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Abstract—Privacy properties such as anonymity, unlinkability,
or vote secrecy are typically expressed as equivalence properties.

In this paper, we provide the first decidability result for trace
equivalence of security protocols, for an unbounded number of
sessions and unlimited fresh nonces. Our class encompasses most
symmetric key protocols of the literature, in their tagged variant.

I. INTRODUCTION

Formal analysis of security protocols has received a lot of
attention for the last three decades. Many decision procedures
have been proposed with now very mature tools such as
ProVerif [1], Avispa [2], or Scyther [3]. Two main families
of properties are used to express security goals. Trace-based
or reachability properties check that some property holds for
any execution trace. They are typically used to state secrecy
or authentication. Equivalence properties have been introduced
more recently in the context of security protocols. They
express that an adversary should not be able to distinguish
between two scenarios. They are typically used to state privacy
properties such as anonymity, unlinkability, or vote secrecy
(e.g. [4], [5]).

Given a security protocol, does it achieve its security
goals? This question is actually undecidable for trace prop-
erties as well as equivalence properties, for an unbounded
number of sessions [6]. Bounding the number of sessions
suffices to retrieve decidability for standard primitives, both for
trace properties [7] and equivalence properties [8]. However,
analysing a protocol for a fixed (often low) number of sessions
does not allow to prove security. Even if my favourite security
protocol has no flaw when used three times, there is absolutely
no guarantee that a flaw will not appear when used a fourth
time. How to prove security without limiting the number of
sessions? Some tools such as ProVerif [1] or Scyther [3] can
actually handle an unbounded number of sessions although
they are not guaranteed to terminate. Yet, in practice, these
tools work well, at least for trace properties. So a remaining
open problem for the last ten years is to characterise a
decidable fragment of security protocols, that captures most
real protocols.

Most existing decidability results for an unbounded number
of sessions focused at protocols without nonces (see e.g. [6],
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[9] for trace properties and [10], [11] for equivalence). How-
ever, protocols do use nonces in practice. Focusing now at
decidability results for protocols with nonces, the results are
much fewer. For equivalence properties, there is actually no de-
cidability result. For reachability property, and more specially
for secrecy, G. Lowe [12] shows decidability provided that
protocols rules obey a strict format (no ciphertext forwarding
for example) and assuming that agents are able to check
this format when they receive messages. Typically, this result
assumes that an agent can never confuse a nonce with a
key, an agent name, or a ciphertext. In [13], Ramanujam and
Suresh obtain decidability assuming a rather severe tagging
scheme, where each ciphertext has to include a fresh, shared
session identifier. They do not cope with ciphertext forward-
ing. Dougherty and Guttman [14] have recently proposed
a decidability result dedicated to Diffie-Hellman protocols.
Contemporaneously to our work, Sybille Fröschle [15] has
proposed a new decidability result for the “leakiness” property
and the class of “well-founded protocols”. We provide in
Section V-C a detailed comparison with our result. In brief,
our result are incomparable since [15] considers a larger class
of primitives but a less accurate security property and more
restriction on the protocols (e.g. ciphertext forwarding is again
prohibited and as in [12] a typed model is considered). Note
that all these four results are dedicated to secrecy (or a variant
of it), a particular trace-based property.

Our contribution. We propose the first decidability result
for trace equivalence, for an unbounded number of sessions
and with nonces. Since even simple reachability properties are
undecidable in this context, we make some assumptions.

Simple processes. This notion has been introduced in [16]
and used in subsequent works. Intuitively, we assume that
each process communicates on a distinct channel. In practice,
each machine has its own IP address and each session is
characterised by some session identifier. We also assume that
each process consists of a sequence of inputs and outputs (with
some tests). This models very well standard security protocols
(with no else branches).

Type compliant protocols. Intuitively, we assume that cipher-
texts cannot be confused. A similar notion has been formally
introduced in [17] and was shown to ensure termination
of ProVerif (without nonces). This condition is part of the
good design practices and is easy to enforce by adding some
identifier (a tag) in each ciphertext. Of course the same tags



are re-used in all sessions.
Acyclic dependency graph. Considering constructions used

in undecidability results, one can notice that the encodings
rely on some form of cyclicity. Typically, the last message
of the protocol is re-injected at the first step of the protocol,
forming an infinite loop. We therefore introduce the notion of
dependency graph, with two notions of dependencies:
• sequential dependency: some action can only be taken

after some other actions;
• data dependency: some message can only be built once

some information is learnt from another message.
This graph can be computed (automatically) from the proto-
col’s specification. To detect data dependencies, we actually
consider a particular typed instantiation of the protocol. There-
fore, the definition of a dependency graph relies itself on the
typing system. Moreover, finer typing systems are more likely
to yield acyclic dependency graphs.

Our main contribution is to show that the equivalence
between simple and type-compliant protocols with an acyclic
dependency graph is decidable, for protocols using symmet-
ric encryption, concatenation, and nonces. Our class encom-
passes most symmetric key protocols we considered, includ-
ing Needham-Schroeder with symmetric key, Otway-Rees,
Denning-Sacco, or Wide-Mouthed-Frog. For some of these
protocols, we had to consider an explicitly tagged version.

As mentioned earlier, equivalence properties are used to
express privacy properties. They can also be used to encode
standard trace properties such as secrecy. For example, secrecy
of nonce n in a protocol P can be encoded as strong secrecy:

P (a) ≈ P (b)

where a and b are two public constants used instead of n.
Strong secrecy is generally stronger than secrecy but the two

notions may coincide [18]. Similarly, secrecy of a key k may
be encoded as a combination of key usability [19] and “which
key-concealing” [20]. Intuitively, an attacker should not be
able to distinguish between a situation where the key k is
used to encrypt some public message a, and a situation where
a fresh key is used to encrypt some other public message b.
This can be formalised by the following equivalence:

P [out({a}k)] ≈ P [new k′.out({b}k′)]

where a, b are two public constants and P [Q] runs Q once the
key k is established in P .

In that sense, decidability for equivalence encompasses
decidability for secrecy.

Proof technique. We show decidability in two main steps.
First, thanks to the type-compliance assumption, we show
that we can apply [11], yielding a bound on the size of the
messages: if there is a witness of non-equivalence then there
is a well-typed witness, and this induces a strict format for the
messages occurring in such a witness. Note that the number
of distinct messages remains unbounded due to nonces.

The second step of the proof relies on the dependency graph.
We show that any well-typed execution trace complies with

the execution order induced by the dependency graph, which
allows to split well-typed traces into small independent traces,
which in turn yields decidability.

Scope. The scope of our result depends on how often
protocols induce an acyclic dependency graph. For the sake of
clarity, we first provide a generic definition of a dependency
graph (Definition 9). However, some interesting protocols such
as the Needham-Schroeder symmetric key protocol are cyclic
with this definition. In a second step, we provide a criterion
that safely allows to remove edges in the dependency graph,
yielding acyclicity for most of the protocols we considered.
This more flexible notion of dependency graph is called
refined dependency graph (Definition 13). We believe that our
approach provides a good level of flexibility. In case some
protocols were found to be cyclic with our current definition
of a dependency graph, it should be possible to develop other
criteria that soundly remove edges.

II. MODEL FOR SECURITY PROTOCOLS

Security protocols are naturally modelled through a process
algebra like the applied pi-calculus [21]. We adapt here the
process algebra provided in [11] since we wish to use the
corresponding simplification result to well-typed traces.

A. Syntax

Term algebra: As usual, messages are modelled by terms.
We consider an infinite set of names N and two distinct sets
of variables X and W . Names are typically used to represent
keys or nonces. Variables in X typically refer to unknown parts
of messages expected by participants while variables inW are
used to store messages learnt by the attacker. We consider the
following sets of function symbols:

Σc = {enc, 〈 〉}, Σd = {dec, proj1, proj2}, and Σ = Σc ∪ Σd.

The symbol enc of arity 2 represents encryption while dec
is the corresponding decryption symbol. Concatenation of
messages is modelled through the symbol 〈 〉 of arity 2,
with corresponding projection functions proj1 and proj2 of
arity 1. We distinguish between constructor symbols in Σc

and destructor symbols in Σd.
We consider several sets of terms. Given a set of A of

atoms (i.e. names, variables, and constants), and a signature
F ∈ {Σc,Σd,Σ}, we denote by T (F ,A) the set of terms built
from F and A. Constructors terms with atomic encryptions
are represented by the set T0(Σc,A), which is the subset
of T (Σc,A) such that any subterm enc(m, k) of a term in
T0(Σc,A) is such that k ∈ A. Then T0(Σc,Σ0 ∪N ) is the set
of messages. The positions of a term are defined as usual.

