
Deducibility constraints and blind signatures

Sergiu Bursuca, Hubert Comon-Lundhb, Stéphanie Delauneb

aQueen’s University of Belfast, UK
bLSV, CNRS & ENS de Cachan & INRIA Saclay, France

Abstract

Deducibility constraints represent in a symbolic way the infinite set of possible executions
of a finite protocol. Solving a deducibility constraint amounts to finding all possible ways
of filling the gaps in a proof. For finite local inference systems, there is an algorithm that
reduces any deducibility constraint to a finite set of solved forms. This allows one to decide
any trace security property of cryptographic protocols.

We investigate here the case of infinite local inference systems, through the case study of
blind signatures. We show that, in this case again, any deducibility constraint can be reduced
to finitely many solved forms (hence we can decide trace security properties). We sketch also
another example to which the same method can be applied.

Keywords: formal methods, verification, security protocol, constraint system

1. Introduction

This paper is concerned with the formal verification of security protocols. The formal
models of security protocols are (infinite) transition systems, that are infinitely branching,
because of the unbounded number of possible fake messages that can be sent by an attacker.
In numerous cases, however, only finitely many such messages are relevant for mounting an
attack. This is essentially what is proved in [19, 20]: if we assume a fixed number of protocol
sessions and the classical public key encryption and pairing primitives, then there is an attack
if, and only if, there is an attack in which the messages sent by the attacker are taken out of
a fixed set of messages. We refer to this result as the small attack property.

More practical algorithms, that do not need to enumerate all possible relevant attacker’s
behaviour, rely on deducibility constraints, introduced in [17]. The idea is to represent sym-
bolically all messages that can be forged by an attacker at a given stage of the protocol

execution. An atomic deducibility constraint is an expression T
?
` u where T is a finite set

of terms and u is a term, both of which may contain variables. The deduction relation is in-
terpreted according to the attacker capabilities and the variable instances correspond to the
attacker choices of message forging. Deciding the satisfiability of such constraints then allows
one to decide whether an attacker, after interacting with the protocol, may get a message
that was supposed to remain secret.

These works have two limitations: they are restricted to some basic cryptographic prim-
itives and they only consider the property of being able to get a supposedly secret message.
They also consider some authentication properties, through an appropriate encoding. Con-
cerning the first limitation, there are numerous extensions to other cryptographic primitives,
for instance exclusive-or [11, 6], modular exponentiation [7, 21, 18], any monoidal theory [13]

Preprint submitted to Elsevier December 19, 2012

and blind signatures [3]. Concerning the second limitation, the idea is to transform the de-
ducibility constraints that have been mentioned above into finitely many solved forms, that
represent in a convenient way all possible traces in presence of an active attacker. Then,
whether a security property φ holds, can be checked by deciding the satisfiability of ¬φ,
together with each solved constraint. This is typically what is proposed in [10] (and also
more recently in [22]), where it is shown how to decide trace properties, using the solved
deducibility constraints, in case of public key and symmetric key encryption and signatures.
This raises the problem of systematically designing deducibility constraint solving techniques,
that would be applicable for both several primitives and any trace property.

In [4], we show that a locality property of the deduction system is sufficient for designing
a deducibility constraint solving algorithm. Locality is a syntactic subformula property of
normal proofs [16]: if there is a proof of t, then there is a proof of t whose every intermediate
step is either a subterm of t or subterm of some hypothesis. Locality yields a tractable
Entscheidungsproblem [16]. As shown in [2], this is also equivalent to a saturation property
of the set of inference rules w.r.t. the subterm ordering. Therefore, if a set of inference rules
modeling the attacker’s capabilities on a given set of primitives can be saturated, yielding a
finite set of inference rules, then, according to [4], we can simplify the deducibility constraints
into finitely many solved forms and decide any trace security property. It turns out that some
relevant proof systems cannot be finitely saturated w.r.t. the subterm ordering. This is the
case of blind signatures, as modeled in [15]: saturating the inference rules does not terminate.

Yet, we show in this paper that we can extend the deducibility constraint solving proce-
dures to some infinite local inference systems. Typically, such inference systems are obtained
by saturating finite non-local inference systems. We consider the case study of blind signa-
tures and briefly mention another example (homomorphic encryption) to which a very similar
procedure works.

The basic idea for solving deducibility constraints is straightforward: given T
?
` u, guess

the last inference rule that yields a proof of uσ and decompose the constraint accordingly.
This hardly terminates in general. In case of a local inference system, we roughly require that
the new terms appearing in the constraint are either subterms of u or subterms of T , which,
together with a simple strategy, guarantees termination. If the inference system is infinite,
there are a priori infinitely many possible last rules that may yield uσ, which again raises
a termination issue. In case of a relatively regular set of inference rules (which is the case
for blind signatures and for homomorphic encryption), we may fold infinitely many such last
steps in a single one, using an additional abstraction. This is what we show: we consider the
case of blind signatures and add a predicate symbol, that allows us to consider all possible last
deduction steps at once. We design then a constraint solving procedure, that includes this
new predicate symbol, and show that it is terminating and yields solved forms. Trace security
properties can be decided using these solved forms. As a witness, we mention the decidability
of the first order formulas with equalities together with the deducibility constraints. Finally,
we give another example of application of the same method. This second example witnesses
the scope of the method, though we do not have a general class of primitives to which it could
be applied.

Application to formal verification of security protocols. In general, security protocols are spec-
ified in a process algebra like applied pi-calculus [1]. When one is interested in analysing a
bounded number of sessions of the protocol, the set of all possible interleavings of actions is
finite and can be determined from the specification. Each interleaving determines an infinite

2

set of traces corresponding to all possible executions of the protocol in that context. As
shown for instance in [12], this set of traces can be symbolically represented by a deducibility
constraint system C: every solution of C corresponds to a trace. Then, verifying a trace-based
property of the given security protocol amounts to deciding wether for all solution of C the
property is satisfied. That is why we consider deducibility constraint systems as our formal
model of security protocols.

Furthermore, we restrict our attention to a particular intruder theory, modeling blind
signatures. There are at least two important applications of blind signatures. In electronic
payments, they allow individuals to provide proof of payment, without third parties being
able to trace the payee, time or amount of payment [5]. In electronic voting protocols, they
allow administrators to check the eligibility of voters and sign their ballots, without being
able to determine how voters have voted [14]. A realistic model of protocols will in general
have to consider more cryptographic primitives, including for example the classical Dolev-
Yao theory of encryption and pairing. While we could include the Dolev-Yao theory in our
model, we prefer not to do it because: 1) this does not raise any technical challenge for our
procedure and 2) we think the procedure of [10] could be combined with ours in the more
general framework of combining decision procedures for disjoint intruder theories [8].

