
Deducibility constraints, equational theory and

electronic money ⋆

Sergiu Bursuc1, Hubert Comon-Lundh1, and Stéphanie Delaune1,2

1 Laboratoire Spécification & Vérification
ENS de Cachan & CNRS UMR 8643, France
{bursuc,comon,delaune}@lsv.ens-cachan.fr

2 LORIA, CNRS & INRIA project Cassis, Nancy, France

Abstract. The starting point of this work is a case study (from France
Télécom) of an electronic purse protocol. The goal was to prove that
the protocol is secure or that there is an attack. Modeling the protocol
requires algebraic properties of a fragment of arithmetic, typically con-
taining modular exponentiation. The usual equational theories described
in papers on security protocols are too weak: the protocol cannot even be
executed in these models. We consider here an equational theory which
is powerful enough for the protocol to be executed, and for which unifi-
cation is still decidable.
Our main result is the decidability of the so-called intruder deduction
problem, i.e. security in presence of a passive attacker, taking the alge-
braic properties into account. Our equational theory is a combination of
several equational theories over non-disjoint signatures.

1 Introduction

The formal verification of security protocols is now a well-established area of re-
search. One of the main challenges during the past years was to refine the models,
taking into account some algebraic properties of the cryptographic primitives.
Representing messages as terms in a free algebra, which is known as the perfect
cryptography assumption, allows to find some logical attacks, but fails to find
some of them, which rely on the algebraic properties. Even worse, for some pro-
tocols, the local program of an honest agent may itself rely on some algebraic
properties. In such a case, the protocol does not have any honest execution in
the perfect cryptography model.

More precise models of protocols are therefore needed. They assume that
messages are terms modulo an equational theory. A list of some relevant equa-
tional theories is proposed in [9] (see also [18] for a list of protocols and comments
on possible attacks).

Proving the security for a bounded number of sessions in such formal models
deserved a lot of articles, which we cannot all cite here. Let us mention [16], in
which the authors proved that the security problem is co-NP complete in the

⋆ This work has been partly supported by the RNTL project PROUVÉ and POSÉ.



perfect cryptography case. The extension to several equational theories has been
considered: exclusive-or [7, 2], Abelian groups [17], some properties of modular
exponentiation [3, 15], homomorphisms and exclusive-or [10],... All these works
rely on solving deducibility constraints modulo equational theories, an approach
that we will follow in the present paper.

On the other side, if we put too much of arithmetic in the equational theory,
getting a more precise model, the security problem becomes undecidable: a nec-
essary condition is the decidability of unification. A typical problem is: which
properties of modular exponentiation do we want to keep? As shown in [13], the
boundary between decidability and undecidability is tight.

We are interested here in yet other properties of modular exponentiation. In
a case study of an electronic purse protocol (whose some parts will be described
in Section 2) submitted by France Télécom, the protocol cannot be even exe-
cuted if we don’t have both the properties (xy)z = xy×z and xy × xz = xy+z,
as well as some other properties described later. However, having both multi-
plication and addition of exponents, together with the usual distributivity laws,
yields undecidability of unification by an easy encoding of integer arithmetic.
Nevertheless, we managed to design some equational theory for which unifica-
tion is decidable and the protocol can be executed. The theory will be described
in detail in Section 2. It is a union of three Abelian group theories and some
rules for exponentiation.

Our equational theory does not fall in any class for which the security prob-
lem is known to be decidable. In view of the number of symbols and rules, it is
worth trying to use combination results. Unfortunately, we cannot use directly
the results of [4], as our theories are not disjoint. Further (closer) results are those
of Y. Chevalier and M. Rusinowitch in [5], in which the authors give combina-
tion results for non-disjoint signatures, with applications to some security issues
in presence of modular exponentiation. However, again, we cannot apply these
results, as our theory can not be split into two equational theories satisfying the
hypotheses of [5].

We were left to develop a new decision procedure. An important step towards
this result is to decide the so-called intruder deduction problem: Given a finite
set of messages T and a given message m, is it possible for the intruder to
retrieve m from T by using his deduction capabilities? This corresponds to the
security decision problem in presence of a passive eavesdropper, i.e. an intruder
who is only able to listen messages that pass over the network. In particular
it is assumed that he can not intercept messages and send some fake messages
over the network. In this paper, we propose a decision procedure to decide this
problem in presence of an intruder having complex deduction capabilities which
are modeled through an equational theory. This is achieved by using a locality
lemma from which it follows that the intruder deduction problem can be decided
in polynomial time.



2 Intruder deduction problem

In this section, we describe our case study and the equational theory allowing us
to model the protocol. Then, we formally describe the problem we are interested
in. Our main result is stated in Theorem 1.

2.1 The electronic purse protocol

The protocol involves three possible agents: the electronic purse EP , a server S
and a trusted authority A. We will not consider here the authority A, who is
involved only in case of claims of either party (and we also simplify several parts
in the following). We denote by b and r two positive integers, which are public.
The public key of EP is bs mod r whereas s is its private key.

First, there is a phase during which the server authenticates itself. We skip
this phase here, which does not make use of algebraic properties. After this
phase, S and EP agree on a session nonce Ns and S owes the (certified) public
key bs mod r of EP . Then

1. The purse EP generates a nonce N , builds a message M (which is only used
in case of conflict and whose content is not relevant here) and sends to the
server S: hash(bNmod r, S, Ns, M, X), where X is the amount payed.

2. The server S challenges EP sending a nonce Nc.
3. The purse EP sends back N−s×Nc, M, X and subtract X from his account.
4. The server S checks that the message received at step 1 is consistent with the

message received at step 3 and then increases his account from the amount X.

The important and difficult part is the last step: S should be able to complete
this verification. Here are the operations performed by S at this stage:

hash((bs)Nc × bN−s×Ncmod r, S, Ns, M, X) = hash(bNmod r, S, Ns, M, X)

The server S raises b−s to the power Nc (bs is public and Nc is known), raises b
to the power N − s × Nc (which is the message sent at step 3), and multiply the
two results. We can see that the following equational properties are used:

exp(exp(b, y), z) = exp(b, y × z) exp(b, x) × exp(b, y) = exp(b, y + z)

as well as Abelian group properties of both × and +.