An attacker can build any term by applying function
symbols. His computation is formally modelled by a term
R ∈ T (Σ,Σ0 ∪ W), called recipe. Note that a recipe does
not contain names.

We denote vars(u) the set of variables that occur in u.
The application of a substitution σ to a term u is written uσ,
and we denote dom(σ) its domain. Two terms u1 and u2 are
unifiable when there exists σ such that u1σ = u2σ.
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The decryption of an encryption with the right key yields the
plaintext. Similarly, the left (or right) projection of a concate-
nation yields the left (or right) component. These properties
are reflected in the three following convergent rewrite rules:

dec(enc(x, y), y) → x
proji(〈x1, x2〉) → xi with i ∈ {1, 2}.

The normal form of a term t ∈ T (Σ,Σ0 ∪N ∪X ) is denoted
by u↓. The reader is referred to [22] for the exact definitions
of rewrite rules, convergence, and normal forms.

Example 1: Let t = enc(n, k) where n, k ∈ N . This term
represents the encryption of n by k. The term dec(t, k) models
the application of the decryption algorithm on t using the
key k. Then dec(t, k)↓ = n.

Process algebra: We assume an infinite set Ch = Ch0 ]
Chfresh of channels used to communicate, where Ch0 and
Chfresh are infinite and disjoint. Intuitively, channels of Chfresh
will be used to instantiate channels when they are generated
during the execution of a protocol. They should not be part of
a protocol specification. We also assume an infinite set L used
to name input and output actions of processes. Protocols are
modelled through processes built by the following grammar:

P,Q := 0
| α : in(c, u).P
| α : out(c, u).P
| (P | Q)
| !P
| new n.P
| new c′.out(c, c′).P

where u ∈ T (Σc,Σ0∪N ∪X ), n ∈ N , c, c′ ∈ Ch, and α ∈ L.
The process 0 denotes the null process that does nothing.

α : in(c, u).P inputs a message m of the form u on channel c
and then behaves like P . Similarly, α : out(c, u).P outputs u
on channel c and behaves like P . The process (P | Q)
denotes the parallel composition of P and Q while !P denotes
an arbitrary number of processes P in parallel. new n.P
generates a fresh nonce (or key) n and behaves like P .
The process new c′.out(c, c′).P is a special construction for
creating new channels: any new channel should be made
public immediately. Intuitively, we consider here only public
channels. These fresh channel names are used to identify a
process, similarly to a session identifier for example.

We may omit the null process for simplicity. We assume
that names and variables are bound at most once. For example,
in the process in(c, x).in(c, x) the variable x is bound once,
whereas in in(c, x) | in(c, x), one occurrence of the variable x
should be renamed. The set of free variables that occur in P ,
i.e. variables that are not in the scope of an input, is denoted
fv(P ). The set of labels that occur in P is denoted L(P ).

Definition 1: A protocol P is a process such that P is
ground (i.e. fv(P ) = ∅), P does not use channel names
from Chfresh, and labels occurring in P are distinct.

Example 2: The Denning Sacco protocol [23] (without
timestamps) is a key distribution protocol using symmetric

encryption and a trusted server. It can be described informally
as follows:

1. A→ S : A,B
2. S → A : {B,Kab, {Kab, A}Kbs

}Kas

3. A→ B : {Kab, A}Kbs

where {m}k denotes the symmetric encryption of a mes-
sage m with key k. The agents A and B aim at authenticating
each other and establishing a session key Kab through a trusted
server S. The key Kas (resp. Kbs) is a long term key shared
between A and S (resp. B and S).

We model the Denning Sacco protocol in our formalism.
Below, kas, kbs, kab are names, whereas a and b are con-
stants from Σ0. We denote by 〈x1, . . . , xn−1, xn〉 the term
〈x1, 〈. . . 〈xn−1, xn〉〉〉. The protocol is modelled by the parallel
composition of three processes PA, PB , and PS , correspond-
ing to the roles of A, B, and S.

PDS = ! new c1.out(cA, c1).PA | ! new c2.out(cB , c2).PB
| ! new c3.out(cS , c3).PS

The processes PA, PB , and PS are given below.

PA = α1 : out(c1, 〈a, b〉).
α2 : in(c1, enc(〈b, xAB , xB〉, kas)).
α3 : out(c1, xB)

PB = β1 : in(c2, enc(〈yAB , a〉, kbs))

PS = γ1 : in(c3, 〈a, b〉). new kab.
γ2 : out(c3, enc(〈b, kab, enc(〈kab, a〉, kbs)〉, kas))

B. Semantics

A configuration is a process together with the current
knowledge of the attacker. Formally, a configuration is a
pair (P;φ) where:
• P is a multiset of ground processes;
• φ = {w1.m1, . . . ,wn.mn} is a frame, i.e. a substitution

where w1, . . . ,wn are variables in W , and m1, . . . ,mn

are messages, i.e. terms in T0(Σc,Σ0 ∪N ).

We may write P instead of ({P}; ∅), and P ∪ P or P | P
instead of {P} ∪ P .

The frame φ represents the messages the attacker has learnt
so far. He may deduce new messages from his knowledge.
This is formalised through the deducibility notion.

Definition 2: A message u is deducible from a frame φ,
denoted φ ` u, if there exists a recipe R such that Rφ↓ = u.

The operational semantics of a process is induced by the
relation α−→ over configurations defined in Figure 1. The
first rule corresponds to the case where an agent expects to
receive a message of the form u. The adversary may send
any message Rφ↓ he can build, provided it matches u, that is
uσ = Rφ↓ for some σ. Then the process proceeds, instantiated
by σ. The second rule reflects the case of an emission of a
message, which is stored in φ using some new variable wi+1.
Note that the term is emitted only if it is a message, otherwise
there is no output. When a new channel is generated (third
rule), we simply use a fresh channel name. The channel is
not added to the attacker’s knowledge but the attacker is able
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(α : in(c, u).P ∪ P;φ)
in(c,R)−−−−→ (Pσ ∪ P;φ) where R is a recipe such that Rφ↓

is a message and Rφ↓ = uσ for some σ with dom(σ) = vars(u)

(α : out(c, u).P ∪ P;φ)
out(c,wi+1)−−−−−−−→ (P ∪ P;φ ∪ {wi+1 . u})

where u is a message and i is the number of elements in φ

(new c′.out(c, c′).P ∪ P;φ)
out(c,chi)−−−−−−→ (P{chi/c′} ∪ P;φ)

where chi is the “next” fresh channel name available in Chfresh

(new n.P ∪ P;φ)
τ−→ (P{n′

/n} ∪ P;φ) where n′ is a fresh name in N
(!P ∪ P;φ)

τ−→ (P ∪ !P ∪ P;φ)

Fig. 1. Semantics of the processes

to observe on which channels the processes communicate.
Finally, the two last rules are quite standard and correspond
respectively to nonce generation and replication. They are not
observable (τ action) by an attacker. The relation α1...αn−−−−−→
between configurations (where α1 . . . αn is a sequence of
actions) is defined as the transitive closure of α−→.

Given a sequence of observable actions tr, we write
K

tr
==⇒ K ′ when there exists a sequence α1 . . . αn such that

K
α1...αn−−−−−→ K ′ and tr is obtained from α1 . . . αn by erasing

all occurrences of τ . For every protocol P , we define its set
of traces as follows:

trace(P ) = {(tr, φ) | P tr
==⇒ (P;φ) for some (P;φ)}.

Note that, by definition of trace(P ), trφ↓ only contains terms
from T0(Σc,Σ0 ∪N ).

Example 3: Consider the following sequence tr:
tr = out(cA, ch1).out(cB , ch2).out(cS , ch3).

out(ch1,w1).in(ch3,w1).out(ch3,w2).
in(ch1,w2).out(ch1,w3).in(ch2,w3)

This sequence tr allows one to reach the frame:
φ = {w1 . 〈a, b〉,w2 . enc(〈b, kab, enc(〈kab, a〉, kbs)〉, kas),

w3 . enc(〈kab, a〉, kbs)}.

We have that (tr, φ) ∈ trace(PDS). This trace corresponds to
a normal execution of the protocol.

C. Trace equivalence

Privacy properties are typically expressed through be-
havioural equivalences. For example, for anonymity, an at-
tacker should not distinguish between a session from Alice
and a session from Bob. Equivalence-based properties are not
limited to privacy but may also be used to state strong se-
crecy or other game-based properties [16]. There exist several
variants of equivalences: e.g. observational equivalence, may-
testing, or trace equivalence. We study trace equivalence and
we refer the reader to [24] for a comparison of these notions.

We first start with static equivalence which formalises
when an attacker cannot distinguish between two sequences
of messages.