2. Preliminaries

2.1. Term algebra

Messages are represented by terms, constructed on an infinite set of names N = {a, n, k, . . .},
an infinite set of variables X = {x, y, . . .} and a set F of function symbols. In this paper,
F = {blind, sign, vk} together with arities ar(blind) = ar(sign) = 2 and ar(vk) = 1. The
term sign(m, sk) represents the message m signed by the private key sk. The function blind
is supposed to hide a message, thus the term blind(m, r) represents the blinding of m with
the random r. This allows one to request a signature without revealing the content of the
message.

We write vars(t) for the set of variables occurring in t and st(t) is the set of subterms
of t. The size of a term t, denoted |t|, is the number of symbols occurring in it. Substitutions
are written σ = {x1 7→ t1, . . . , xn 7→ tn} with dom(σ) = {x1, . . . , xn}. The application of a
substitution σ to a term t is written tσ. We denote by #T the cardinal of the set T .

2.2. Inference system

The abilities of the attacker are modeled by a deduction system described in Figure 1.
Intuitively, these deduction rules allow an intruder to compose messages by signing (rule
sign) and blinding (rule blind) provided he has the corresponding keys. Conversely, he can
decompose messages provided he holds the corresponding keys. For signatures, the intruder
is able to verify whether a signature sign(m, sk) and a message m match (provided he has
the verification key vk(sk)), but this does not give him any new message. That is why this
capability is not represented in the deduction system. We also consider the rule getmsg that
expresses that an intruder can retrieve the whole message from its signature. The rule unblind
allows one to retrieve the message m from blind(m, r) provided one knows the term r that has
been used to hide m. Finally, the rule unbdsign with n = 1 allows one to obtain a signature
from a signature of a blinded message m, once the term used to blind m is known.

3

Rule blind Rule unblind Rule sign
x y

blind(x, y)

blind(x, y) y

x

x y

sign(x, y)

Rule getmsg Rule unbdsignn

sign(x, y)

x

sign(bn(x, y1, . . . , yn), z) y1 . . . yn
n ≥ 1

sign(x, z)

where b1(u, v1) = blind(u, v1) and bn+1(u, v1, . . . , vn+1) = blind(bn(u, v1, . . . , vn), vn+1).

Figure 1: Intruder deduction system for blind signatures

Definition 1 (deducible). A proof P of T ` u is a tree labeled with terms, whose leaves
labels Hyp(P) are in T , its root label is u, and such that every intermediate node is an instance
of one of the rules of Figure 1. A term u is deducible from T if there is a proof of T ` u,
which we simply write T ` u.

There is an infinite collection of rules unbdsign for n > 1, because we wish to get a local
inference system: whenever there is a proof of T ` u, there is a local proof, whose all terms
are in st(T)∪ st(u). This infinite set of rules is necessary. Consider for instance the following
proof:

sign(blind(blind(u, r1), r2), sk) r2

sign(blind(u, r1), sk) r1

sign(u, sk)

The intermediate step sign(blind(u, r1), sk) is neither a subterm of the hypothesis nor a sub-
term of the conclusion. However, there is a local proof of the same term in the extended
inference system, relying on the rule unbdsign with n = 2. In general, given a non-local
inference system, we can obtain an equivalent (possibly infinite) local inference system by
saturation, as shown in [4].

The rules blind , sign, and unbdsign are called composition rules whereas getmsg and
unblind are called decomposition rules. For a set of terms {t1, . . . , tn}, we will often use the
notation t1, . . . , tn ` u instead of {t1, . . . , tn} ` u.

2.3. Constraint systems

A deducibility constraint is an expression T
?
` u where T is a finite set of terms and u is a

term. The set T represents the intruder knowledge and u represents a term expected by an
agent from the network. The solutions of such a constraint are the substitutions σ such that
Tσ ` uσ. The idea is to represent through such constraints all the possible executions of a
protocol.

An introductory example. Consider a toy protocol in which A generates a nonce n, sends it
to B, then B sends back this nonce signed with his private key k and finally A checks that
the message she receives is sign(n, k). The possible traces obtained in any successful session
of this protocol, between the two parties a, b are sequences of four messages:

n, x, sign(x, k), sign(n, k)

4

where n is the message sent by a, x is the message received by b, sign(x, k) is the message
sent by b and sign(n, k) is the message received by a.

In an honest run, x = n. There are however other possible bindings of x, all yielding a
valid trace. Actually, the only constraints that x must satisfy are:

{n}
?
` x and {n, sign(x, k)}

?
` sign(n, k)

Intuitively, the attacker should be able to construct x and to construct back sign(n, k)
from n and sign(x, k).

Thus, traditionally (see e.g. [17, 10]), a constraint system is a set of deducibility constraints

T1
?
` u1, . . . , T`

?
` u`

such that the following conditions are satisfied:

1. monotonicity : ∅ 6= T1 ⊆ T2 . . . ⊆ T`;
2. origination: for each 1 ≤ i ≤ `, vars(Ti) ⊆ vars({u1, . . . , ui−1});

Intuitively, the sequence of sets T1, . . . , T` represents the knowledge that is gathered by the
intruder while interacting with the protocol. Thus, the monotonicity formalizes the increasing
knowledge of the attacker: it is assumed that he keeps track of all available messages. For
all 1 ≤ i ≤ `, the term ui represents a message that is expected to be received by an honest
agent at a given step in the protocol: ui can be a variable, when the agent will accept any
message, or it can be a term with variables, when the agent will accept only messages of a
given form. The set of terms Ti r Ti−1 represents the set of messages that are sent by honest
agents replying to u1, . . . , ui−1. Thus, origination means that the reply of the agents depends
on messages that they receive from the network.

A solution of such a constraint sytem C is a substitution θ such that Tθ ` vθ for each

deducibility constraint T
?
` v in C. We denote by Sol(C) the set of solutions of C.

2.4. Overview of our procedure

Given a constraint system C, we propose a set of rules that transforms C in a set of
constraint systems in solved form C1, . . . , Cn. We rely on two main properties:

• the transformation rules preserve the set of solutions, i.e we have

Sol(C) = Sol(C1) ∪ . . . ∪ Sol(Cn)

This property can also be decomposed into soundness, the solutions of each Ci are also
solutions of C, and completeness: any solution of C is a solution of some Ci.