2.2 The equational theory

The problem now is that if we put together the above properties and the Abelian
group properties of + and ×, we can derive the distributivity of × w.r.t. +, in
which case unification (hence security) becomes undecidable (see e.g. [9]). That is
why we used a first trick: we introduce a unary function symbol h, whose meaning
is h(x) = exp(b, x). We also use two distinct multiplication symbols: • and ⋆, with
the following equational axioms EP: AG(+, J+, e+), AG(⋆, J⋆, e⋆), AG(•, J•, e•)



(where AG are the axioms of Abelian Groups, which will be discussed later) as
well as:

exp(h(x), y) = h(x ⋆ y) h(x) • h(y) = h(x + y)
exp(exp(x, y), z) = exp(x, y ⋆ z)

These equational axioms suffice for the verification at the last step of the
protocol. The distinction of the two multiplication symbols is not necessary
for the purpose of the present paper: everything holds if we equate • and ⋆.
However, we try here to meet the conditions of [5] for the combination results:
the distinction between the two multiplication symbols might be useful when
extending the results of this paper to the active intruder case.

It remains to show that unification is decidable modulo this theory. This is
the subject of Section 3.

2.3 Security problem

The most widely used deduction relation representing the deduction abilities of
an intruder is often referred to as the Dolev-Yao model [12]. However, we want
to give to the intruder the power to use equational reasoning modulo the set EP
of equational axioms. The resulting set of deduction rules, denoted by IEP is
given in Figure 1 where F = {+, J+, ⋆, J⋆, •, J•, exp, h}. This is the now classical
approach, using explicit destructors. When f is associative and commutative, the
number of premises of such a rule is unbounded; the set of intruder deduction
rules is recursive (but might be infinite).

T ⊢ u1 . . . T ⊢ un

where f ∈ F
T ⊢ f(u1, . . . , un)

(Eq)
T ⊢ u

u =EP v
T ⊢ v

Fig. 1. Inference system — IEP

Assume given an intruder theory. The problem whether an intruder can gain
certain information s from a set of knowledge T , i.e. whether there is a proof
of T ⊢ s, is called the intruder deduction problem.

INPUT: a finite set of terms T , a term s (the secret).
OUTPUT: Does there exist a proof of T ⊢ s?

Theorem 1. The intruder deduction problem is decidable in polynomial time
for the inference system IEP.

To prove this result, we will first introduce a new inference system that is
equivalent from the point of view of deduction. Indeed, the proof system given in
Figure 1 is not appropriate for automated proof search: the rule (Eq) allows equa-
tional reasoning at any moment of a proof. To define a more effective model, we



represent the equational theory by an AC-convergent rewrite system. The rewrit-
ing system together with some of its properties are given in Section 3. Moreover,
in order to make easier some reasoning we will split the rule about exp into three
different inference rules. This new inference system will be fully described at the
beginning of Section 4.

3 Properties of the equational theory

In this section we study the equational theory we have introduced in Section 2.2.
We show that this theory can be represented by an AC-convergent rewriting
system and we establish that unification modulo EP is decidable. Lastly, we prove
some technical lemmas which will be useful to establish our locality result stated
in Proposition 2. We rely on classical results on rewriting modulo equations (in
particular modulo AC). See [11] for the definitions and notations.

3.1 Rewriting system associated to the equational theory EP

For simplicity, our alphabet will contain a finite number of free constant symbols
and the associative-commutative symbols {⋆, •, +}, the binary symbol exp, the
unary symbols h, J⋆, J+, J• and the 3 neutral elements. We could also add other
symbols, such as encryption, hashing,... and use then combination results of [1]
allowing us to conclude in the case of disjoint theories.

The equational theory EP can actually be presented by a finite convergent
rewrite system R (modulo associativity and commutativity (AC) of +, ⋆ and •),
which has actually even stronger properties. First, for each ◦ ∈ {+, ⋆, •} RAG(◦)

is the rewrite system modulo AC for ◦:

x ◦ e◦ → x x ◦ J◦(x) → e◦
J◦(x) ◦ J◦(y) → J◦(x ◦ y) J◦(e◦) → e◦

J◦(J◦(x)) → x J◦(x) ◦ x ◦ y → y
J◦(x) ◦ J◦(y) ◦ z → J◦(x ◦ y) ◦ z J◦(x ◦ y) ◦ x → J◦(y)
J◦(x ◦ y) ◦ x ◦ z → J◦(y) ◦ z J◦(J◦(x) ◦ y) → x ◦ J◦(y)

where e◦ is the appropriate neutral element. The unusual orientation of rules for
inverses will ensure strong properties of the rewrite system, as explained in [6].
In addition, we have the following rewrite rules:

R0 =















exp(h(x), y) → h(x ⋆ y) J•(h(x)) → h(J+(x))
exp(exp(x, y), z) → exp(x, y ⋆ z) h(e+) → e•

h(x) • h(y) → h(x + y) J•(h(x) • y) → h(J+(x)) • J•(y)
h(x) • h(y) • z → h(x + y) • z exp(e•, x) → h(e+ ⋆ x)

The rewriting system R = RAG(⋆)∪RAG(•)∪RAG(+)∪R0 consists of the 38 rewrite
rules and the following result has been mechanically verified using CiME [8].

Lemma 1. R is convergent modulo associativity and commutativity.



The normal form (modulo AC) of t is written t↓. Furthermore, not only R is
convergent, but also:

Lemma 2. (R, AC) is a decomposition of the equational theory EP which has
the finite variant property.

This property has been introduced in [6] and ensures that, for any term (or
finite set of terms) t, there is a finite computable set of substitutions θ1, . . . , θn

such that, for any substitution σ, there exists an index i and a substitution σ′

such that tσ↓ = tθi↓σ
′. In other words, all possible reductions in an instance

of t can be computed in advance. The lemma can be proved using a sufficient
condition introduced in [6] and called boundedness. The interest of this property
is twofold. First, due to the fact that unification is decidable for the theory AC,
it ensures that unification is also decidable for EP. Secondly, such a property
will be certainly useful to lift our result to solve intruder deduction constraints
with variables in order to decide the security problem in presence of an active
attacker.