Definition 3: Two frames φ1 and φ2 are statically equiva-
lent, φ1 ∼ φ2, if dom(φ1) = dom(φ2) and:

• for any recipe R, Rφ1↓ ∈ T0(Σc,Σ0 ∪ N ) if, and only
if, Rφ2↓ ∈ T0(Σc,Σ0 ∪N ); and

• for all recipes R1 and R2 such that R1φ1↓, R2φ1↓ ∈
T0(Σc,Σ0 ∪ N ), we have that R1φ1↓ = R2φ1↓ if, and
only if, R1φ2↓ = R2φ2↓.

Intuitively, an attacker can see the difference between two
frames φ1 and φ2 if, either some computation R fails in φ1
(that is Rφ1↓ is not a message) while it does not fail in φ2; or
the attacker can build an equality R1 = R2 that holds in φ1
and not in φ2 (or conversely).

Example 4: Consider φ1 = φ ∪ {w4 . enc(m1, kab)} and
φ2 = φ ∪ {w4 . enc(m2, k)} where φ has been introduced in
Example 3. The terms m1, m2 are public constants in Σ0,
and k is a name in N . We have that the two frames φ1
and φ2 are statically equivalent. Intuitively, at the end of a
normal execution between honest participants, an attacker can
not distinguish whether the key used to encrypt a message
(here the constants m1 and m2) is the session key that has
been established or a fresh name k.

In contrast, φ′1 = φ1∪{w5 .kab} and φ′2 = φ2∪{w5 .kab}
are not in static equivalence. Indeed, an attacker can observe
that the fourth message of φ1 can be decrypted by the fifth
message, which is not the case in φ′2. Formally, consider the
recipe R = dec(w4,w5). Then Rφ′1↓ ∈ T0(Σc,Σ0 ∪N ) while
Rφ′2↓ /∈ T0(Σc,Σ0 ∪N )

Trace equivalence is the active counterpart of static equiv-
alence: an attacker is not be able to distinguish between two
processes if, however he interacts with them, the resulting
sequences of sent messages are in static equivalence.

Definition 4: A protocol P is trace included in a proto-
col Q, written P v Q, if for every (tr, φ) ∈ trace(P ), there
exists (tr′, φ′) ∈ trace(Q) such that tr = tr′ and φ ∼ φ′. The
protocols P and Q are trace equivalent, written P ≈ Q, if
P v Q and Q v P .

Example 5: The process PDS presented in Example 2 mod-
els the Denning Sacco protocol. Assume now that we wish to
check strong secrecy of the exchanged key, as received by the
agent B. As discussed in Introduction, this can be expressed
by checking whether P 1

DS ≈ P 2
DS where:

• P 1
DS is as PDS but we add “β2 : out(c2, enc(m1, yAB))”

at the end of the process PB ;
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• P 2
DS is as the protocol PDS but we add the instruction

“new k.β2 : out(c2, enc(m2, k))” at the end of PB ,

The terms m1 and m2 are two public constants from Σ0.

While the key received by B cannot be learnt by an attacker,
strong secrecy of this key is not guaranteed. Indeed, due to
the lack of freshness, the same key can be sent several times
to B, and this can be observed by an attacker. Formally, the
attack is as follows. Consider the sequence

tr′ = tr.out(ch2,w4).
out(cB , ch4).in(ch4,w3).out(ch4,w5)

where tr has been defined in Example 3. The attacker simply
replays an old session. The resulting (unique) frames are

• φ′1 = φ ∪ {w4 . enc(m1, kab), w5 . enc(m1, kab)}; and
• φ′2 = φ ∪ {w4 . enc(m2, k), w5 . enc(m2, k

′)}.
Then (tr′, φ′1) ∈ trace(P 1

DS) and (tr′, φ′2) ∈ trace(P 2
DS).

However, we have that φ′1 6∼ φ′2 since w4 = w5 in φ′1 but
not in φ′2. Thus P 1

DS and P 2
DS are not in trace equivalence. To

avoid this attack, the messages of the Denning-Sacco protocol
shall include timestamps.

D. Simple processes

Consider two processes which are both willing to emit some
message m on some public channel c: let A = B = out(c,m).
Then consider the two processes in parallel:

A | B = out(c,m) | out(c,m)

This current practice when modelling protocols actually
weakens the attacker power since in that case, he has no
information on whether the message is coming from A or
from B. Similar issues appear when processes are expecting
a message on some public channel. In practice, it is often the
case that an attacker may identify processes through e.g IP
addresses and even sessions using sessions identifiers.

We therefore introduce the class of simple processes, similar
to the one introduced in [16].

Definition 5: A simple protocol P is a protocol of the form

!new c′1.out(c1, c
′
1).B1 | ... | !new c′m.out(cm, c

′
m).Bm

| Bm+1 | . . . | Bm+n

where each Bi with 1 ≤ i ≤ m (resp. m < i ≤ m + n)
is a ground process on channel c′i (resp. ci) built using the
following grammar:

B := 0 | α : in(c′i, u).B | α : out(c′i, u).B | new n.B

where u ∈ T0(Σc,Σ0 ∪ N ∪ X ). Moreover, we assume that
c1, . . . , cn, cn+1, . . . , cn+m are pairwise distinct.

Given a simple protocol P , and α, β ∈ L(P ), we say that β
directly follows α in P if both actions are in sequence in the
description of P , with β after α, and no other visible action
in between. When some other visible actions occur between
α and β, we simply say that β follows α.

III. A FIRST DECIDABILITY RESULT

Trace equivalence is undecidable in general for an un-
bounded number of sessions, inheriting undecidability from
the standard secrecy case (see e.g. [6]). We present here
our two main assumptions for obtaining decidability: type-
compliance and acyclic dependency graph. For the clarity of
the presentation, we present in this section a rather coarse
definition of dependency graph. In the next section, we provide
sound criteria to remove some of its edges.

A. Typing system

We consider typing systems that preserve the structure of
terms. They are defined as follows:

Definition 6: A structure-preserving typing system is a pair
(T0, δ0) where T0 is a set of elements called atomic types,
and δ0 is a function mapping atomic terms in Σ0 ∪N ∪X to
types τ generated using the following grammar:

τ, τ1, τ2 = τ0 with τ0 ∈ T0
| 〈τ1, τ2〉
| enc(τ1, τ2)

We further assume the existence of an infinite number of
constants in Σ0 (resp. variables in X , names in N ) of any
type. Then, δ0 is extended to constructor terms as follows:

δ0(f(t1, . . . , tn)) = f(δ0(t1), . . . , δ0(tn)) with f ∈ Σc.

Example 6: Going back to our running example, we con-
sider the structure-preserving typing system generated from
the set TDS = {τa, τb, τm, τkas, τkbs, τkab} of atomic types
and the function δDS that associates the expected type to each
constant/name, and the following type to variables:
• δDS(xAB) = δDS(yAB) = τkab; and
• δDS(xB) = enc(〈τkab, τa〉, τkbs).

B. Type-compliance

Our first main hypothesis on the typing of protocols is that
any two unifiable subterms have the same type. The goal of
this part is to state this hypothesis formally.

Due to the presence of replication, we need to consider two
copies of protocols in order to consider different instances
of the variables. Given a protocol P with replication, we
define its 2-unfolding unfold2(P ) to be the protocol such that
every occurrence of a process !R in P is replaced by R | R,
and some α-renaming (preserving type) is performed on one
copy to avoid variables or names capture. Note that if P is
a protocol that does not contain any replication, we have that
unfold2(P ) = P .

We write St(t) for the set of (syntactic) subterms of a term t,
and ESt(t) the set of its encrypted subterms, i.e.

ESt(t) = {u ∈ St(t) | u is of the form enc(u1, u2)}.

We extend this notion to sets/sequences of terms, and to
protocols as expected.
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A protocol is type-compliant if two unifiable subterms have
the same type. Formally, we use the definition of [11], which
is similar to the one introduced in [17].

Definition 7: A protocol P is type-compliant w.r.t. a
structure-preserving typing system (TP , δP ) if for every t, t′ ∈
ESt(unfold2(P )) we have that:

t and t′ unifiable implies that δP (t) = δP (t′).

Example 7: The protocol P 1
DS (resp. P 2

DS) is type-compliant
w.r.t. the typing system given in Example 6. Indeed, the
encrypted subterms of unfold2(P 1

DS) are:
1) tA = enc(〈b, xAB , xB〉, kas);
2) tB1 = enc(〈yAB , a〉, kbs);
3) tB2 = enc(m1, yAB);
4) tS1 = enc(〈b, kab, enc(〈kab, a〉, kbs)〉, kas); and
5) tS2 = enc(〈kab, a〉, kbs)

as well as the renaming of these terms obtained by replac-
ing kab, xAB , yAB , and xB with fresh names/variables of the
same type.