• a solved form always has a solution

A property of a set of traces, which is represented by a constraint C, can then be reduced
to a property of sets of traces, that are represented by solved forms. And deciding trace
properties on solved forms is easy.

A crucial notion for the soundness and completeness of the transformation rules is locality
(Section 3): whenever there is a proof of Tσ ` uσ, there is a proof whose intermediary steps

5

are in st(Tσ)∪st(uσ). Furthermore, origination and monotonicity of constraint systems allow
us to restrict the search space to st(T) ∪ st(u), getting rid of σ (Section 6). An additional
difficulty for the transformation rules comes from the fact that our local inference system is
infinite, which is where our result fundamentally differs from [10]. Thus, we need to generalize
the constraint systems in order to take into account an infinite set of constraints. That is
why we introduce membership constraints (Section 4) whose semantics needs to be reflected
by the transformation rules and in the definition of solved forms (Section 5).

3. Locality and simple proofs

To show that the inference system in Figure 1 satisfies locality (Lemma 1), we consider
first a proof normalization procedure, described by the rules in Figure 2. These rules are
terminating and confluent: each proof has a single normal form (a normal proof). We will
show that every normal proof of T ` u is local : all terms labeling its nodes are in st(T)∪st(u).
The first two normalization rules state that in a normal proof unblinding should be performed
on unsigned messages when possible. Note also that in both cases a non-local subproof
is transformed into a local one. The third rule simply joins two consecutive applications
of unbdsign into a single application of unbdsign. The last two rules remove unnecessary
applications of sign and blind .

Definition 2 (normal proof). A normal proof is a proof irreducible w.r.t. the rules given
in Figure 2.

Example 1. Let T = {a, r1, r2, sign(blind(blind(a, r1), r2), sk)}. A proof of T ` a, that uses
an instance of the last rule scheme (with n = 2) is described below together with its normal
form.

sign(blind(blind(a, r1), r2), sk) r1 r2

sign(a, sk)

a

sign(blind(blind(a, r1), r2), sk)

blind(blind(a, r1), r2) r2

blind(a, r1) r1

a

Now, we can formally state the locality property. Getting such a property cannot be
achieved with any finite subset of the inference rules of Figure 1.

Lemma 1 (locality). Let T be a set of terms, v be a term, and P be a normal proof of
T ` v. The proof P only contains terms in st(T ∪ {v}). Moreover, if P is reduced to a leaf
or ends with a decomposition rule then v ∈ st(T).

Proof. We prove this result by induction on P . The base case, i.e. when P consists of a single
node is obvious. Indeed, in such a case, we immediately get that v ∈ T and thus v ∈ st(T).
When P is not reduced to a leaf, we distinguish several cases:

• P ends with an instance of the rule blind or sign. In such a case, we easily conclude by
relying on our induction hypothesis.

6

bn(u, v1, . . . , vn) v

sign(bn(u, v1, . . . , vn), v) v1 . . . vn

sign(u, v)

−→

bn(u, v1, . . . , vn) vn
··· unblind

blind(u, v1) v1

u v

sign(u, v)

sign(bn(u, v1, . . . , vn), v) v1 . . . vn

sign(u, v)

u

−→

sign(bn(u, v1, . . . , vn), v)

bn(u, v1, . . . , vn) vn
··· unblind

blind(u, v1) v1

u

sign(bn(u, v1, . . . , vn), v) vk+1 . . . vn

sign(bk(u, v1, . . . , vk), v) v1 . . . vk

sign(u, v)

−→
sign(bn(u, v1, . . . , vn), v) v1 . . . vn

sign(u, v)

u v

sign(u, v)

u

−→ u

u v

blind(u, v) v

u

−→ u

Figure 2: Proof normalization rules for blind signatures

• P ends with an instance of a rule unbdsignk for some k ≥ 1. In such a case, the direct
subproof P0 of P labeled with T ` sign(bk(u, v1, . . . , vk), v0) ends with a decomposition
rule. Indeed, the only composition rules that may be used are sign and unbdsign,
which are not possible due to normalization rules. Therefore, thanks to our induction
hypothesis, we have sign(bk(u, v1, . . . , vk), v0) ∈ st(T). This allows us to conclude.

• P ends with an instance of the rule unblind . In such a case, we have that the direct
subproof P1 of P whose root is labeled with T ` blind(v, u) ends with an instance of
a decomposition rule. This is due to the fact that P is in normal form. Hence, we
can apply our induction hypothesis on P1. We deduce that blind(v, u) ∈ st(T) and thus
v ∈ st(T).

• P ends with an instance of the rule getmsg . In such a case, the direct subproof P1 of P
whose root is labeled with T ` sign(v, u) ends with an instance of a decomposition rule.
Indeed, the rules sign and unbdsign are not possible since P is in normal form. Hence,
we can apply our induction hypothesis on P1. We deduce that sign(v, u) ∈ st(T) and
thus v ∈ st(T). �

7

From Lemma 1, we derive the following corollary. It will be useful later on to prove
completeness of our decision procedure (see Section 6.3).

Corollary 1. Let T be a set of terms and v be a term such that T ` v. Let u ∈ st(v). Either
u ∈ st(T) or there exists a normal proof of T ` u that ends with a composition rule.

Proof. We prove the result by induction on P , a normal proof of T ` v. If P is reduced to a
leaf, then v ∈ T and thus u ∈ st(T). Otherwise, we distinguish three cases:

• P ends with a decomposition rule. In such a case, thanks to Lemma 1, we deduce that
v ∈ st(T) and thus u ∈ st(T).

• P ends with an instance of the rule blind (the case where P ends with an instance of
the rule sign is similar). In such a case, we have that v = blind(v1, v2). Let P1 (resp.
P2) be the direct subproof of P whose root is labeled with T ` v1 (resp. T ` v2). Either
u = v and we conclude that P is a normal proof of T ` u that ends with a composition
rule. Otherwise u ∈ st(v1) (or u ∈ st(v2)) and in such a case, we conclude by applying
our induction hypothesis on P1 (or P2).