3.2 Notion of subterm

We assume the reader familiar with the basic vocabulary and results on term
rewriting systems and term rewriting systems modulo AC. As usual, AC symbols
are also considered as variadic symbols and may be used in infix notation and
terms are flattened. For ◦ ∈ {⋆, +, •}, we define inv◦(u) as the term J◦(u)↓. For
instance, we have that inv•(h(J+(a))) = J•(h(J+(a)))↓ = J•(h(J+(a)))↓ = h(a).

Definition 1. We denote by top(t) the root symbol of the term t. top(u) is
defined by top(J◦(v ◦ w)) = ◦, top(h(w + v)) = •, top(h(J+(u + v))) = • and
top(u) = top(u) otherwise.

For instance, we have that top(h(a+b)) = •, top(h(a)) = h, top(J+(a+b)) = +
and top(J+(a)) = J+.

Definition 2. Let ◦ ∈ {⋆, +, •}, the set DS◦(u) is defined by

– DS◦(u ◦ v) = DS◦(u) ∪ DS◦(v),
– DS◦(J◦(u)) = {J◦(v) | v ∈ DS◦(u)},
– DS•(h(u)) = {h(v) | v ∈ DS+(u)}, and
– DS◦(u) = {u} if top(u) 6= ◦.

In particular, note that DS•(h(J+(a + b))) = {h(J+(a)), h(J+(b))}.

Definition 3 (subterms). Let t be a term in normal form, Sub(t) is the small-
est set of terms such that t ∈ Sub(t) and if u ∈ Sub(t) then

– either ◦ = top(u) ∈ {⋆, •, +} and DS◦(u) ⊆ Sub(t)
– or else u = f(u1, . . . , un) and u1, . . . , un ∈ Sub(t).

This notion is extended as expected to set of terms.

Example 1. Let t1 = J+(a + b), t2 = h(J+(b)), t3 = J⋆(J+(b)) ⋆ c and t4 =
h(c). We have that Sub(t1) = {t1, J+(a), J+(b), a, b}, Sub(t2) = {t2, J+(b), b},
Sub(t3) = {t3, J⋆(J+(b)), J+(b), b, c}, and Sub(t4) = {t4, c}.



3.3 Technical lemmas on rewriting

The lemmas stated and proved below are used in the proof of Proposition 2.

Lemma 3. Let t, t1, . . . , tn be terms in normal form, n ≥ 1, ◦ ∈ {⋆, •, +},
top(t) /∈ {◦, e◦}. Assume that top((t◦t1◦. . .◦tn)↓) 6= ◦ and (t1 ◦ . . . ◦ tn)↓ 6= e◦.
Then, there is an index i such that inv◦(t) ∈ DS◦(ti).

Proof. The rewrite system R is convergent. So we can choose a strategy for
reducing t ◦ t1 ◦ . . . ◦ tn to its normal form. Given a term u, we order possible
redexes lσ → rσ in u increasing order of priority as follows:

1. l = J◦(x) ◦ J◦(y) ◦ z and J◦(x)σ = t (or J◦(y)σ = t, the t in the lemma’s
statement)

2. l = h(x) • h(y) • z and h(x)σ = t (or h(y)σ = t)
3. l = h(x) • h(y) • z, and h(x)σ 6= t, h(y)σ 6= t
4. all other cases

We contract always a redex with a maximal priority. This means that the first
two cases are applied, only when other rules instances are not a redex in u.

Then we prove the result on the length of such a reduction sequence of
t ◦ t1 ◦ . . . ◦ tn to its normal form.

The case where the reduction length is 0 does not occur. Now, we investigate
the possible rules, which are applied for the first reduction step. There are 7
cases when ◦ 6= • and two additional cases when ◦ = •:

Case 1 : The rule is x ◦ e◦ → x. Since t, t1, . . . , tn are in normal form, we must
have ti = e◦ for some i. We simply apply the induction hypothesis. Note
that, because (t1 ◦ . . . ◦ tn)↓ 6= e◦, n must be at least 2.

Case 2 : The rule is x ◦ J◦(x) → e◦: t ◦ t1 ◦ . . . ◦ tn = xσ ◦ J◦(xσ). Either
t = J◦(xσ) and, since top(t) 6= ◦, we must have n = 1 and t1 = inv◦(t) or
else there is an index i such that ti = J◦(xσ) or ti = J◦(xσ) ◦ t′i. In the first
case, xσ = t ◦ u and then ti = J◦(t ◦ u). In the second case either xσ = t ◦ u
and ti = J◦(t ◦ u) ◦ t′i or t′i = t ◦ u and ti = t ◦ u ◦ J◦(xσ).

Case 3 : The rule is J◦(x) ◦ x ◦ y → y. Then, as in case 2, t = J◦(xσ) and, for
some i, ti = inv◦(t) ◦ u or else there is an index i such that ti = J◦(xσ) ◦ t′i.
In that case, either ti = t ◦ u or yσ = t ◦ t′1 ◦ . . . ◦ t′k and, for each k, t′k is in
normal form and there is an injection π from {1, . . . , k} in {1, . . . , n} such
that, for every j, tπ(j) = t′j ◦uj . Moreover, (t′1◦. . .◦t′k)↓ = (t1◦. . .◦tn)↓ 6= e◦.
Then, we can apply the induction hypothesis: there is an index j such that
t′j = inv◦(t) or t′j = inv◦(t) ◦ u or t′j = J0(t ◦ u) ◦ v or t′j = J0(t ◦ u). In each
case, choosing i = π(j), we get the desired properties.

Case 4 : The rule is J◦(x) ◦ J◦(y) ◦ z → J◦(x ◦ y) ◦ z. If t = J◦(x)σ, then, by
hypothesis on the strategy, J◦(yσ) ◦ zσ is in normal form and, moreover, zσ
cannot be written t◦u (otherwise another rule applies). Then J◦(x◦y)σ ◦zσ
is in normal form, which contradicts top((t ◦ t1 ◦ . . . ◦ tn)↓) 6= ◦: this case
cannot occur.



