈ plaintext(T ′θ′). Since k 6∈ plaintext(T ′), this
means that there exists y ∈ plaintext(T ′) (note that y is smaller than x) such that
k ∈ plaintext(yθ′), contradiction. �

Lemma 13 Let C be a constraint system satisfying the plaintext origination prop-
erty. Let σ be a substitution. Then Cσ satisfies the plaintext origination property.

Proof Let C = T1  ui, . . . , Tn  un and σ be a substitution. Let 1 ≤ i ≤ n and
x a variable such that x ∈ plaintext(Tiσ). Note that since T1 is necessarily ground
(by definition of a constraint system, Definition 14), we have that i > 1. We have to
show that there exists j < i such that x ∈ plaintext(ujσ). We distinguish two cases:

– Either x is not introduced by σ, i.e. x 6∈ {vars(yσ) | y ∈ dom(σ)}. In such a case,
since C satisfies the plaintext origination property, we know that there exists
j < i such that x ∈ plaintext(uj). Thus, we have that x ∈ plaintext(ujσ).

– Otherwise x is introduced by σ, i.e. x ∈ vars(yσ) for some y ∈ dom(σ). Moreover,
since x occurs at a plaintext position, we have that x ∈ plaintext(yσ) and y ∈
plaintext(Ti). Since C satisfies the plaintext origination property, we have that
there exists j < i such that y ∈ plaintext(uj). From this, we easily conclude that
x ∈ plaintext(ujσ). �
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Lemma 5 Let T1 and T2 be two sets of terms having disjoint encryption and KC be a
set of extended names. Let C be a well-formed constraint system w.r.t. St(T1)∪St(T2)
and KC. Let C′ and σ be such that C  σ C

′ with C′ satisfiable. Then, we have that

1. T1σ and T2σ have disjoint encryption,
2. names(Tiσ) ⊆ names(Ti) for i = 1, 2, and
3. the constraint system C′ is well-formed w.r.t. St(T1σ) ∪ St(T2σ) and KC.

Proof We prove this result by case analysis on the simplification rule involved in the
reduction C  σ C

′.

Case of the rule R1: C = C′ ∧ T  u  C′. In such a case, we have that σ is the
identity. Thus, the two first requirements are satisfied by hypothesis. Moreover, we
have that

lhs(C′) ∪ rhs(C′) ⊆ lhs(C) ∪ rhs(C) ⊆ St(T1) ∪ St(T2).

We have that lhs(C′) ⊆ lhs(C) and by hypothesis we have also that KC∩plaintext(lhs(C)) =
∅. Hence, we deduce that KC ∩ plaintext(lhs(C′)) = ∅. It remains to establish the
fact that C′ satisfies the plaintext origination property. Let T ′  u′ ∈ C′ and
x ∈ plaintext(T ) ∩ X . Let T ′′  u′′ be the minimal constraint of C (w.r.t. inclu-
sion of the left-hand side) such that x ∈ plaintext(u′′) (note that x 6∈ plaintext(T ′′)).
Either T ′′  u′′ ∈ C′ and we easily conclude. Otherwise, we have that T ′′ = T and
u′′ = u. By hypothesis, we know that T ∪ {x | T ′  x ∈ C and T ′ ( T} ⊢ u. Thus,
by Lemma 10, we have plaintext(u) ⊆ plaintext(T ) ∪ {x | T ′  x ∈ C and T ′ ( T}.
Since x 6∈ plaintext(T ), we have x ∈ {x | T ′  x ∈ C and T ′ ( T}, which contradicts
the minimality of T ′′  u′′ and allows us to conclude.

Case of the rule R2 or R3: Thanks to Lemma 11, the two first requirements are
satisfied. We have that

lhs(C′) ∪ rhs(C′) = {tσ | t ∈ lhs(C) ∪ rhs(C)}
⊆ {tσ | t ∈ St(T1) ∪ St(T2)}
⊆ St(T1σ) ∪ St(T2σ)

The plaintext origination condition is stable by application of a substitution thanks
to Lemma 13. Thus, Cσ satisfies this condition. Lastly, we have that C′ = Cσ is satis-
fiable. Thus, thanks to Lemma 12, we easily deduce that KC ∩ plaintext(lhs(C′)) = ∅.