• P ends with an instance of the rule unbdsignk for some k ≥ 1. We have that v =
sign(v1, v2). Let P0 (resp. P1, . . . , Pk) be the direct subproofs of P whose root is labeled
with T ` sign(bk(v1, t1, . . . , tk), v2) (resp. T ` t1, . . ., T ` tk). Note that, since P is in
normal form, we have that P0 is either reduced to a leaf or ends with a decomposition
rule. Therefore, we can apply Lemma 1. We deduce that v1, v2 ∈ st(T). Thus, either
u = v and we conclude that P is a normal proof of T ` u that ends with a composition
rule. Otherwise u ∈ st(v1) (or u ∈ st(v2)) and in such a case, we easily conclude that
u ∈ st(T). �

We further distinguish between normal proofs that yield the same conclusion by considering
simple proofs. Intuitively, given an increasing sequence of sets of terms T1 ⊆ . . . ⊆ Tn and
some index i, with 1 ≤ i ≤ n, a proof of Ti ` u is simple if it is in normal form and each of
its subproofs uses a minimal set of hypotheses Tj , for some j ≤ i:

Definition 3 (simple proof). Consider a sequence of sets of terms T1, . . . , Tn, such that
T1 ⊆ T2 ⊆ . . . ⊆ Tn. A proof P of Ti ` u is left-minimal (w.r.t. T1, . . . , Tn) if for any j
such that Tj ` u, we have that Hyp(P) ⊆ Tj. A proof P is simple if any of its subproofs is
left-minimal and in normal form.

Example 2. Let T1 = {a}. The normal proof given in Example 1 is not a simple proof w.r.t.
the sequence T1 ⊆ T . A simple proof of T ` a is reduced to a leaf.

In Appendix A, we show the following lemma.

Lemma 2. Let T1 ⊆ T2 ⊆ . . . ⊆ Tn be a sequence of sets of terms. If there is a proof of
Ti ` u for some i ∈ {1, . . . , n}, then there is a simple proof of Ti ` u w.r.t. T1, . . . , Tn.

8

4. Constraint systems with membership constraints

A deducibility constraint is an expression T
?
` u where T is a finite set of terms and u is

a term. The solutions of such a constraint are the substitutions σ such that Tσ ` uσ. The
idea is to represent through such constraints all the possible executions of a protocol.

4.1. An introductory example

Going back to our introductory example presented in Section 2.3, we have seen that the
only constraints that x must satisfy are:

{n}
?
` x and {n, sign(x, k)}

?
` sign(n, k)

Intuitively, the attacker should be able to construct x and to construct back sign(n, k)
from n and sign(x, k). The set of such possible messages x includes n, but also blind(n, n)
for instance, since the attacker can unblind sign(blind(n, n), k) and get sign(n, k). Actually,
the set of possible messages x satisfying the above constraints is Bd({n}, n) where Bd(T, u)
denotes the least set S of terms that contains u and such that blind(s, v) ∈ S when s ∈ S and
T ` v. Formally, we define

Bd(T, u) = {u} ∪ {bm(u, v1, . . . , vm) | m ∈ N and T ` vi for each 1 ≤ i ≤ m}.

For any term t ∈ Bd({n}, n), the attacker can compute sign(n, k) from {n, sign(t, k)}.
using one instance of the unbdsign rule scheme as the last inference rule. We wish to use a
single constraint solving step for all these possible final inference rules, hence we introduce
an appropriate abstraction, enriching the syntax with membership constraints.

4.2. Constraint systems

We consider two different kinds of elementary constraints: a deducibility constraint is a

constraint of the form T
?
` u, whereas a membership constraint is a constraint of the form

v
?
∈ Bd(T, u). In both cases, T is a finite set of terms and u, v are terms. Given an elementary

constraint C of the form described above, the set of terms T is called the associated set of
terms of the constraint C.

Intuitively, a membership constraint v
?
∈ Bd(T, u) is a symbolic representation for an

infinite set of deducibility constraints: it is true if, and only if, u = v or there exists n ≥ 0

such that the constraints T
?
` x1, . . . , T

?
` xn, and v = bn(u, x1, . . . , xn) are satisfied.

Given a finite set D of elementary constraints and x ∈ vars(D), we let Tx be the minimal
set of terms w.r.t. inclusion (when it exists) such that

• Tx
?
` u ∈ D with x ∈ vars(u), or

• v
?
∈ Bd(Tx, u) ∈ D with x ∈ vars(u).

We extend the informal definition of constraint system introduced in Section 2.3 to con-
sider constraint systems with membership constraints. As before, we require monotonicity
and origination. We also require an additional condition on variables that we explain after
the definition.

9

Definition 4 (constraint system). A constraint system C is either >, ⊥ or a set of ele-
mentary constraints. We require that the constraints in C can be ordered C1, . . . , C` in such
a way that the following conditions are satisfied:

1. monotonicity: ∅ 6= T1 ⊆ T2 . . . ⊆ T`;
2. origination: for each 1 ≤ i ≤ `, vars(Ti ∪ {vi}) ⊆ vars({u1, . . . , ui−1});

where each Ci is of the form Ti
?
` ui or of the form vi

?
∈ Bd(Ti, ui).

Lastly, we assume that for each variable x ∈ vars(C):

• either there exists Tx
?
` u in C with x ∈ vars(u),

• or there exists v
?
∈ Bd(Tx, u) in C with x ∈ vars(u) and such that Ty (Tx for every

y ∈ vars(v).

The new condition on variables can be seen as an extension of origination to membership
constraints. Intuitively, for all variable x, the set Tx represents the associated set of terms for
the constraint that first introduces x. In a constraint system C that only contains deducibility

constraints, it is always the case that there exists Tx
?
` u in C with x ∈ vars(u). The second

item of the new condition allows for variables to be introduced in membership constraints
as some deducibility constraints are transformed in membership constraints. Typically, the

condition will hold because for each new constraint v
?
∈ Bd(Tx, u) it will be the case that

v ∈ st(Tx).
A constraint system C can also be seen as a conjunction of elementary constraints. Then,

we consider that C ∧ > is equivalent with C and C ∧ ⊥ is equivalent with ⊥.

Example 3. The following set of constraints

{a
?
` y, blind(y, a)

?
∈ Bd({a}, x)}

satisfies monotonicity and origination. However, it is not a constraint system. Indeed, the

constraint blind(y, a)
?
∈ Bd({a}, x) introduces the variable x and the condition Ty ({a} is not

satisfied. Actually, we have that Ty = {a}.

Definition 5 (solution). A solution of a set D of elementary constraints is a substitution θ

such that Tθ ` vθ for each T
?
` v ∈ D, and vθ ∈ Bd(Tθ, uθ) for each v

?
∈ Bd(T, u) ∈ D. We

denote by Sol(D) the set of solutions of D. The constraint system ⊥ has no solution and any
substitution is a solution of >.