Now, J◦(x ◦ y)σ is in normal form and zσ = t ◦ t′1 ◦ . . . ◦ t′k where the
terms t′1, . . . t

′

k are in normal form and (J◦(x ◦ y)σ ◦ t′1, . . . ◦ t′k)↓ 6= e◦. We
can apply the induction hypothesis: inv◦(t) ∈ DS◦(t

′

j) for some j or else
inv◦(t) ∈ DS◦(J◦(x ◦ y)σ). In the first case, as in case 3, there is some index
i = π(j) such that ti = t′j ◦ u, hence ti = inv◦(t) ◦ v ◦ u. In the second case,
there are indices i1, i2 such that ti1 = J◦(xσ)◦u and ti2 = J◦(yσ)◦v (u and v
might be empty here). Hence there is a variable (say x) such that t = J◦(t

′)
and xσ = t′ ◦ u. Then t ∈ DS◦(ti1).

Case 5 : The rule is J◦(x) ◦J◦(y) → J◦(x ◦ y). This case cannot occur since the
resulting term would be in normal form (remember J◦(xσ) and J◦(yσ) are
assumed both in normal form) and we would not have top((t◦t1◦. . .◦tn)↓) =
◦.

Case 6 : The rule is J◦(x ◦ y) ◦ x → J◦(y). In this case, t cannot be J◦(x ◦ y)σ
since top(t) 6= ◦. Hence xσ = t ◦ u and there is an index i such that
ti = J◦(x ◦ y)σ ◦ v (with possibly empty u or v). Then t ∈ DS◦(ti).

Case 7 : The rule is J◦(x◦y)◦x◦ z → J◦(y)◦ z. As in case 6, J◦(x◦y)σ cannot
be t itself: either xσ = t ◦ u or else zσ = t ◦ u for some (possibly empty) u.
Moreover, there is an index i such that ti = J◦(x ◦ y)σ ◦ w (with possibly
empty w).

In the first case, t ∈ DS◦(ti) and, in the second case, we apply the induction
hypothesis: if zσ = t′1 ◦ . . . ◦ t′k, either there is some index j such that
inv◦(t) ∈ DS◦(t

′

j), in which case, as before, there is some index k such that
inv◦(t) ∈ DS◦(tk) or else inv◦(t) ∈ DS◦(J◦(yσ)). Then t ∈ DS◦(ti).

Case 8 : the rule is h(x)•h(y) → h(x+y): let h(x)σ = t = h(u1), h(y)σ = h(u2)
and top(u1) 6= +. According to the strategy, h(y)σ is in normal form.Since
h(e+) → e• and h(u1 + u2)↓ 6= e•, h(u1 + u2)↓ = h((u1 + u2)↓) and we can
apply the induction hypothesis to u1+u2 (with ◦ = +): inv+(u1) ∈ DS+(u2),
which implies h(inv+(u1)) ∈ DS•(h(u2)). But inv•(h(u1)) = h(inv+(u1)) by
definition. Hence inv•(t) ∈ DS•(h(u2)), which is the desired result.

Case 9 : the rule is h(x) • h(y) • z → h(x + y) • z. If we had h(x)σ = t (resp.
h(y)σ = t), by hypothesis on the strategy, we would have h(y)σ•zσ in normal
form. In particular, zσ cannot be written h(v) •w or h(v) or J•(h(v)) •w or
J•(h(v)). This implies that (t ◦ . . . ◦ tn)↓ = h(xσ + yσ)↓ • zσ, contradicting
top((t ◦ t1 ◦ . . . ◦ tn)↓) 6= ◦.

It follows that zσ = t • t′1 • . . . • t′k (and each t′i is some tj). Moreover,
each t′i and t itself must be headed with h (by the assumed strategy and
since the normal form is not headed with •). Let ti = h(ui) and t = h(u0).
(t • t1 . . . • tn)↓ = h(v) and (u0 + . . . + un)↓ = v. Now, (u1 + . . . + un)↓ 6= e+

and top((u0 + . . . + un)↓) 6= +. Hence, by induction hypothesis, inv+(u0) ∈
DS+(ui) for some i. It follows that inv•(t) ∈ DS•(ti). �

Lemma 4. Let ◦ ∈ {⋆, •, +}, t1, . . . , tn, u1, . . . , um be terms in normal form
such that for every i, top(ti) = ◦ and top(ui) /∈ {◦, e◦}. Let t = (t1 ◦ . . . ◦ tn ◦
u1 ◦ . . . ◦ um)↓. Then for every i, either ui ∈ DS◦(t) or there is an index j such
that inv◦(ui) ∈ DS◦(tj), or else there is an index j such that uj = inv◦(ui).



Proof. We use the lemma 3, with ui in place of t and adding a term tn+1 =
inv◦(t): we conclude that, for every i, either inv◦(ui) ∈ DS◦(tn+1) or inv◦(ui) ∈
DS◦(uj) or inv◦(ui) ∈ DS◦(tj). In the first case, ui ∈ DSt(), in the second case
inv◦(ui) = uj . �

4 Locality

We first introduce a new inference system equivalent to IEP and then we will
show that this inference system is local w.r.t. to a notion of subterms F .

Definition 4 (F -local). An inference system I is F -local if for any proof of
T ⊢ u in I there exists one such that all intermediate formulas are in F (T∪{u}).

4.1 A local inference system

We introduce a new inference system which can be viewed as the union of two
parts denoted respectively by I1 and I2. From now on we omit the rule (Eq) and
consider a variant of the deduction model which works on normal forms. This
means that, after each step, the term obtained is reduced to its normal form. The
part I1 is made up of the following 7 rules where F− = {+, J+, ⋆, J⋆, •, J•, h}.

I1 =

{

(Rf )
T ⊢ u1 . . . T ⊢ un

where f ∈ F−

T ⊢ f(u1, . . . , un)↓

We also distinguish the rules obtained by exponentiation, depending on the
first premise of the inference rule: either applying exponentiation to u, v yields
a term exp(u, v) in normal form or else u = exp(t1, t2) or else u = h(t1). We
distinguish these three cases splitting the single inference rule into three different
inference rules, which will be more convenient for further proofs. We let I2 be
the inference system made up of the three following rules:

I2 =

{

h(t1) t2 · · · tn
Exp1

h(t1 ⋆ · · · ⋆ tn)↓

exp(t1, t2) t3 · · · tn
Exp2

exp(t1, t2 ⋆ · · · ⋆ tn)↓

t u
Exp3

exp(t, u)

Equivalence modulo AC is easy to decide, so we omit the equality rule for AC
and just work with equivalence classes modulo AC. We have the following result.