Case of the rule R4: C = C1 ∧ T ⊢ u σ C1σ ∧ Tσ  uσ = C′ where σ = mgu(t2, t3),
enca(t1, t2) ∈ St(T ), priv(t3) ∈ plaintext(T ) and t2 6= t3. In such a case, we have
that t3 = a for some agent name a and thus t2 is a variable, say y. Hence, we have
that σ = {y 7→ a}. Clearly, T1σ and T2σ have disjoint encryption and names(Tiσ) ⊆
names(Ti) since a ∈ A and A ∩ N = ∅. It remains to show that C′ is well-formed
w.r.t. St(T1σ)∪ St(T2σ). The two first points are easy to check and the last one is a
direct consequence of Lemma 12.

Case of the rule R5: This rule leads to a constraint system C′ that is not satisfiable.

Case of the rule R6: In such a case, σ is the identity, thus the two first require-
ments are satisfied. Clearly, lhs(C′) ∪ rhs(C′) ⊆ St(T1) ∪ St(T2). Since we have that
plaintext(rhs(C′)) ⊇ plaintext(rhs(C)), the plaintext origination is satisfied. Lastly,
since lhs(C′) = lhs(C), we easily deduce that KC ∩ plaintext(lhs(C′)) = ∅. �
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Lemma 6 Let C be a constraint system in solved form and DEq be a finite set of
disequations such that τ is a solution of C∧DEq. There exists a solution τ ′ of C∧DEq

such that for every variable x ∈ dom(τ ′), we have that xτ ′ ∈ Sinit.

We define a transformation function · that simplifies conjunction of disequations as
follows:

φ ∧ [f(m1, . . . ,mk) 6= g(m′1, . . . ,m
′
l)] = true if f 6= g

φ ∧ [f(m1, . . . ,mk) 6= f(m′1, . . . ,m
′
k)] = φ ∧ ([m1 6= m′1] ∨ · · · ∨ [mk 6= m′k])

φ ∧ [x 6= m] =







¬ true if m = x

φ if x ∈ vars(m), x 6= m

φ ∧ [x 6= m] otherwise

We obtain a formula φ of the form true, ¬ true or

([x1,1 6= m1,1] ∨ · · · ∨ [x1,k1
6= m1,k1

])
∧ ([x2,1 6= m2,1] ∨ · · · ∨ [x2,k2

6= m2,k2
])

...
...

∧ ([xl,1 6= ml,1] ∨ · · · ∨ [xl,kl 6= ml,kl ])

where xi,j /∈ vars(mi,j).

Now, we are able to establish Lemma 6.

Proof Let T1 the smallest left-hand side of C. Note that, since init ∈ T1, we have that
T1 ⊢ t for any t ∈ Sinit and the set Sinit is infinite. Moreover, for any substitution σ
such that xσ ∈ Sinit for every variable x ∈ dom(σ), we have that σ is a solution of C
since C is in solved form.

We show that any formula of the form φ = [x1 6= mk]∨ · · · ∨ [xn 6= mk] such that
xi /∈ vars(mi) has a solution σ such that xσ ∈ Sinit for every variable x ∈ vars(φ).
This is done by induction on the number of variables in φ. Note that this allows us
to conclude the proof of Lemma 6.

Base case. If φ has exactly one variable, then φ = [x 6= m1] ∧ · · · ∧ [x 6= mk] with
x /∈ vars(mi). Thus all mi are ground terms. Consider a term m ∈ Sinit such that
m 6= mi for 1 ≤ i ≤ k. We have T1 ⊢ m. The substitution τ ′ such that yτ ′ = m for
any y ∈ vars(φ) is a solution of φ.

Inductive case. φ = [x 6= m1] ∧ · · · ∧ [x 6= mk] ∧ [x 6= t1] ∧ · · · ∧ [x 6= tl] ∧ φ
′ where

– the mi are ground,
– x /∈ vars(ti) and vars(ti) is non empty,
– φ′ is of the form [x1 6= u1] ∧ · · · ∧ [xs 6= us] with xi /∈ vars(ui) and x 6= xi.

Consider m ∈ Sinit such that m 6= mi for 1 ≤ i ≤ k. We have T1 ⊢ m. Let σ = {m/x}.
We consider φσ.