It is easy to check that the type-compliance condition is
satisfied for any pair of terms. For instance, we have that tA
and tS1 are unifiable, and they have indeed the same type:

δDS(tA) = enc(〈τb, τkab, enc(〈τkab, τa〉, τkbs)〉, τkas)
= δDS(tS1).

As shown in the following example, not all protocols are
type-compliant w.r.t. a structure-preserving typing system.

Example 8: For instance, consider the following protocol:

P = ! new c.out(c, c′). α1 : in(c′, enc(x, k)).
α2 : out(c′, enc(〈x, x〉, k).

We have that t1 = enc(x, k) and t2 = enc(〈x, x〉, k) are both
in ESt(unfold2(P )) as well as the terms t′1 and t′2 obtained
from t1 and t2 by simply renaming x with another variable,
say x′, having the same type as x. The two terms t1 and t′2
are unifiable, and thus should receive the same type, but this
would imply that δ(x) = 〈δ(x′), δ(x′)〉, and thus x can not
receive the same type as x′.

C. Dependency graph

We consider a protocol P which is type-compliant w.r.t.
a structure-preserving typing system (TP , δP ). To define our
dependency graph, we first define public and honest types.
Terms of public type are always deducible for an adversary,
whereas terms of honest type will be guaranteed to be secret
(except those built using public constants only).

A type τp is public if δP (n) 6∈ St(τp) for any name n
occurring in P . Intuitively, in a well-typed execution, a term
having a public type is a term built using public constant only,
and is thus deducible from the beginning of any execution.

An atomic type τh is honest if (i) τh does not appear in
plaintext position in uδP for any term u occurring in P ;
(ii) τh 6= δP (a) for any constant/variable a occurring in P .
Intuitively, this ensures that, in a well-typed execution, terms

of type τh will never occur in plaintext position, and no public
constant of this type will be used in key position.

Example 9: Going back to our running example, we have
that τa, τb, τm are public types while τkas and τkbs are honest
types. In contrast, τkab is neither a public nor an honest type.
Indeed, τkab = δP (yAB) and the variable yAB occurs in P .

We define inductively a function ρio that inspects a type τ
and returns its set of deducible subterms (where τ is viewed
as a term) together with the set of keys needed to access each
subterm. For this, we introduce a new syntactic symbol #.

Definition 8: Given a type τ , a position p and a set S of
types, the function ρio is inductively defined as follows:
• ρio(τ0, p, S) = {(τ0, p)#S} for any atomic type τ0;
• ρio(〈τ1, τ2〉, p, S) = ρio(τ1, p.1, S) ∪ ρio(τ2, p.2, S);
• ρio(enc(τ1, τ2), p, S) ={
{(enc(τ1, τ2), p)#S} if τ2 is an honest type;
{(enc(τ1, τ2), p)#S} ∪ ρio(τ1, p.1, S ∪ {τ2}) otherwise.

Given a type τ , the function ρio(τ, ε, ∅) computes a set of
elements of the form (τi, pi)#Si. Intuitively, it means that the
term of type τi at position pi in τ is accessible from the term τ
after some decryptions using keys occurring in the set Si.

We also define two functions ρout and ρin that help us to
define the flows that may happen during a protocol execution.

ρout(τ
′) = {(τ, p) | (τ, p)#S ∈ ρio(τ ′, ε, ∅)}; and

ρin(τ
′) = {τ, τ1, . . . , τk | (τ, p)#{τ1, . . . , τk} ∈ ρio(τ ′, ε, ∅)}.

Intuitively, ρout(τ ′) returns the types of the terms that
may be deducible by the attacker once a term of type τ ′ is
outputted, whereas ρin(τ ′) returns all the types that may be
used by the attacker to fill an input of type τ ′. In case of an
output, we also return the position at which the type occurred.
This information will be added in our dependency graph, and
used in Section IV to present our refined dependency graph.

Example 10: Continuing our running example, we have
that:
ρout(〈τa, τb〉) = {(τa, 1), (τb, 2)} and ρin(〈τa, τb〉) = {τa, τb};
ρout(enc(〈yABδP , τa〉, τkbs)) = {(enc(〈τkab, τa〉, τkbs), ε)};
ρin(enc(〈yABδP , τa〉, τkbs)) = {enc(〈τkab, τa〉, τkbs)}.

since τkbs is an honest type.

We are now ready to define the dependency graph. It
captures two main sources of dependencies: sequential depen-
dencies, when an action may only occur after another one, and
data dependencies, when the production of a term depends on
other sent terms.

Definition 9: The dependency graph associated to a type-
compliant, simple protocol P (w.r.t. a structure-preserving
typing system (TP , δP )) is a graph having L(P ) as vertices
and that are connected as follows:

1) for every action with label α in P that directly follows
an action with label β in P , there is an edge α→ β;
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Fig. 2. Dependency graph for P 1
DS w.r.t. (TDS, δDS)

2) for every “α : in(c, u)” and “β : out(d, v)” in P , there
is an edge α →p β if there exists τ ∈ ρin(uδP ) such
that

(τ, p) ∈ ρout(vδP )
unless τ is a public type.

3) for every “α : out(c, u)” and “β : out(d, v)” in P , there
is an edge α→p β if (τ, q)#(S∪{τk}) ∈ ρio(uδP , ε, ∅)
for some τ , q, S, and τk such that

(τk, p) ∈ ρout(vδP )
unless τk is a public type.

Intuitively, if there exists an edge from α to β, it implies that
the action α may depend on action β. More precisely, item 1
captures sequential dependencies, whereas items 2 and 3 are
about data dependencies. Item 2 captures dependencies that
occur due to the fact that the attacker need to produce a term
to comply with the given input. For this, all the needed pieces
may come from different outputs (but at a plaintext position).
Now, item 3 is needed because, when such a piece occurs at
a plaintext position (for instance under an encryption with k),
it may be important for the attacker to learn the key k, and
this generates new dependencies.

Example 11: The dependency graph for the protocol P 1
DS

defined in Example 5 w.r.t. the typing system (TDS, δDS) given
in Example 6 is depicted in Figure 2. The vertical arrows
correspond to sequential dependencies (item 1) whereas all
the other arrows are actually due to item 2. In this example,
item 3 does not produce any arrow.

Intuitively, these arrows mean that the input α2 (resp. β1)
may depend on the output γ2 (resp. α3). In other words the
outputted term may be (partially) used to fill the input. The
relevant parts of the output are indicated by the position p on
top of the arrows.

Note that for P 2
DS (also defined in Example 5), we can

introduce an additional atomic type τk for name k (or reuse the
atomic type τkab. In both cases, the dependency graph of P 2

DS

will be exactly the same as the one obtained for P 1
DS.

Example 12: Let P be the protocol

P = α : in(c1, k1)|β : out(c2, enc(k1, k2))|γ : out(c3, k2)

Consider the typing system (T , δ) where T = {τ1, τ2};
δ(k1) = τ1 and δ(k2) = τ2. Its typing graph is shown in

α β γ1 ε

Fig. 3. Dependency graph for P w.r.t. (T , δ)

Figure 3. The edge from β to γ is an edge introduced by
the third item in Definition 9. Indeed, ρio(enc(τ1, τ2), ε, ∅) =
{(enc(τ1, τ2), ε)#∅, (τ1, 1)#{τ2}} and ρout(τ2) = {(τ2, ε)}.

D. Our result

Trace equivalence is decidable for simple, type-compliant,
acyclic protocols.

Theorem 1: Let P and Q be two simple protocols type-
compliant w.r.t. some structure-preserving typing systems
(TP , δP ) and (TQ, δQ), and with acyclic dependency graphs.
The problem of deciding whether P and Q are in trace
equivalence (i.e. P ≈ Q) is decidable.

Example 13: The protocols P 1
DS and P 2

DS given in Exam-
ple 5 are simple, type-compliant w.r.t. (TDS, δDS) and their
respective dependency graph is acyclic. Thus this protocol falls
into our decidable class.

IV. AN IMPROVED VERSION OF OUR DECIDABILITY
RESULT

In the previous section we have presented a first decidability
result for trace equivalence of simple, type-compliant, acyclic
protocols. The Denning-Sacco protocol satisfies these hypothe-
ses. However, some reasonable protocols do not fall in our
class. In the next paragraph, we explain why the Needham-
Schroeder protocol induces a cyclic dependency graph. How-
ever, in that case, the cycle is created by a false dependency.
Therefore, in the subsequent paragraphs, we devise criteria to
remove some edges of the dependency graph.