Proposition 1. Let T be a set of terms and u a term (in normal form). We
have that T ⊢ u is derivable in IEP if and only if T ⊢ u is derivable in I1 ∪ I2.

Definition 5 (decomposition rule). The application of a rule in I2 is a de-
composition if it is an instance of Exp1 and the resulting term is of the form h(u)
with top(u) 6= ⋆. A decomposition rule for I1 is a rule Rf , such that one of the
following occurs:

– f ∈ {⋆, •, +} and the conclusion t = (f(t1, . . . , tn))↓ is such that top(t) 6= f
– f = J◦ and the rule is applied to a term of the form J◦(t)

Rules, which are not decomposition rules are compositions.



4.2 Locality result

We show that our case study satisfies the locality properties. First we need to
define a suitable function F . We consider the following one:

F (T ) = Sub(T )
∪ {h(t) | t ∈ Sub(T ),top(t) = +}
∪ {h(inv+(t) | t ∈ Sub(t),top(t) = +}
∪ {inv◦(t) | t ∈ Sub(T ),top(t) = ◦, ◦ ∈ {⋆, +}}
∪ {h(t) | ∃u ∈ Sub(T ) such that top(u) = ◦, t ∈ DS◦(u), ◦ ∈ {⋆, +}}
∪ {inv◦(t) | ∃u ∈ Sub(T ) such that top(u) = ◦, t ∈ DS◦(u), ◦ ∈ {⋆, +, •}}
∪ {h(inv◦(t)) | ∃u ∈ Sub(T ) such that top(u) = ◦, t ∈ DS◦(u), ◦ ∈ {⋆, +}}

Lemma 5. The size of F (T ) (number of distinct subterms) is linear in the size
of T .

Proof. More precisely, the size of F (T ) is bounded by 10 times the size of T . For,
it suffices to note that, all terms in F (T ) are always in Sub(T ) ∪ h(Sub(T )) ∪
inv◦(Sub(T )) ∪ h(inv◦(Sub(T ))) for some ◦.

The remainder of the paper is devoted to the proof of the following result.

Proposition 2. The inference system I1 ∪ I2 is F -local.

Example 2. Here are some examples of proofs, which satisfy the requirements of
the proposition:

h(a + b + c)

a
RJ+

J+(a)
Rh

h(J+(a))
R•

h(b + c)

a + b + c
Rh

h(a + b + c) h(J+(a))
R•

h(b + c)

h(b)

a ⋆ b
RJ⋆

J⋆(a ⋆ b)
Exp1

h(J⋆(a))

a + b
RJ+

J+(a + b)
Rh

h(J+(a + b)) h(a)
R•

h(J+(b))

An an example of proof rewriting:

a + b c
R+

a + b + c
Rh

h(a + b + c) h(J+(a))
R•

h(b + c)

=⇒

a + b
Rh

h(a + b) h(J+(a))

c
Rh

h(c)
R•

h(b + c)



To prove this result, we consider normal proofs of t which are minimal in
size. Then we prove the result by induction on the number of layers. Then it
is a series of case study, mainly relying on Lemmas 3, 4, and technical lemmas
carefully investigating the cases in which there is a decomposition. We normalize
the proofs according to the rules given in Figure 2. These rules are (strongly)
terminating (but not confluent). This is our notion of cut elimination.

Before we switch to the proof of this proposition in the next subsections, let
us note that theorem 1 is a consequence of the proposition and the following
lemma:

Lemma 6 (one-step deducibility). Given a finite set of terms T , a term t
and a function symbol f , it can be decided in polynomial time whether there are
terms t1, . . . , tn ∈ T such that f(t1, . . . , tn)↓ = t.

The proof of this lemma relies on standard techniques: if f is not an associative-
commutative symbol, then n is fixed and a simple enumeration gives a polyno-
mial algorithm. Otherwise, in all cases, except when f = •, only the Abelian
group properties of a single symbol have to be considered and the problem
amounts to solve a system of linear equations over Z, as already noticed by sev-
eral authors. When f = •, we have that t = h(t′) • t′′ for some terms t′ and t′′.
Let, for u ∈ T , f1(u), f2(u) be such that u = h(f1(u))•f2(u),f1(u) and f2(u) be-
ing possibly empty. The one-step deducibility problem reduces to a system of two
systems of linear equations over Z:

∑

u∈T zuf1(u) = t′ and
∏

u∈T f2(u)zu = t′′.

Now, the algorithm works as follows. Given T and t, we compute F (T ) ∪
F (t) (linear time) and then use a fixed point algorithm for the computation of
deducible terms in F (T )∪F (t). Initially, the set D of deducible terms is set to T .
Then until a fixed point is reached, add to D the terms in F (T )∪ F (t) that are
deducible in one step from terms in D.

This is a polynomial algorithm as one-step deducibility can be checked in
polynomial time according to Lemma 6

4.3 Preliminary lemmas

Lemma 7. If t is obtained by decomposition using Rf ∈ I1, one of the following
holds:

– t ∈ {e+, e⋆, e•}
– The premise is f(t) (f ∈ {J+, J⋆, J•})
– f ∈ {⋆, +, •} and there is a premise u such that t ∈ DSf (u).

Proof. The rule Rf can be a decomposition only when f ∈ {J◦, ◦} and ◦ ∈
{⋆, +, •}. If f = J◦, we are in the second case of the conclusion of the lemma.
Only remains to consider f ∈ {⋆, +, •}. Let then t1, . . . , tn be the premises of
the rule and t be the conclusion. Either t = ef (then we fall into the first case of
the conclusion) or else (f(invf (t), t1, . . . , tn))↓ = e◦ and we can apply Lemma 3:
invf (invf (t)) ∈ DSf (ti) for some i, which is the desired result. �



h(t1) t2 . . . tn

Exp1

h(t1 ⋆ . . . ⋆ tn)↓ u2 . . . um

Exp1

h(t1 ⋆ t2 . . . ⋆ tn ⋆ u2 . . . ⋆ um)↓

⇒
h(t1) t2 . . . tn u2 . . . um

Exp1

h(t1 ⋆ t2 . . . ⋆ tn ⋆ u2 . . . ⋆ um)↓

exp(t1, t2) t3 . . . tn

Exp2

exp(t1, t2 ⋆ . . . ⋆ tn)↓ u3 . . . um

Exp2

exp(t1, t2 ⋆ . . . tn ⋆ u3 ⋆ . . . ⋆ um)↓

⇒
exp(t1, t2) t3 . . . tn u3 . . . um

Exp2

exp(t1, t2 ⋆ . . . tn ⋆ u3 ⋆ . . . ⋆ um)↓

h(t1) t2 . . .