– Each formula [x 6= mi]σ is true
– Let φ′′ = φ′σ. Note that φ′′ is of the right form, that is φ′′ is a conjunction of

formulas of the form [y 6= u] with y /∈ vars(u).
– Let I = ∅. For each 1 ≤ i ≤ l, we consider the formulam 6= tiσ. There is a variable
yi ∈ vars(tiσ). We choose one occurrence pi of yi in tiσ, that is tiσ|pi = yi. If
pi is not a path in m then the formula [m 6= tiσ] is always true. Otherwise, we
define m′i = m|pi and we let I := I ∪ {i}.
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We consider the formula ψ = φ′′ ∧
∧

i∈I
[yi 6= m′i]. We have that yi /∈ vars(m′i) since

m′i is ground. Moreover, ψ does not contain the variable x thus ψ has strictly less
variables than φ. We deduce by induction hypothesis that there is a solution θ to ψ
such that xθ ∈ Sinit for any x ∈ vars(ψ). Thus, we have that σθ is a solution of the
right form to φ, which concludes the proof. �

B.2 Getting rid of the terms coming from Π2

Lemma 7 (locality) Let T be a set of terms and u be a term such that T ⊢ u.
Let π be a proof of T ⊢ u which is minimal w.r.t. its number of nodes. Then π only
involves terms in St(T ∪ {u}). Moreover, if π ends with a decomposition rule or the
axiom rule then π only involves terms in St(T ) and u ∈ Stplain(T ).

Proof Let π be a proof of T ⊢ u which is minimal w.r.t. to its number of nodes. We
show the result by induction on π. We can have that:

– The last rule is an axiom. In such a case, we easily conclude.
– The last rule is a composition. Suppose for example that it is the symmetric

encryption rule. In such a case, we have that u = enc(u1, u2). Let π1 (resp. π2)
be the subproof of π ending on T ⊢ u1 (resp. T ⊢ u2). By induction hypothesis, we
know that π1 (resp. π2) only involves terms in St(T ∪{u1}) (resp. St(T ∪{u2})).
Hence, we easily deduce that π only involves terms in St(T ∪ {u}). The same
reasoning holds for the other composition rules.

– The last rule is a decomposition. Suppose for example that it is the symmetric
decryption rule. In such a case, we have that

π1 =

{ . . .

T ⊢ enc(u, v) π2 =

{ . . .

T ⊢ v

T ⊢ u

Note that, by minimality of π, the proof π1 necessarily ends with a decomposition
rule. Hence, by induction hypothesis, we know that π1 only involves terms in
St(T ) and also that enc(u, v) ∈ Stplain(T ). In particular, we have v ∈ St(T ). By
induction hypothesis, we know that π2 only involves terms of St(T ∪ {v}) thus
terms of St(T ). Thus we easily deduce that π only involves terms of St(T ) and
also that u ∈ Stplain(T ). For the other decomposition rules a similar reasoning
holds. In the case of the asymmetric decryption rule, we have that v ∈ St(T )
since, by induction hypothesis, a term of the form priv(v′) can only be obtained
by the axiom rule or a decomposition rule. �

Lemma 8 Let T0 be a set of terms such that names(T0) ∩ Names = ∅ and init ∈ T0.
Let v be a term such that plaintext(v) ⊆ T0 ∪ Names and EncSt(v) ⊆ EncSt(ETerms).
Then, we have that T0 ⊢ v.

The proof below relies on the notion of component which is formally defined in
Appendix A.
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Proof We show that for every p ∈ comp(v), we have that T0 ⊢ p. By definition of · ,
we have that

{p | p ∈ comp(v)} = {p′ | p′ ∈ comp(v)}.

Then, we can easily deduce that T0 ⊢ p
′ for every p′ ∈ comp(v), and thus T0 ⊢ v.

Let p ∈ comp(v). We distinguish three cases:

1. p is of the form enc(w1, w2), enca(w1, w2) or sign(w1, w2). In such a case, since
EncSt(v) ⊆ EncSt(ETerms), we have that p = init, thus T0 ⊢ p.

2. p is of the form a (or priv(a)) with a ∈ A. In such a case, we have that p ∈ T0

and p = p ∈ T0.
3. p is a name, i.e. p ∈ N . We have that p ∈ plaintext(v) and p ∈ T0 ∪ Names, thus
T0 ⊢ p. This allows us to conclude. �
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