Given two sets D and D′ of constraints, we write D |= D′ if Sol(D) ⊆ Sol(D′). We denote
by D|V the constraints in D that only contain variables in the set V , i.e.

D|V = {C ∈ D | vars(C) ⊆ V }.

We will show that we can restrict ourselves to solutions that do not map two distinct
subterms of the constraint system to the same term. Let T be a set of terms. A substitution σ
is non-confusing w.r.t. T if for any t1, t2 ∈ st(T) such that t1 6= t2, we have that t1σ 6= t2σ.
A non-confusing solution of a set D of elementary constraints is a substitution θ ∈ Sol(D)
such that θ is non-confusing w.r.t. terms that appear in D. We denote by SolNC(D) the set
of solutions of D that are non-confusing.

10

Sax : u
?
∈ Bd(T, u) → >

Sbd : blind(u, v)
?
∈ Bd(T,w) → T

?
` v ∧ u

?
∈ Bd(T,w) if blind(u, v) 6= w

Sf : f(t1, . . . , tn)
?
∈ Bd(T, v) → ⊥ if f 6= blind and f(t1, . . . , tn) 6= v

Scycle : x1
?
∈ Bd(T1, v1[x2]) ∧ . . . ∧ xn

?
∈ Bd(Tn, vn[x1]) → ⊥

if there exists i such that vi 6= ε or #{x1, . . . , xn} > 1.

Figure 3: Simplification rules for membership constraints

4.3. Simplified form

The constraints are simplified according to the simplification rules described in Figure 3.

They reflect the semantics of u
?
∈ Bd(T, v). In the rule Scycle, we use the notation v[x] to

denote a term that contains the variable x. If, moreover, that term is different from x, we
say that v 6= ε.

Definition 6 (simplified form). A set D of elementary constraints is in simplified form
if none of the simplification rules can be applied. D↓S is the set of irreducible constraints
obtained from D by repeatedly applying these rules.

Note that in a set of constraints in simplified form, each membership constraint is of

the form x
?
∈ Bd(T, u) where x is a variable. Moreover, we show in Appendix B that these

simplification rules transform a constraint system into a constraint system and preserve the
set of solutions:

Lemma 3. Let D and D′ be two sets of elementary constraints such that D → D′. We have
that:

• If D is a constraint system then D′ is a constraint system;

• Sol(D′) ⊆ Sol(D) and SolNC(D) ⊆ SolNC(D′).

From this lemma, we easily derive the two following results.

Corollary 2. Let D be a set of elementary constraints. We have that:

• If D is a constraint system then D↓S is a constraint system;

• Sol(D↓S) ⊆ Sol(D) and SolNC(D) ⊆ SolNC(D↓S).

Corollary 3. Let D and D′ be two sets of constraints such that D →∗ D′ and V ⊆ vars(D).
We have that Sol(D′|V) ⊆ Sol(D|V).

Proof. We prove the result for the case when there is a single simplification step and conclude
the proof by induction on the length of the derivation. If there is a single simplification step
D → D′, we are in one of the four following cases: D|V → D′|V (when the rule Sbd is applied to
a constraint in D|V), or D|V ⊆ D′|V (when the rule Sbd is applied to a constraint in DrD|V),

11

or the rule Sax is applied, or D′|V = ⊥ (when one of the rules Sf,Scycle is applied). In the last
three situations, we trivially have Sol(D′|V) ⊆ Sol(D|V). In the first situation, we conclude
using the Lemma 3. �

5. Constraint systems in solved form

Our aim is to design a set of transformation rules that rewrite any constraint into a finite
set of solved forms, which are a more convenient representation of the same set of solutions.

Definition 7 (solved form). A constraint system C = {C1, . . . , C`} is in solved form if

each Ci is either of the form Ti
?
` xi or of the form xi

?
∈ Bd(Ti, ui) where xi is a variable.

Moreover, for every x ∈ vars(C), there is a unique deducibility constraint T
?
` x ∈ C and there

is at most one membership constraint x
?
∈ Bd(T ′, u) in C and, if this is the case, T ′ = T .

Example 4. Below, the systems C2 and C3 are in solved form whereas C1 is not.

C1 =

a

?
` y

y
?
∈ Bd({a}, a)

y
?
∈ Bd({a}, blind(a, a))

C2 =

 a
?
` x

x
?
∈ Bd({a}, b)

C3 =

a

?
` x

a, x
?
` y

y
?
∈ Bd({a, x}, x)

Note that a constraint system in solved form is not necessarily satisfiable. For instance, the
system C2 has no solution.

Fortunately, the constraints that are produced by our transformation rules satisfy an
additional invariant, which we explain now.

Well-formed constraint systems. Let D be a set of constraints in simplified form. We
define ≤D on vars(D) as the least relation closed by transitivity and reflexivity and such that:

y
?
∈ Bd(T, u) in D and x ∈ vars(u) =⇒ x ≤D y.

Intuitively, note that if x ≤D y, then for any solution σ of D, we have xσ ∈ st(yσ): proofs
whose conclusion contains yσ may depend on proofs whose conclusion contains xσ. Note that,
due to the rule Scycle and the fact that D is in simplified form, if y ≤D x and x ≤D y then
x = y. Hence ≤D is an ordering. Moreover, this ordering is compatible with the monotonicity,
as we show in the following lemma. This will allow us to iteratively construct a solution σ of
a solved form D by extending it from y to x, when y ≤D x.

Lemma 4. Let C be a constraint system in simplified and solved form. If x ≤C y, then
Tx ⊆ Ty.

Proof. Let x and y be two variables such that x ≤C y. By definition of ≤C , we know that
there exists n, and some membership constraints in C:

x1
?
∈ Bd(T1, u1), x2

?
∈ Bd(T2, u2), . . . , xn

?
∈ Bd(Tn, un)

12

such that y = x1, xi+1 ∈ vars(ui) for 1 ≤ i < n, and x ∈ vars(un).
By the definition of solved forms, for every i, there is a unique deducibility constraint

Ti
?
` xi in C. It follows that, for every i, Txi = Ti.
By definition of Tx and Txi (1 ≤ i ≤ n), we have that Tx ⊆ Tn and Txi ⊆ Ti−1 (1 < i ≤ n).

Hence, we deduce that:

Tx ⊆ Tn = Txn ⊆ Tn−1 = Txn−1 ⊆ . . . T2 = Tx2 ⊆ T1 = Tx1 = Ty.