u1 . . . um

R⋆

(u1 ⋆ . . . ⋆ um)↓ . . . tn

Exp1

h(t1 ⋆ t2 . . . u1 ⋆ . . . um ⋆ . . . ⋆ tn)↓

⇒
h(t1) t2 . . . u1 . . . um . . . tn

Exp1

h(t1 ⋆ t2 . . . u1 ⋆ . . . um ⋆ . . . ⋆ tn)↓

exp(t1, t2) . . .

u1 . . . um

R⋆

(u1 ⋆ . . . ⋆ um)↓ . . . tn

Exp2

exp(t1, t2 ⋆ . . . ⋆ u1 ⋆ . . . ⋆ um ⋆ . . . ⋆ tn)↓

⇒
exp(t1, t2) . . . u1 . . . um . . . tn

Exp2

exp(t1, t2 ⋆ . . . ⋆ u1 ⋆ . . . ⋆ um ⋆ . . . ⋆ tn)↓

t1 t2
Exp3

exp(t1, t2) t3 . . . tn

Exp2

exp(t1, t2 ⋆ . . . ⋆ tn)↓

⇒ t1

t2 . . . tn

R⋆

(t2 ⋆ . . . ⋆ tn)↓
Exp3

exp(t1, t2 ⋆ . . . ⋆ tn)↓

t1 . . .

u1 . . . um

R◦

(u1 ◦ . . . ◦ um)↓ . . . tn

R◦

(t1 ◦ . . . ◦ u1 ◦ . . . ◦ um ◦ . . . ◦ tn)↓

⇒
t1 . . . u1 . . . um . . . un

R◦

(t1 ◦ . . . ◦ u1 ◦ . . . ◦ um ◦ . . . ◦ tn)↓

u1 . . . um

R+

(u1 + . . . + um)↓
Rh

h((u1 + . . . + um)↓)

⇒

u1

Rh

h(u1) . . .

um

Rh

h(um)
R•

(h(u1 + . . . + um))↓

u1 . . . um

R◦

(u1 ◦ . . . ◦ um)↓
RJ◦

J◦(u1 ◦ . . . ◦ um)↓

⇒

u1

RJ◦

J◦(u1)↓ . . .

um

RJ◦

J◦(um)↓
R◦

J◦(u1 ◦ . . . ◦ um)↓

u
Rh

h(u) v1 · · · vn

Exp1

h(u ⋆ v1 ⋆ . . . ⋆ vn)↓

⇒

u v1 · · · vn

R⋆

(u ⋆ v1 ⋆ . . . ⋆ vn)↓
Rh

h(u ⋆ v1 ⋆ . . . ⋆ vn)↓

Fig. 2. Proof normalization rules



Lemma 8. If t is obtained by a decomposition rule of I2, then the premises can
be written h(t1), t2, . . . , tn, t = h(u) and there an index i such that ti = e⋆ or
u ∈ DS⋆(ti).

Proof. By definition, only Exp1 can be a decomposition: the premises are h(t1),
t2, . . . , tn and the conclusion is h(u) with u = t1 ⋆ . . . ⋆ tn↓. Now, if top(u) 6= ⋆,
by definition, the rule R⋆ with premises t1, . . . , tn and conclusion u is a decom-
position. By Lemma 7, u = e⋆ or there is an index i such that u ∈ DS⋆(ti). �

Lemma 9. For any set of terms in normal form, F (F (T )) = F (T ).

Proof. F (T ) ⊆ F (F (T )) by definition. For the converse inclusion, first terms in
Sub(F (T )) which are not in Sub(T ) are always in F (T ). Now, we investigate
each other case:

– If t = h(u) with u ∈ Sub(F (T )) and top(u) = +. Then it follows that
u ∈ Sub(T ) or u = inv+(v) with v ∈ Sub(T ), hence t ∈ F (T )

– If t = h(inv+(u)) with u ∈ Sub(F (T )) and top(u) = +, it is the same as
above.

– If t = inv◦(u) with u ∈ Sub(F (T )) and top(u) = ◦ ∈ {⋆, +}, then either
u ∈ Sub(T ) or inv◦(u) ∈ Sub(T ). In both cases t = inv◦(u) ∈ F (T ).

– If t = h(u) with u ∈ DS◦(v), top(u) = ◦ and v ∈ Sub(F (T )) and ◦ ∈ {⋆, +}
then either v or inv◦(v) is in Sub(T ). In the first case we get t ∈ F (T ). In
the latter case inv◦(u) ∈ DS◦(inv◦(v)), hence t = h(inv◦(inv◦(u))) ∈ F (T ).

– If t = inv◦(u), v ∈ Sub(F (T )), top(v) = ◦ ∈ {⋆, +, •} and u ∈ DS◦(v), again
either v ∈ Sub(T ) or inv◦(v) ∈ Sub(T ). In the first case we conclude directly
t ∈ F (T ). In the latter case, inv◦(u) ∈ DS◦(inv◦(v)), hence t ∈ Sub(T )

– The last case is similar to previous ones. �

4.4 Proof of our locality result

We are now able to prove our locality result.

Proposition 2. The inference system I1 ∪ I2 is F -local.

Proof. We consider a minimal (in terms of size) normal proof of t from the set
of hypotheses H. We prove by induction on the proof size that, if the last rule
is a composition, then all terms in the proof belong to F (H) ∪ F (t) and, if the
last rule is a decomposition, then all terms in the proof belong to F (H). In the
base case, the proof consists of an axiom only and the result follows. Otherwise,
we distinguish cases depending on the last rule used in the proof.

The last rule is Rh. If top(t) 6= •, then we simply have to apply the induction
hypothesis: t = h(u) and all terms in the proof of u are in F (H) ∪ F (u),
hence in F (H) ∪ F (t).
Now, if t = h(u), then, by proof normalization, u cannot be obtained by
R+. It follows that it must be obtained by decomposition (or possibly RJ+

).
In any case, u ∈ F (H) by induction hypothesis and, since top(u) = +,
u ∈ Sub(H) ∪ J+(Sub(H)). It follows that t, u ∈ F (H).