A. Motivating example

We consider the well-known Needham Schroeder key es-
tablishment protocol [25]. It can be described informally as
follows:

1. A→ S : A,B,Na
2. S → A : {Na, B,Kab, {Kab, A}Kbs

}Kas

3. A→ B : {Kab, A}Kbs

4. B → A : {req, Nb}Kab

5. A→ B : {rep, Nb}Kab

We propose a modelling of this protocol in our formalism.
Below, kas, kbs, kab, na, nb, and k are names, whereas a, b,
req, rep, m1 and m2 are constants from Σ0.

PNS = ! new c1.out(cA, c1).PA | ! new c2.out(cB , c2).PB
| ! new c3.out(cS , c3).PS

7
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Fig. 4. Dependency graph for P i
NS w.r.t. (TNS, δNS)

where the processes PA, PB , and PS are given below.

PA = new na.
α1 : out(c1, 〈a, b, na〉).
α2 : in(c1, enc(〈na, b, xAB , xB〉, kas)).
α3 : out(c1, xB).
α4 : in(c1, enc(〈req, xNB 〉, xAB)).
α5 : out(c1, enc(〈rep, xNB 〉, xAB))

PB = β1 : in(c2, enc(〈yAB , a〉, kbs)).new nb.
β2 : out(c2, enc(〈req, nb〉, yAB)).
β3 : in(c2, enc(〈rep, nb〉, yAB))

PS = γ1 : in(c3, 〈a, b, zNA〉).new kab.
γ2 : out(c3, enc(〈zNA, b, kab, enc(〈kab, a〉, kbs)〉, kas))

As in Example 5, we model the security of the exchanged
key by requiring that P 1

NS ≈ P 2
NS whereP 1

NS and P 2
NS are

defined as follows:
• P 1

NS is as the protocol PNS but we add the instruction
“β4 : out(c2, enc(m1, yAB))” at the end of PB ;

• P 2
NS is as the protocol PNS but we add the instruction

“new k.β4 : out(c2, enc(m2, k))” at the end of PB .
As for the Denning Sacco protocol (see Example 7), type-

compliance is satisfied. We only have to introduce some new
atomic types: τna, τnb, τreq, τrep and we type each constant
(resp. name and variable) as expected. We denote (TNS, δNS)
the resulting structure-preserving typing system.

The resulting dependency graph is depicted in Figure 4 (and
the dashed arrow is part of the dependency graph). There is
no arrow due to item 3 (dependencies between outputs). As
in the Denning Sacco protocol, τkas and τkbs are honest type
whereas τa, τb, τm, τreq, and τrep are public types. Due to
the fact that τkab can not be considered as an honest type,
many arrows (those that are labelled with 1.2) are added to
the dependency graph. This reflects executions that will build
ciphertexts with such a key.

The dependency graph is cyclic. Intuitively, this is due
to the fact that the subterm at position 1.2 (the nonce Nb)
outputted in α5 may be used in input at α4. However, if
the attacker is able to access this subterm at position 1.2
in α5, it necessarily means that he already knew this subterm
already. Thus, intuitively, this dependency is not necessary.
We formalise this notion in the next section. This will lead to
a notion of refined dependency graph which is a dependency
graph in which some arrows have been removed.

B. Appropriate marking

We first devise a general (semantic) criterion to remove
some of the edges of the dependency graph. We proceed by
marking some of the positions of the graph.

Definition 10: A marked position of a protocol P is a
pair (α, p) where α : out(c, u) is an output action occurring
in P , and p is a position of the term u. A marking of a
protocol P is a set of marked positions of P .

This notion of marking is very general. We consider that
a marking strategy is appropriate for our dependency graph
if it indicates subterms that, if deducible, must be deducible
earlier in any execution.

Definition 11: A marked position (α, p) of a protocol P is
appropriate if for any trace (tr′, φ′) ∈ trace(P ) such that:
• (tr′, φ′) = (tr.out(c,w), φ ] {w . t}); and
• out(c,w) corresponds to an action labelled by α;

we have that φ′ ` t|p implies φ ` t|p 1.

A markingM of P is appropriate if all the pairs inM are
appropriate marked positions.

Example 14: We pursue our example started in Sec-
tion IV-A. We may set (α5, 1.2) to be a marked position
of P 1

NS (resp. P 2
NS). Intuitively, it is an appropriate marked

position since the message xNBσ sent by the process PA
cannot be learnt at the step α5: either xNBσ remains secret or
it was learnt earlier. We formally show that it is an appropriate
marked position in the next section.

Deciding whether a subterm can be marked appropriately
is not an easy task. We therefore provide a syntactic (sound)
criterion that removes cycles in most cases.

C. A syntactic criterion

We define a function ρio on terms very similar to the
function ρio defined on types in Section III.

Definition 12: Given a term t, a position p and a set of
terms S, the function ρio is inductively defined as follows:
• ρio(t0, p, S) = {(t0, p)#S} for any atomic term t0

(name, constant or variable);
• ρio(〈t1, t2〉, p, S) = ρio(t1, p.1, S) ∪ ρio(t2, p.2, S);
• ρio(enc(t1, t2), p, S) =

1Note that p is indeed a position of t. Indeed, t must be of the form t = uσ
where the action labelled by α is α : out(c, u). Since p is a position of u, it
is also a position of t = uσ.
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{
{(enc(t1, t2), p)#S} if δ0(t2) is an honest type;
{(enc(t1, t2), p)#S} ∪ ρio(t1, p.1, S ∪ {t2}) otherwise.

Intuitively, (u0, p)#S ∈ ρio(u, ε, ∅) if the set S of keys
suffices to access the subterm u0 = u|p.

We show that it is always appropriate to mark a position
if the corresponding subterm appears earlier in the protocol,
protected by a smaller set of keys.

Lemma 1: Let (α, p) be a marked position in P and assume
that there exists an input action β : in(d, v) (or an output action
β : out(d, v)) in P such that:

1) α : out(c, u) follows β in P ;
2) (u0, p)#S ∈ ρio(u, ε, ∅) for some u0, and some S; and
3) (u0, q)#S

′ ∈ ρio(v, ε, ∅) for some q, and some S′ ⊆ S.
Then (α, p) is an appropriate marked position for P .

Example 15: Lemma 1 allows us to formally establish that
(α5, 1.2) is an appropriate marked position for P 1

NS (resp.
P 2
NS). Indeed, we have that:
1) α5 : out(c1, enc(〈rep, xNB 〉, xAB)) follows α4 in P 1

NS;
2) (xNB , 1.2)#{xAB} ∈ ρio(enc(〈rep, xNB 〉, xAB)); and
3) (xNB , 1.2)#{xAB} ∈ ρio(enc(〈req, xNB 〉, xAB)).

D. Refined dependency graph

We refine our dependency graph by simply removing any
arrow that points towards an appropriate marked position.

Definition 13: Let P be a type-compliant protocol P (w.r.t.
a structure-preserving typing system (TP , δP )) and M be a
marking of P . The refined dependency graph associated to P
andM is obtained from the dependency graph of P by simply
removing any arrow of the form α→p β for which

(β, q) ∈M and q is a prefix of p.

Example 16: The refined dependency graph associated to
P 1
NS (resp. P 2

NS) and M = {(α5, 1.2)} is the graph depicted
in Figure 4, when removing the dashed arrow. This dashed
arrow is removed thanks to the (appropriate) marking.

Then trace equivalence is decidable for simple, type-
compliant protocols, as soon as their corresponding refined
dependency graph is acyclic.

Theorem 2: The problem of deciding whether two simple
protocols P and Q, type-compliant w.r.t. some structure-
preserving typing systems (TP , δP ) and (TQ, δQ), and with
acyclic refined dependency graphs obtained relying on ap-
propriate markings MP and MQ are trace equivalence
(i.e. P ≈ Q) is decidable.

Lemma 1 provides a simple criterion for marking a depen-
dency graph appropriately. We show in the next section that
this criterion suffices to cover most cases in practice. It is
however possible to devise some other sound criteria.

V. RESULTS

We review several protocols of the literature and identify
whether they fall in our decidable class. We first discuss which
corruption scenario is considered.

A. Scenario with corruption

The scenario we considered so far for the Denning-Sacco
protocol (as well as the Needham-Schroeder protocol) is
quite simple. We only consider sessions between two honest
agents a and b. Such a scenario is known to be too simplistic
and some attacks may be missed, such as the well-known
man-in-the-middle attack on the Needham-Schroeder public
key protocol [26].