This allows us to conclude. �

We extend the partial order ≤D to a pre-order on sets of variables as follows:

V1 �D V2 if, and only if, ∀x ∈ V1, ∃y ∈ V2 such that x ≤D y.

We denote by C�V the set of constraints in C containing only variables smaller or equal

by �C to those in V , i.e. C�V = {C ∈ C | vars(C) �C V }. Note that C�V is not necessarily

a constraint system. The goal of C�V is to determine all the constraints of C that affect the
possible values of V in a solution of C.

Definition 8 (well-formed). A simplified constraint system C is well-formed if, for every

constraint y
?
∈ Bd(Ti, ui) in C, either Ty (Ti or else Ty = Ti and C�V |= (Ti

?
` ui) where

V = vars(Ti ∪ {ui}).

Intuitively, well-formedness will help us to solve membership constraints. If a constraint

y
?
∈ Bd(Ti, ui) is such that Ty (Ti, we will show that it can be transformed into a simpler

constraint, with an associated set of terms Ty. Otherwise, C�V |= (Ti
?
` ui) ensures us that any

solution of C�V can be extended to a solution of y
?
∈ Bd(Ti, ui).

Example 5. The constraint system C2 (see Example 4) is not well-formed. Indeed, Tx = {a}

and thus the first condition does not hold. Moreover, C�V = ∅ and ∅ 6|= (a
?
` b). The systems

C1 and C3 are well-formed.

Lemma 5. Any solved well-formed simplified constraint system C has at least one solution.
Moreover, if t1, . . . , tm, u1, . . . , um are sequences of terms such that, for every i, ti is distinct
from ui, then C ∧ t1 6= u1 ∧ · · · ∧ tm 6= um has a solution.

Proof. We consider an ordering between variables defined as follows:

x ≤ y if, and only if,

{
either Tx (Ty,
or Tx = Ty and x ≤C y.

Thanks to Lemma 4, we know that x ≤C y implies Tx ⊆ Ty, and thus x ≤ y. Hence, we
know that ≤ is compatible with ≤C .

Let x1, . . . , xn be the variables in C renamed in such a way that xi ≤ xj implies i ≤ j.
We consider the constraint system C in which the constraints are ordered according to the
sequence x1, . . . , xn, i.e.

13

C :=

T1

?
` x1 ∧ [x1

?
∈ Bd(T1, u1)]

. . .

Tn
?
` xn ∧ [xn

?
∈ Bd(Tn, un)]

The notation [x
?
∈ Bd(T, u)] is used to indicate that this part is optional. Thanks to the

previous observation, it is clear that this ordering satisfies monotonicity. Actually we show
that this ordering satisfies also origination and thus this ordering is a witness of the fact that C
is a constraint system. To prove this, we first have to show that vars(Ti) ⊆ {x1, . . . , xi−1}.
Let y ∈ vars(Ti). We have that Ty (Ti and thus y ≤ xi, i.e. y ∈ {x1, . . . , xi−1, xi}.
Actually, y 6= xi since C is in solved form. This allows us to conclude. Secondly, we also
have that vars(ui) ⊆ {x1, . . . , xi−1}. Indeed, let y ∈ vars(ui), we have that y ≤ xi, i.e.
y ∈ {x1, . . . , xi−1} (again relying on the fact that y 6= xi).

We show, by induction on n (the number of variables in the constraint system) that there
is a substitution σ ∈ Sol(C) such that, for every 1 ≤ i ≤ m, tiσ 6= uiσ.

Base case: n = 0. Then C is the trivially satisfied formula. Since, for every j, tj is distinct
from uj , the trivial (empty) substitution is a solution.

Induction step: Let xn be a maximal variable. By induction hypothesis, there is a substitution

θ, that is a solution of Ti
?
` xi ∧ [xi

?
∈ Bd(Ti, ui)] for i < n and such that tjθ and ujθ are

distinct for every j. Each equation tjθ = ujθ, with a single unkown xn has at most one
solution vj . We distinguish several cases:

• If there is no constraint Tn
?
` xn in C, then we may simply choose σ = θ ∪ {xn 7→ v} for

any v /∈ {v1, . . . , vm} and we get a solution.

• If there is a constraint Tn
?
` xn in C but no constraint xn

?
∈ Bd(Tn, un), we let w0 ∈ Tnθ

and wk+1 = sign(wk, w0). For every k, Tnθ ` wk and there is at least one k0 ≤ m such
that wk0 /∈ {v1, . . . , vm}. Let σ = θ ∪ {xn 7→ wk0}. Since xn /∈ vars(Tnθ), Tnσ ` xnσ
and since xnσ /∈ {v1, . . . , vm}, tjσ and ujσ are distinct for every j. Hence σ has the
expected property.

• Now, assume that there is a constraint Tn
?
` xn and a constraint xn

?
∈ Bd(Tn, un) in C.

We have shown that vars(Tn ∪ {un}) ⊆ {x1, . . . , xn−1}. We let w0 ∈ Tn and, for any

k ≥ 1, we let wk = bk(unθ, w0θ, . . . , w0θ). Then, by well-formedness of C, (C r {Tn
?
`

xn}) |= Tn
?
` un, hence Tnθ ` unθ and therefore Tnθ ` wk for every k. Furthermore,

wk ∈ Bd(Tnθ, unθ) for every k. For at least one 1 ≤ k0 ≤ m + 1, wk0 /∈ {v1, . . . , vm}.
Let σ = θ∪{xn 7→ wk0}. Then Tnσ ` xnσ, xnσ ∈ Bd(Tnσ, unσ) and tjσ is distinct from
ujσ for every j. �

6. Transformation rules

The constraint solving rules are displayed in Figure 4. The rules Rax,Rtriv,Rf,Rbd,Rget,
and Rbdsgn will be applied when the corresponding inference rules end the proof of an unsolved

14

Rax : T
?
` u > if u ∈ T r X

Rtriv : T
?
` x ∧ T ′

?
` x T

?
` x if T ⊆ T ′

Rf : T
?
` f(t1, . . . , tn) T

?
` t1, . . . , T

?
` tn f ∈ {sign, blind}

Rbd : T
?
` v T

?
` blind(v, u) ∧ T

?
` u if blind(v, u) ∈ st(T)

Rget : T
?
` v T

?
` sign(v, u) if sign(v, u) ∈ st(T)