If the last rule is a composition R◦ with ◦ ∈ {+, ⋆, •}.

Π1
Rf1

u1 . . .

Πn
Rfn

un
R◦

t

Consider the set S of indices i such that top(ui) = ◦ (we may rule out the
cases where ui = e◦, which correspond to non-minimal proofs). By lemma
4, for every i /∈ S, either ui ∈ DS◦(t) or there is an index j such that
inv◦(ui) ∈ DS◦(uj). In the first case ui ∈ Sub(t). In the second case, we claim
that if ◦ ∈ {⋆, +}, then uj must be obtained by decomposition: fj /∈ {◦, J◦}
by proof normalization and therefore top(uj) = ◦ implies it is obtained by
decomposition (this does not hold when ◦ = •). In case ◦ = •, either uj is
obtained by decomposition, or uj = h(vj) is obtained by Rh and, by proof
normalization and since top(uj) = •, vj must be obtained by decomposition
and top(vj) = +.
By induction hypothesis, uj ∈ F (H) or uj = h(vj) and vj ∈ F (H), top(vj) =
+, in which case, again uj ∈ F (H). And inv◦(ui) ∈ Sub(uj), hence ui ∈
F (H).
To sum up: for every i, either top(ui) 6= ◦ and ui ∈ Sub(t) ∪ F (H) or else
top(ui) = ◦ and ui ∈ F (H). By the induction hypothesis, for every i, all
terms in the proof of ui belong to F (H) or to F (ui). Hence, by lemma 9, all
terms in the proof of t belong to F (t) ∪ F (H).

The last rule is RJ◦
. Let t = J◦(u)↓. By proof normalization, u is not ob-

tained by R◦ and by minimality, it cannot be obtained by RJ◦
. Then, if

top(u) ∈ {◦, J◦}, u must be obtained by decomposition or (Rh and ◦ = •).
In both cases u ∈ F (H) (either the induction hypothesis or the first case
above).
Now, if top(u) /∈ {◦, J◦}, t = J◦(u) and u ∈ Sub(t). We conclude by applying
the induction hypothesis.

The last rule is a decomposition R◦, ◦ ∈ {⋆, •, +}. Let t = t1 ◦ . . .◦tn↓. We
discard the cases in which ti = e◦ for some i (there is a simpler proof). Then
the rule being a decomposition, by lemma 7, t ∈ Sub(ti) for some i.
If t1, . . . , tn ∈ F (H), then by induction hypothesis, we get a proof in which
all terms are in F (H). Otherwise, let us assume that some tj is not in F (H),
hence, by induction hypothesis, tj is obtained by composition.
By contradiction, assume top(tj) = ◦. Then, because it is obtained by com-
position and because of proof normalization rules, either tj is obtained by
RJ◦

or ◦ = • and tj is obtained by Rh. In the first case, tj = J◦(uj)↓ and,
by proof normalization, uj is not obtained by R◦, while top(uj) = ◦. This
implies that uj is obtained by decomposition, and therefore, by induction
hypothesis, uj ∈ F (H), which in turn contradicts tj /∈ F (H). In the second
case, tj = h(uj) and top(uj) = +. By proof normalization, uj cannot be
obtained by R+. It follows that uj is obtained by decomposition (or else by
RJ+

). Again, this will yield a contradiction with tj /∈ F (H). Similarly, we
rule out top(tj) = J◦.



Now, top(tj) /∈ {◦, J◦} and, by lemma 3, either tj = e◦ (in which case there
is a simpler proof) or tj = t (in which case there is a simpler proof) or else
there is an index k 6= j such that inv◦(tj) ∈ DS◦(tk). Moreover, we cannot
have tk = inv◦(tj): there would be a simpler proof, simply discarding tj and
tk from the proof of t. Therefore top(tk) = ◦.
Now, we can reason as for tj : by proof normalization, tk must have been ob-
tained by decomposition and therefore, by induction hypothesis, tk ∈ F (H).
Then tj ∈ F (H) (since inv◦(tj) ◦ u ∈ F (H) for some u). This is again a
contradiction.
It follows that all ti’s must be in F (H).

The last rule is a decomposition Exp1.

h(t1) t2 . . . tn

h(t1 ⋆ . . . ⋆ tn)↓

and t = h(u) = h(t1 ⋆ . . . ⋆ tn)↓ and moreover, top(u) 6= ⋆.
By proof normalization, h(t1) can only be obtained by R•, or a decomposition
rule distinct from E1. In all cases, either h(t1) ∈ F (H) or else top(t1) = +.
Similarly, none of the ti’s (i ≥ 2) can be obtained by R⋆. Let ui = ti if ti is
not obtained by RJ⋆

and ui = inv⋆(ti) otherwise. Assume by contradiction
that, for some i, ui /∈ F (H). Then, in particular, by induction hypothesis,
ui is obtained by composition. By proof normalization, it cannot be by a
rule R⋆, RJ⋆

, hence top(ui) 6= ⋆ and thus top(ti) 6= ⋆. But then, by lemma
4, either ti ∈ DS⋆(u) or else inv⋆(ti) ∈ DS⋆(tj) for some j. We cannot
have ti = inv⋆(tj): there would be a simpler proof. Therefore, if inv⋆(ti) ∈
DS⋆(tj), we must have top(tj) = ⋆, hence the corresponding uj cannot be
obtained by composition. It follows that, for every i, either ui ∈ F (H) or
else inv⋆(ti) ∈ DS⋆(tj) and uj ∈ F (H). In the latter case, either uj = tj
and then inv⋆(ti) ∈ Sub(tj) implies ti ∈ F (H). or else uj = inv⋆(tj) and
ti ∈ DS⋆(uj) ⊆ F (H).
In all cases, for every i, ti ∈ F (H).
By lemma 8, there is an index i such that u ∈ DS⋆(ti). Now, t 6= ti and
t 6= h(ti) (otherwise there is a simpler proof). Hence top(ti) = ⋆. It follows
that ti ∈ Sub(H) ∪ J⋆(Sub(H)). Then u ∈ Sub(H) ∪ J⋆(Sub(H)) and there
exists a v such that u ⋆ v ∈ Sub(H): t = h(u) ∈ F (H).