We therefore consider a scenario where honest agents
are also willing to engage communications with a dishon-
est agent c. Let us develop this corruption scenario on the
Denning-Sacco protocol. Formally, we consider P i+DS obtained
from P iDS by adding P ′DS as well as P ′′DS in parallel. The
purpose of P ′DS is to consider that the agent a may be involved
in some other sessions with a corrupted agent c, and the server
S is ready to answer requests coming from them. Similarly
P ′′DS models the fact that the agent b may be involved in some
sessions where the role of A is played by the corrupted agent c.
Thus, we consider

P ′DS =! new c1.out(c
′
A, c1).P ′A | ! new c3.out(c′S , c3).P ′S

where P ′A and P ′S are as follows:

P ′A = α′1 : out(c1, 〈a, c〉).
α′2 : in(c1, enc(〈b, x′AB , x′B〉, kas)).
α′3 : out(c1, x

′
B)

P ′S = γ′1 : in(c3, 〈a, c〉). new k′ab.
γ′2 : out(c3, enc(〈c, k′ab, enc(〈k′ab, a〉, kcs)〉, kas))

We consider also:

P ′′DS =! new c2.out(c
′′
B , c2).P ′′B | ! new c3.out(c′′S , c3).P ′′S

where P ′′B and P ′′S are as follows:

P ′′B = β′′1 : in(c2, enc(〈y′′AB , c〉, kbs))

P ′′S = γ′′1 : in(c3, 〈c, b〉). new k′′ab.
γ′′2 : out(c3, enc(〈b, k′′ab, enc(〈k′′ab, c〉, kbs)〉, kcs))

The resulting protocols P 1+
DS and P 2+

DS are simple protocols.
They are also type-compliant w.r.t. (T +

DS, δ
+
DS) where T +

DS is
an enriched version of TDS with new atomic types: τc, τkcs,
τkab′ , and τkab′′ . In particular, we have type-compliance for a
notion of type that gives different types to kab, k′ab, and k′′ab.
The type τc is public.

The resulting dependency graph remains acyclic and is
depicted in Figure 5. Note that there is an arrow from β′′1
to γ′′2 for the following reason. We have that

(enc(〈τkab′′ , τc〉, τkbs), 1.2.2) ∈ ρout(u′′2δ+DS)

where u′′2 is the term occurring in the action labelled γ′′2 . Intu-
itively, this is because the output labelled γ′′2 is an encryption
with a compromised key kcs, and thus the attacker could anal-
yse this term and learn a term of type enc(〈τkab′′ , τc〉, τkbs).
A term of such a type could be used to fill the input β′′1 .
This possible dependency is represented by an arrow from β′′1
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Fig. 5. Dependency graph for P+
DS w.r.t. (T +

DS, δ
+
DS)

to γ′′2 . The label indicates the position at which such a term
is available in the output.

The resulting dependency graph is composed of three com-
ponents that are completely disconnected. This reflects the fact
that the protocol ensures that there is no interaction between
a session involving honest participants, and sessions that may
involve some dishonest participants. Also there is no confusion
between messages used at the different stages of the protocol.

For a complete corruption scenario, we then need to con-
sider the cases where the role A is played by the agent b and
the role B is played by the agent a. The resulting dependency
graph is obtained by symmetry from the one displayed in
Figure 5. It remains acyclic and is composed of six disjoint
components.

In the remaining of the section, we study several symmetric
key protocols of the literature and discuss whether they fall in
our decidable class. For all of them, we consider the complete
corruption scenario as described above on the Denning-Sacco
protocol.

B. Review of symmetric key protocols

Most of the protocols we considered from [23] actually fall
in our decidable class. We sometimes need them to include
some explicit tags. For some of them, we need to consider a
refined version of our typing graph, and we consider the one
obtained using our simple syntactic criterion to mark position
appropriately. Our findings are summarised in Figure 6. We
discuss below each protocol individually.

Dependency graph In our
Normal Refined class

Denning-Sacco X X yes
Needham-Schroeder X yes
Otway-Rees X yes
Yahalom (Paulson) X yes
Wide-Mouthed-Frog X X yes
Yahalom no
Kao-Chow (modified) X yes

Fig. 6. A X means that the corresponding dependency graph is acyclic.

Denning-Sacco: This protocol forms our running exam-
ple and its dependency graph is acyclic, without any tagging.

Needham-Schroeder: As discussed in Section IV-A, its
dependency graph is not acyclic but its refined dependency
graph is, even when considering the complete corruption
scenario. We do not need to add explicit tags. However,
contrary to what happens in the Denning-Sacco protocol, the
resulting dependency graph is more complex. It is composed
of six components connected with several arrows. This is due
to the fact that to get type-compliance we have to give the
same type to all the names that play the role of the key Kab

(resp. Nb) with no distinction between those involved in an
honest or a dishonest session.

Otway-Rees: The tagged version of the Otway-Rees
protocol can be informally described as follows.

A→ B : M,A,B, {1, Na,M,A,B}Kas

B → S : M,A,B, {1, Na,M,A,B}Kas
, {2, Nb,M,A,B}Kbs

S → B : M, {3, Na,Kab}Kas , {4, Nb,Kab}Kbs

B → A : M, {3, Na,Kab}Kas

Note that, considering a scenario with no corruption, its un-
tagged version can be shown to be simple and type-compliant
by typing kab with the same type as 〈m, a, b〉. However,
its dependency graph would be cyclic (a cycle will appear
between the two actions of the role S). We therefore consider
the tagged version of the Otway-Rees protocol. Its dependency
graph is still cyclic but becomes acyclic when marking several
positions. In particular, we have to mark

1) all the positions (in roles B and S) where M appears
in cleartext;

2) the positions (in roles A and B) at which the variables
modelling ciphertext forwarding occur; and

3) the positions in roles S (only those that involve the
dishonest agent c) that correspond to Na (in case c plays
the role A) and Nb (in case c plays the role B).

The fact that this marking strategy is appropriate is a direct
consequence of our syntactic criterion given in Lemma 1.

Similarly, the Wide-Mouthed-Frog and the Yahalom (Paul-
son version) protocols need to be explicitly tagged. Their
refined dependency graphs are acyclic. Actually the normal
dependency graph of the Wide-Mouthed-Frog protocol is
already acyclic.

Yahalom: Consider now the original Yahalom protocol.
Its tagged version can be informally described as follows.

1. A→ B : A,Na
2. B → S : B, {1, A,Na, Nb}Kbs

3. S → A : {2, B,Kab, Na, Nb}Kas
, {3, A,Kab}Kbs

4. A→ B : {3, A,Kab}Kbs
, {4, Nb}Kab

When considering only honest sessions, the corresponding de-
pendency graph is acyclic. However, cycles appear if sessions
with dishonest agents are considered. Intuitively, this is due to
the fact that the nonce Nb sent at the final step is encrypted
under the key Kab which secrecy cannot be statically guaran-
teed. Therefore, the nonce Nb could potentially be learnt at
step 4 and be reused earlier (at Step 2 for example). Note that
such a protocol would be declared leaky in [15].

10



Kao-Chow: Again, it is necessary to tag this protocol to
obtain type-compliance w.r.t. a relatively fine-grained typing
system, and to avoid some cycles in the dependency graph.

1. A→ S : A,B,Na
2. S → B : {1, A,B,Na,Kab}Kas

, {2, A,B,Na,Kab}Kbs

3. B → A : {1, A,B,Na,Kab}Kas
, {3, Na}Kab

, Nb
4. A→ B : {4, Nb}Kab

Even with explicit tags, the resulting dependency graph con-
tains a cycle due to the fact that, at the third step, B sends
the nonce Na under Kab, which security cannot be statically
asserted. However, Na is intuitively public. We therefore
slightly modify this protocol, assuming that S also sends Na in
clear at the second step, which suffices to obtained an acyclic
(refined) dependency graph using our syntactic criterion stated
in Lemma 1. This is a typical example where another marking
strategy could be applied to (soundly) obtain an acyclic graph.

C. Detailed comparison with [15]

Sibylle Fröschle has recently obtained [15] a decidability
result for an unbounded number of sessions, for the property
of “leakiness”. Our decidability result differs from Fröschle’s
result on several general points, in particular in terms of prim-
itives and properties that can be handled. Strictly speaking the
two results are incomparable since we study trace equivalence
while [15] analyses “leakiness”, a specially designed property
that implies secrecy. In this section, we highlight the main
similarities and differences of the two approaches.

Primitives. Fröschle’s result applies to all standard crypto-
graphic primitives (concatenation, symmetric and asymmetric
encryption, hash, and signatures) while we only consider
concatenation and symmetric encryption. This is due to the fact
that our decidability result builds upon [11] (to limit ourselves
to well-typed traces), which scope is limited to concatenation
and symmetric encryption.