Rbdsgn : T
?
` sign(v, u) T

?
` sign(w, u) ∧ w

?
∈ Bd(T, v) if sign(w, u) ∈ st(T)

RA : T
?
` x ∧ x

?
∈ Bd(T ′, v) T

?
` x ∧ T

?
` v ∧ x

?
∈ Bd(T, v) if T (T ′

RB : T
?
` x ∧ x

?
∈ Bd(T ′, v) T

?
` x ∧ T

?
` w ∧ x

?
∈ Bd(T,w) ∧ w

?
∈ Bd(T ′, v)

if T (T ′ and w ∈ st(T)

RC : T
?
` x ∧ x

?
∈ Bd(T, v) ∧ x

?
∈ Bd(T, v′) T

?
` x ∧ x

?
∈ Bd(T, v) ∧ v

?
∈ Bd(T, v′)

if Tx = T

Figure 4: Transformation rules

deducibility constraint. Note that Rbdsgn introduces a membership constraint, that captures
the infinite set of inference rules unbdsignn, n ≥ 1. Furthermore, the rules RA,RB,RC trans-
form membership constraints. The rule RA will be applied when a membership constraint can
be satisfied with a smaller set of hypotheses. The rule RB will be applied when only a part of
a membership constraint can be satisfied with a smaller set of hypotheses. Finally, the rule
RC will be applied when two membership constraints overlap.

Implicitly in what follows, every set of elementary constraints obtained after applying
a transformation rule is put in simplified form. We show soundness (see Section 6.1) and
completeness (see Section 6.3) of our set of transformation rules. We also show that the
notion of well-formedness introduced in the previous section is an invariant (see Section 6.2).

6.1. Soundness

We show that our rules transform a constraint system into a constraint system (Lemma 6)
and we show in Lemma 7 that our rules are sound, i.e. when C C′, we have that Sol(C′) ⊆
Sol(C).

Lemma 6. The rules of Figure 4 transform a constraint system into a constraint system, i.e.
if C is a simplified constraint system and C C′ then C′↓S is a constraint system. Moreover,
we have that st(C′↓S) ⊆ st(C).

Proof. Let C be simplified constraint system and C′ be such that C C′. We want to
show that C′ is a constraint system. First, it is clear that monotonicity and origination are
preserved. Now, let us check that the condition stated in Definition 4 for variables is also
satisfied. The rule Rf does not cause any trouble. The rules Rax, Rtriv, Rbd, and Rget affect only

15

elementary constraints that do not introduce variables for the first time. If the rule Rbdsgn is

applied, then even if the additional membership constraint w
?
∈ Bd(T, v) introduces a variable

for the first time, we have that Ty (T for each y ∈ vars(w) since w ∈ st(T). This allows
us to conclude in this case. In case of RA (resp. RB), the additional membership constraint
on x does not introduce any variable because of the presence of the deducibility constraint

T
?
` v (resp. T

?
` w). In case of RB, assume that the membership constraint w

?
∈ Bd(T ′, v)

introduces a variable. We have that Ty (T (T ′ for each y ∈ vars(w). This is due to the fact
that w ∈ st(T). In case of RC, the additional membership constraint satisfies the requirement
since v′ can not introduce any variable. Indeed, otherwise, we would have that the sytem
on which we apply this rule does not satisfy the condition on membership constraint. This
allows us to conclude that C′ is a constraint system. Then, we deduce that C′↓S is a constraint
system thanks to Corollary 2. Moreover, if C ∗ C′, it is clear that st(C′) ⊆ st(C) since the
rules never introduce a new subterm. �

Lemma 7 (soundness). Let D be a set of elementary constraints in simplified form and D′
be a set of constraints such that D D′. We have that Sol(D′↓S) ⊆ Sol(D).

Proof. Let R be the transformation rule used in the step D D′ and σ ∈ Sol(D′↓S). First,
thanks to Lemma 3, we have that σ ∈ Sol(D′). Then we show that σ ∈ Sol(D) by case
analysis on R.

Case Rax, Rtriv, Rf, Rbd, Rget, and Rbdsgn: The proof trees witnessing the fact that σ ∈ Sol(D)
are easily obtained from those witnessing the fact that σ ∈ Sol(D′).
Case RA: The proof trees witnessing the fact that σ ∈ Sol(D′) can be used to show that

σ ∈ Sol(D). The proof tree witnessing T
?
` v is even not useful for that.

Case RB: We have to group together the sequences of proof trees witnessing xσ
?
∈ Bd(Tσ,wσ)

and wσ
?
∈ Bd(T ′σ, vσ) in order to obtain a witness of the fact that xσ ∈ Bd(T ′σ, vσ).

Case RC: We have to group together the sequences of proof trees witnessing xσ
?
∈ Bd(Tσ, vσ)

and vσ
?
∈ Bd(Tσ, v′σ) in order to show that xσ ∈ Bd(Tσ, v′σ). �

From the lemma above, we easily derive the following result.

Proposition 1 (soundness). Let D and D′ be two sets of elementary constraints in simpli-
fied form. If D ∗ D′ and σ ∈ Sol(D′) then σ ∈ Sol(D).

6.2. Well-formed

The goal of this section is to show that our rules transform a well-formed constraint system
into a well-formed constraint system. To establish this invariant, we first prove some useful
properties. Proofs of Lemma 8 and Proposition 2 are detailed in Appendix C.

Lemma 8 (property of ≤D). Let D and D′ be two sets of constraints in simplified form
such that D D′ and D′ 6= ⊥. We have that ≤D ⊆ ≤D′.

Proposition 2. Let D and D′ be two sets of constraints in simplified form such that D D′,
and V ⊆ vars(D). We have that D′≺V |= D

≺
V .

16

Proposition 3. Let C be a simplified constraint system that is well-formed and such that
C C′. Then C′↓S is a well-formed constraint system.

Proof.
We consider each possible transformation rule applied on C and show that each member-

ship constraint M = x
?
∈ Bd(T, u) in C′↓S is such that:

• either Tx (T ,

• or Tx = T and (C′↓S)�V |= (T
?
` u) where V = vars(T ∪ {u}).

Let us first consider a membership constraint M = x
?
∈ Bd(T, u) that is also in C. If

we have that Tx (T in the constraint system C then Tx (T also holds in the constraint

system C′↓S and we conclude. Otherwise, we have that Tx = T (in C) and C�V |= (T
?
`

u). Applying Proposition 2 we deduce that (C′↓S)�V |= C
�
V , and thus (C′↓S)�V |= (T

?
` u).