The last rule is a composition Exp1. We use the same notations as in the
previous case. By proof normalization, for every i, ti ∈ F (H) or else top(ti) 6=
⋆. We apply again lemma 4: if ti /∈ F (H), then either inv⋆(ti) ∈ DS⋆(tj) for
some j 6= i or else tj ∈ DS⋆(u). In the first case, we will have again ti ∈ F (H)
since tj 6= inv⋆(ti) by minimality and therefore tj ∈ F (H). In the end, for
every i > 1, either ti ∈ F (H) or ti ∈ F (t).
For h(t1), the reasoning is the same as in the previous case: either top(t1) 6=
⋆ or h(t1) is obtained by decomposition.

The last rule is Exp2.
exp(t1, t2) t3 . . . tn

exp(t1, t2 ⋆ . . . ⋆ tn)↓



We let u = t2 ⋆ . . . ⋆ tn↓
In this case, t2, t3, . . . , tn play exactly the same roles as t1, . . . in the Exp1

case. It is actually even simpler: exp(t1, t2) cannot be obtained by a com-
position (by proof normalization), hence exp(t1, t2) ∈ Sub(H). Concerning
t3, . . . , tn, for each index i, either ti ∈ F (H) or else ti ∈ DS⋆(u). So, each
of the premises is either in F (H) or in F (t) and it suffices to apply the
induction hypothesis (together with lemme 9).

The last rule is Exp3. In this case, the last rule is a composition rule and the
two premises are in Sub(t). It suffices to apply the induction hypothesis. �

5 Conclusion and future works

This paper is only one of the steps on the way of solving the case study. We
only showed that, for a passive intruder, the security problem can be solved in
PTIME.

The next step (on which we are currently working) is to consider an ac-
tive intruder. This means solving deducibility constraints modulo the equational
theory of the electronic purse.

In this context, we will use properties of the rewrite system, for instance the
finite variant property. That is why the rewrite rules are oriented in an unusual
way, which introduces some technical complications.

Acknowledgments

We thank an anonymous referee for his comments and we thank Jean-Pierre
Jouannaud for introducing us to this area of research.

References

1. M. Arnaud, V. Cortier, and S. Delaune. Combining algorithms for deciding knowl-
edge in security protocols. Research Report 6118, INRIA, Feb. 2007. 28 pages.

2. Y. Chevalier, R. Kuester, M. Rusinowitch, and M. Turuani. An NP decision pro-
cedure for protocol insecurity with xor. In Kolaitis [14].

3. Y. Chevalier, R. Küsters, M. Rusinowitch, and M. Turuani. Deciding the security
of protocols with Diffie-Hellman exponentiation and products in exponents. In
J. Radhakrishnan and P. Pandya, editors, Proc. FST/TCS, Mumbai, volume 2914
of Lecture Notes in Computer Science, 2003.

4. Y. Chevalier and M. Rusinowitch. Combining intruder theories. In Proc. ICALP,
volume 3580 of Lecture Notes in Computer Science, pages 639–651, 2005.

5. Y. Chevalier and M. Rusinowitch. Hierarchical combination of intruder theories.
In Proc. Rewriting Techniques and Applications, volume 4098 of Lecture Notes in
Computer Science, pages 108–122, Seattle, 2006.

6. H. Comon-Lundh and S. Delaune. The finite variant property: How to get rid
of some algebraic properties. In J. Giesl, editor, Proceedings of the 16th Inter-
national Conference on Rewriting Techniques and Applications (RTA’05), volume
3467 of Lecture Notes in Computer Science, pages 294–307, Nara, Japan, Apr.
2005. Springer.



7. H. Comon-Lundh and V. Shmatikov. Intruder deductions, constraint solving and
insecurity decision in preence of exclusive or. In Kolaitis [14].

8. E. Contejean and C. Marché. CiME: Completion modulo E. In Proc. Rewriting
Techniques and Applications, volume 1103 of Lecture Notes in Computer Science,
pages 416–419, 1996.

9. V. Cortier, S. Delaune, and P. Lafourcade. A survey of algebraic properties used
in cryptographic protocols. Journal of Computer Security, 14(1):1–43, 2006.

10. S. Delaune, P. Lafourcade, D. Lugiez, and R. Treinen. Symbolic protocol analysis
in presence of a homomorphism operator and exclusive or . In M. Buglesi, B. Pre-
neel, V. Sassone, and I. Wegener, editors, Proceedings of the 33rd International
Colloquium on Automata, Languages and Programming (ICALP’06) — Part II,
volume 4052 of Lecture Notes in Computer Science, pages 132–143, Venice, Italy,
July 2006. Springer.

11. N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In J. van Leeuwen, edi-
tor, Handbook of Theoretical Computer Science, volume B, pages 243–309. North
Holland, 1990.

12. D. Dolev and A. Yao. On the security of public key protocols. In Proc. IEEE
Symp. on Foundations of Computer Science, pages 350–357, 1981.

13. D. Kapur, P. Narendran, and L. Wang. Analyzing protocols that use modular
exponentiation: Semantic unification techniques. In Proc. Rewriting Techniques
and Applications, volume 2706 of Lecture Notes in Computer Science, 2003.

14. P. Kolaitis, editor. 18th Annual IEEE Symposium on Logic in Computer Science,
Ottawa, Canada, June 2003. IEEE Computer Society.

15. J. Millen and V. Shmatikov. Symbolic protocol analysis with products and diffie-
hellman exponentiation. Invited submission to Journal of Computer Security (se-
lected papers of CSFW-16), 2004.

16. M. Rusinowitch and M. Turuani. Protocol insecurity with finite number of sessions
is NP-complete. In Proc.14th IEEE Computer Security Foundations Workshop,
Cape Breton, Nova Scotia, June 2001.

17. V. Shmatikov. Decidable analysis of cryptographic protocols with products and
modular exponentiation. In D. Schmidt, editor, Proc. European Symposium on Pro-
gramming (ESOP’04), volume 2986 of Lecture Notes in Computer Science, pages
355–369. Springer-Verlag, 2004.

18. Security protocols open repository. http://www.lsv.ens-cachan.fr/spore/.