Properties. We consider more general security properties
since we can decide any equivalence-based property (provided
the processes fall into our class), while [15] only applies to
the particular leakiness property. Leakiness enforces that a data
(a nonce or a key) is either immediately deducible or secret.
Note that leakiness is strictly stronger than secrecy. It disallows
protocols with temporary secrets but it also discards some very
reasonable protocols such as the Needham-Schroeder sym-
metric key protocol, due to parallel sessions between honest
and dishonest agents. Indeed, assume A initiates (honestly) a
session with C. Then the key Kac generated by the server is
not immediately deducible to the attacker since it is protected
by Kas but will be deducible as soon as A forwards it to
C under the key Kcs. The protocol will be declared leaky
although no one cares about the secrecy of Kcs.

Dependency graph. One important common point be-
tween [15] and our result is the notion of dependency graph
that should be acyclic. The graph defined in [15] reflects
sequential dependencies similarly to our dependency graph.
Regarding data dependencies, there is an edge between two

actions as soon as their corresponding terms can be instantiated
such that they share a common ciphertext as subterm. As a
consequence, acyclicity can only be satisfied in a typed model.
Therefore, [15] assumes that agents can recognise the type of
a data, e.g. do not confuse a nonce with a ciphertext or a pair
of nonces. Fröschle’s result cannot consider protocols with
ciphertext forwarding. In some cases where ciphertexts are
just appended to the rest of the message, [15] devises a simple
transformation. However, this transformation does not apply to
protocols including more involved ciphertext forwarding such
as the Denning-Sacco and the Needham-Schroeder protocols.

The graph considered in [15] is somewhat simpler (i.e. con-
tains less arrows). In particular, this graph does not consider
key dependencies (item 3 of Definition 9). This is due to the
leakiness property: there is no temporary secret thus a key is
either secret or public.

VI. SKETCH OF PROOF OF OUR DECIDABILITY RESULTS

We prove our decidability results (Theorems 1 and 2) in
three main steps. In both cases, we bound the length of
a witness of non-equivalence, and then conclude by invok-
ing a decidability result for a bounded number of sessions
(e.g. [11]).

Given two simple protocols P and Q, a witness of non-
inclusion for P 6v Q is a trace tr for which there exists φ
such that (tr, φ) ∈ trace(P ) and:
• either there does not exist ψ such that (tr, ψ) ∈ trace(Q),
• or such a ψ exists and φ 6∼ ψ.

A witness of non-equivalence is a trace tr that is a witness for
P 6v Q or Q 6v P .

Note that for a simple protocol, once the sequence tr is
fixed, all the frames reachable through tr are actually in static
equivalence, which ensures the unicity of ψ, if it exists, up-to
static equivalence.

The three main steps of our proof can be summarised as
follows:

1) We first rely on our type-compliance assumption. We
show that we can restrict our attention to witnesses that
are well-typed and we further show that each message
occurring in such a trace can be computed as soon
as possible (asap). Intuitively, recipes should refer to
messages that occur as early as possible.

2) Then, we show that all the dependencies occurring
in such a well-typed and asap trace comply with the
dependency graph. Hence, we bound the width as well
as the depth of such a witness exploiting the acyclicity
of our dependency graph.

3) Lastly, we explain how to bound the length of a minimal
witness.

A. Reducing equivalence

We first use a result from [11]. We recall it below in a
version that fits the setting used in the present paper.

Theorem 3 ([11]): Let P and Q be two simple protocols
type-compliant w.r.t. some structure-preserving typing systems
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(TP , δP ) and (TQ, δQ). We have that P 6≈ Q if, and only if,
there exists a witness of non-equivalence tr such that:
• either (tr, φ) ∈ trace(P ) for some φ and (tr, φ) is pseudo-

well-typed w.r.t. (TP , δP ).
• or (tr, ψ) ∈ trace(Q) for some ψ and (tr, ψ) is pseudo-

well-typed w.r.t. (TQ, δQ).

In the result stated above, (pseudo)-well-typed means that
every variable of type τ has to be instantiated with a term of
the same type. Since we consider atomic keys, some execution
may fail when a protocol is about to output an encryption
with a non atomic key. To detect this kind of behaviours, it is
important to consider slightly ill-typed traces, i.e. well-typed
traces where one special constant may be replaced by a special
composed term: 〈ω, ω〉. For these reasons, we consider pseudo-
well-typed traces.

Example 17: The traces (tr, φ), (tr′, φ′1), and (tr′, φ′2) given
in Example 3 and 5 are well-typed. Indeed, even if in tr′ the
attacker replays a message (the one stored in w3) coming from
an old session, the message has the expected type, namely
enc(〈τkab, τa〉, τkbs), and thus the resulting trace is well-typed.

To bound the length of a witness, it is important to avoid
some unnecessary detours, and this is the purpose of comput-
ing messages as soon as possible.

Definition 14: Given a frame φ = {w1 .m1, . . . ,wn .mn},
and a message m such that φ ` m. We say that R is an asap
recipe of m if:
• R is a recipe of m, i.e. Rφ↓ = m, and
• for any i ∈ {0, . . . , n} such that φi ` m, we have that

vars(R) ⊆ dom(φi)

where φi = {w1.m1, . . . ,wi.mi} and φ0 is the empty frame.
We say that a trace (tr, φ) of a protocol P is an asap trace

if for any input recipe R occurring in tr, we have that R is
an asap recipe of Rφ↓ w.r.t. φ.

Example 18: The trace (tr, φ) given in Example 3 is not an
asap trace. Indeed, in(ch3,w1) occurs in tr and w1φ↓ = 〈a, b〉.
Thus w1 is a recipe of 〈a, b〉. However, it is not an asap recipe
since 〈a, b〉 is deducible from the empty frame (remember
that a and b are public constants from Σ0). For the same
reason, (tr′, φ′1) and (tr′, φ′2) are not asap traces.

We are then able to show that, when looking for an attack,
i.e. a witness of non-equivalence, we can further restrict our
attention to consider pseudo-well-typed witnesses that are also
asap.

B. Exploiting the dependency graph

Given an asap and pseudo-well-typed execution trace (tr, φ)
of a simple protocol P , we can see it as a dag D (directed
acyclic graph) whose vertices are actions of tr, and edges
represent sequential dependencies and data dependencies. Note
that such a dag can be computed simply from tr since
sequential dependencies may be inferred from the channel
names occurring in tr, and data dependencies are inferred from
input recipes that occur in tr.

Our ultimate goal is to bound the length of tr, and thus the
number of vertices in D. We first show that we are able to
bound its depth and its width.

1) Bounding the depth of D: Intuitively, any sequential
and data dependency occurring in a well-typed and asap trace
is already present in the dependency graph. This is obvious
regarding sequential dependencies since all these dependencies
have been added in the dependency graph. However, regarding
data dependencies, this result strongly relies on the fact that
we consider well-typed and asap traces.

Proposition 1: Let P be a simple protocol type-compliant
w.r.t. some structure-preserving typing systems (TP , δP ). Let
(tr, φ) ∈ trace(P ) be an asap and pseudo-well-typed trace
w.r.t. (TP , δP ).

For any pair of actions in(d,R) / out(c,w) occurring in tr
with w ∈ vars(R), we have that α→+

G β where:
• α, β ∈ L(P ) are the labels associated to the actions

in(d,R) and out(c,w) respectively;
• →+

G is the transitive closure of the relation → in the
dependency graph G associated to P .

Note that, in the class of simple process, once the trace tr
is fixed, the label α ∈ L(P ) of an action occurring in tr is
uniquely defined.

This proposition is one of our key results. It requires to
control data dependencies and in particular data dependencies
that may occur due to keys: it may be necessary to decrypt
to obtain a new key that in turn will be used to learn another
key and so on. We show that our dependency graph actually
captures all dependencies. When refining the dependency
graph with appropriate marking, the main idea is that edges
that are removed correspond to dependencies that can not
happen in any asap trace.

Corollary 1: Let P be a simple protocol type-compliant
w.r.t. some structure-preserving typing systems (TP , δP ) and
with an acyclic (possibly refined) dependency graph G. Let
(tr, φ) ∈ trace(P ) be an asap and pseudo-well-typed trace
w.r.t. (TP , δP ), and D its corresponding execution graph. We
have that:

depth(D) ≤ depth(G) + 1.

2) Bounding the width of D: The width of D is the
maximal number of outgoing edges of any vertex of D.
Actually, any recipe involved in an asap and pseudo-well-
typed trace is of the form C[R1, . . . , Rn] where C contains
only constructors and each Ri contains only destructors. Since
messages stored in the frame are well-typed, we can not stack
more than ‖outP ‖ (maximal size of an outputted term in a
well-typed trace) destructors in such a recipe. Note that some
key chains may be needed to deduce a message, but the length
of such a chain is bounded by depth(G). Hence, we have
that each Ri involves no more than (1 + ‖outP ‖)depth(G)+1

recipe variables, and we have also that n ≤ ‖inP ‖ where ‖inP ‖
denotes the maximal size of any input term in a well-typed
trace. Thus, we have that:

width(D) ≤ 1 + (1 + ‖outP ‖)depth(G)+1 × ‖inP ‖.
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C. Bounding the length of a minimal witness

To conclude, we need to bound the length of a minimal
witness of non-equivalence. We have already seen that we can
consider a witness that is asap and pseudo-well-typed, and
we have bound the depth and the width of its associated dag.
Still, the length of such a trace may be arbitrary long. We now
show that we can bound the number of roots (vertices with no
ingoing edge) in a minimal witness of non-equivalence.

Lemma 2: Let P and Q be two simple protocols type-
compliant w.r.t. some structure-preserving typing systems
(TP , δP ) and (TQ, δQ), and such that P 6v Q. Let (tr, φ) be
a witness of non-inclusion which is asap, pseudo-well-typed
and with minimal length, and D be its corresponding execution
graph. We have that:

nbroot(D) ≤ 2× (1 + ‖outP ‖)depth(G)+1.

There are two main reasons of non inclusion.
• Either Q is not able to mimic the last action of the trace tr.

In that case, we prune D by selecting only the last action
of tr and its (successive) sons.

• Or the resulting frames are not in static equivalence. Con-
sider an equality test R1 = R2 that witnesses non static
equivalence. We show that R1 and R2 can be chosen to be
destructor-only, and we bound the number of recipe vari-
ables involved in R1 and R2 by (1 + ‖outP ‖)depth(G)+1.
Thus, in this case, we prune D by selecting the actions
producing these variables and their successive sons.

In conclusion, we have bound the (minimal) length of a
witness of non equivalence. This, in turn, bounds the number
of sessions. We then conclude using e.g. [11] since trace
equivalence is decidable for a bounded number of sessions.
Since trace equivalence is NP for a bounded number of
sessions [8], we deduce decidability in triple exponential time,
in the size of the protocols.

VII. CONCLUSION

We have obtained the first decidability result for trace equiv-
alence, for an unbounded number of sessions and unrestricted
nonces.

Generating a structure-preserving typing system (actually
the more fine-grained one) for which type-compliance is
satisfied, and checking acyclicity of the resulting dependency
graph is not difficult but rather cumbersome. We plan to devise
a script to perform these steps automatically. We also plan
to study how to relax some of our assumptions. First, we
think that the “simple protocols” assumption could be relaxed
to consider action-determinate protocols. Second, we plan to
investigate other criteria to soundly remove edges in the depen-
dency graph, in order to get rid of meaningless cycles. Lastly,
our result applies only to protocols with concatenation and
symmetric encryption. We inherit this restriction from [11].
We believe that once [11] will be extended to all standard
primitives then our decidability result will extend as well.

The current complexity of our result is too high to use
existing tools that decide trace equivalence for a bounded

number of sessions (they typically handle up to 2-3 sessions).
However, since our result bounds quite precisely the form of
a minimal attack, it seems possible to improve its complexity
and to use model-checkers instead.

Our decidability result intuitively encompasses decidability
of secrecy, expressed as a trace property, since secrecy can
be encoded using trace equivalence. We believe that our proof
technique could be applied to decide authentication properties
as well, for which we are not aware of any decidability result.
The main difficulty induced by authentication properties is that
authentication implicitly introduces disequalities (there might
be an attack because agent B received a message different from
the one sent by agent A). However, deciding trace equivalence
also requires a careful treatment of disequalities. As future
work, we plan to formally apply our technique to obtain
decidability of a fragment of trace properties that encompasses
secrecy and authentication.
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APPENDIX

Needham Schroeder protocol

We propose a modelling of the Needham Schroeder protocol
for the semi-complete scenario in our formalism. Here, agents
a and b are both willing to start sessions with a malicious
agent c. Below, kas, kbs, kcs, kab, k′ab, k

′′
ab, na, n′a, nb, n′′b ,

and k are names, whereas a, b, c, req, rep, m1 and m2 are
constants from Σ0. As in Example 5, we model the security of
the exchanged key by requiring that P 1+

NS ≈ P 2+
NS whereP 1+

NS

and P 2+
NS are defined as follows:

• P 1+
NS is as the protocol P+

NS (see below) but we add the
instruction “β4 : out(c2, enc(m1, yAB))” at the end of
PB ;

• P 2+
NS is as the protocol P+

NS but we add the instruction
“new k.β4 : out(c2, enc(m2, k))” at the end of PB .

P+
NS = ! new c1.out(cA, c1).PA | ! new c2.out(cB , c2).PB

| ! new c3.out(cS , c3).PS
| ! new c1.out(c

′
A, c1).P ′A | ! new c3.out(c

′
S , c3).P ′S

| ! new c2.out(c
′′
B , c2).P ′′B | ! new c3.out(c

′′
S , c3).P ′′S

where processes PA, P ′A, PB , P ′′B , PS , P ′S , P ′′S are as follows.

PA = new na.
α1 : out(c1, 〈a, b, na〉).
α2 : in(c1, enc(〈na, b, xAB , xB〉, kas)).
α3 : out(c1, xB).
α4 : in(c1, enc(〈req, xNB 〉, xAB)).
α5 : out(c1, enc(〈rep, xNB 〉, xAB))

P ′A = new n′a.
α′1 : out(c1, 〈a, c, n′a〉).
α′2 : in(c1, enc(〈n′a, c, x′AB , x′B〉, kas)).
α′3 : out(c1, x

′
B).

α′4 : in(c1, enc(〈req, x′NB 〉, x′AB)).
α′5 : out(c1, enc(〈rep, x′NB 〉, x′AB))

PB = β1 : in(c2, enc(〈yAB , a〉, kbs)).new nb.
β2 : out(c2, enc(〈req, nb〉, yAB)).
β3 : in(c2, enc(〈rep, nb〉, yAB))

P ′′B = β′′1 : in(c2, enc(〈y′′AB , c〉, kbs)).new n′′b .
β′′2 : out(c2, enc(〈req, n′′b 〉, y′′AB)).
β′′3 : in(c2, enc(〈rep, n′′b 〉, y′′AB))

PS = γ1 : in(c3, 〈a, b, zNA〉).new kab.
γ2 : out(c3, enc(〈zNA, b, kab, enc(〈kab, a〉, kbs)〉, kas))

P ′S = γ′1 : in(c3, 〈a, c, z′NA〉).new k′ab.
γ′2 : out(c3, enc(〈z′NA, c, k

′
ab, enc(〈k′ab, a〉, kcs)〉, kas))

P ′′S = γ′′1 : in(c3, 〈c, b, z′′NA〉).new k′′ab.
γ′′2 : out(c3, enc(〈z′′NA, b, k

′′
ab, enc(〈k′′ab, c〉, kbs)〉, kcs))

To ensure the protocol is type-compliant, we need to con-
sider a typing system (T +

NS, δ
+
NS) such that xNB , x′NB , nb and

n′′b share the same type, τnb; xAB , x′AB , yAB , y′′AB , kab,
k′ab, k

′′
ab, k have all type τkab; and both na and zNA (resp.

n′a and z′NA) have type τna. Which implies that δ+NS(xB) =
enc(〈τkab, τa〉, τkbs), δ+NS(x′B) = enc(〈τkab, τa〉, τkcs) and both
m1 and m2 must have type τm. Moreover, τkas and τkbs are
honest types whereas τa, τb, τc, τm, τreq, and τrep are public
types.

The dependency graph for P i+NS (for any i ∈ {1, 2}) w.r.t.
this scenario is then given in Figure 7, split into three graphs
displaying edges of type 1, 2 and 3 respectively. Applying
the syntactic criterion from Lemma 1 enables us to consider
(α5, 1.2) and (α′5, 1.2) as appropriate marked position in P 1+

NS

and P 2+
NS , which allows us to discard type 2 arrows from α4,

β3, α′4 and β′′3 towards α5 and α′5 with label 1.2.
Edges towards α′3 (resp. γ′′2 ) are all with label 1.1 (resp.

1.2.2.1) and exist because both labels correspond to outputs
of keys known to the agent c (encrypted by kcs). As all keys
generated by the server share the same type τkab, any use of
such a key create an edge towards those two nodes. Similarly,
as nonces created by b and outputted at labels β2 and β′′2
share the same type τnb and are encrypted by keys of (non-
honest) type τkab, inputs using such nonces all point towards
these nodes. Finally, arrows with label ε correspond to regular
executions of the protocol, albeit with some collision between
messages because of the previously detailed equal types.
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