Therefore, in the following, we concentrate only on membership constraints that are in C′↓S
and not in C.

• Rules Rax, Rtriv, Rf, Rbd and Rget. There are no new membership constraints. Hence,
we easily conclude.

• Rule Rbdsgn. We have that C′ = (C r {T
?
` sign(v, u)}) ∪ {T

?
` sign(w, u), w

?
∈ Bd(T, v)}

with sign(w, u) ∈ st(T). Since w ∈ st(T), we have that Ty (T for every y ∈ vars(w).
This allows us to conclude.

• Rule RA. We have that C′ = (Cr {x
?
∈ Bd(T ′, v)})∪{T

?
` v, x

?
∈ Bd(T, v)} with T (T ′.

Clearly, we have that (C′↓S)�V |= (T
?
` v).

• Rule RB. We have that C′ = (C r {x
?
∈ Bd(T, v′)}) ∪ {T

?
` w, x

?
∈ Bd(T,w), w

?
∈

Bd(T ′, v)}. We have that Ty (T ′ for every y ∈ vars(w) and T
?
` w is in C′. This allows

us to conclude.

• Rule RC. We have that C′ = (C r {x
?
∈ Bd(T, v′)}) ∪ {v ∈ Bd(T, v′)}. Using Tx = T

and x
?
∈ Bd(T, v′) in C (well-formed), we deduce that C�V ′ |= (T

?
` v′) where V ′ =

vars(T ∪ {v′}). Thus, thanks to Proposition 2, (C′↓S)�V ′ |= (T
?
` v′). This allows us to

conclude. �

6.3. Completeness

We prove here that, for any solution σ of an unsolved constraint system C, there is a rule
such that C rewrites to a constraint C′ for which σ is a solution. Moreover, the simple proofs
in C′ witnessing the solution σ are smaller than the corresponding witness proofs in C.

In the remainder we consider a constraint system C and we let T1 ⊆ T2 ⊆ . . . ⊆ Tn be
the sequence of left members of deducibility constraints. When we consider a simple proof of

17

Tσ
?
` uσ for T

?
` u ∈ C, we refer to the sequence T1σ ⊆ . . . ⊆ Tnσ. Given a set of terms T , we

denote by C(T) the elementary constraints in C that have T as associated set of terms, i.e.

C(T) = {C ∈ C | C = T
?
` u or C = v

?
∈ Bd(T, u) for some terms u, v}

Let C be an unsolved simplified constraint system. We denote by Tmin the minimal (w.r.t.

inclusion) set of terms such that
⋃

Ti⊆Tmin

C(Ti) is unsolved. Let S ⊆ C(Tmin) be a maximal set

of constraints such that
⋃

Ti(Tmin

C(Ti)∪S is solved. Note that S is not necessarily unique and

we consider any set among the possible ones. Then, we define MC = C(Tmin) r S to be the
minimal unsolved constraints of C.

Example 6. Consider the constraint system C1 given in Example 4. This system is un-

solved. C1({a}) = C1, and Tmin = {a}. For MC, there are two possibilities: MC = {x
?
∈

Bd({a}, blind(a, a))} or MC = {x
?
∈ Bd({a}, a)}.

To establish completeness, we first lift Lemma 1 to deal with deducibility constraints with
variables.

Lemma 9. Let C be an unsolved constraint system. Let σ ∈ Sol(C) and t be a term such
that Tminσ ` t. Let P be a simple proof of Tminσ ` t. If P is reduced to a leaf or ends with a
decomposition rule, then there exists u ∈ st(Tmin) r X such that uσ = t.

Proof. We know that Tminσ ` t. Let i0 be the minimal indice we need to consider to have
that Ti0σ ` t. Since P is simple, P is also a simple proof of Ti0σ ` t. Thanks to Lemma 1,
we have that t ∈ st(Ti0σ). Now, we show that t ∈ (st(Ti0) r X)σ. Note that Ti0 ⊆ Tmin. We
consider two cases:

Case: i0 = 1. In such a case, we have that T1σ ` t. By definition of a constraint system, we
know that T1 is a set of ground terms. Hence, we have that t ∈ (st(T1)rX)σ since t ∈ st(T1)
and (st(T1) r X)σ = st(T1).

Case i0 > 1: In such a case, either t ∈ (st(Ti0) rX)σ and we easily conclude. Otherwise, we
have that t ∈ st(xσ) for some x ∈ vars(Ti0). Let us consider such a variable x with Tx (Ti0

minimal. Then, by definition of Tmin we know that there exists Tx
?
` x ∈ C and thus we have

that Txσ ` xσ. By corollary 1, either t ∈ st(Txσ), or else we have Txσ ` t. In the latter
case, we condradict the minimality of i0, since Tx (Ti0 . In the former case, we have either
t ∈ (st(Tx) r X)σ, and we conclude, or else t ∈ st(yσ), for some y ∈ vars(Tx). By the choice
of x, the last case is impossible. Therefore, in all cases we conclude that t ∈ (st(Ti0) r X)σ,
and thus t ∈ (st(Tmin) r X)σ. �

Let C be a constraint system, σ ∈ Sol(C) and P1, . . . , Pk be a sequence of simple proofs
witnessing the fact that σ is indeed a solution of C. The witness for a deducibility constraint
is a single proof, whereas the witness for a membership constraint is a sequence of proofs.
Let µ(Cσ) be the multiset of pairs (T, n) (one for each Pi) where:

• T is the set of terms that occur in the constraint we consider;

18

• n is the number of nodes in Pi.

Multisets are ordered according to the multiset extension of the orderings on their elements.
Pairs are ordered lexicographically.

We are now able to prove the following propositions. The proofs are given in Appendix D.
The tables below show which rule has to be applied depending on the situation.

Proposition 4 (completeness - deducibility constraint). Let C↓S be an unsolved con-
straint system such that MC↓S contains a deducibility constraint. Let σ ∈ SolNC(C↓S). There
exists a constraint system C′ such that C↓S C′, σ ∈ SolNC(C′) and µ(C′σ) < µ(C↓Sσ).

C↓S contains MC↓S contains C Last rule in the proof P Rule
among others witness of C

T
?
` x T ′

?
` x Rtriv

T
?
` u axiom Rax

T
?
` f(u1, u2) sign, blind Rf

T
?
` u unblind Rbd

T
?
` u getmsg Rget

T
?
` sign(u1, u2) unbdsign Rbdsgn

Proposition 5 (completeness - membership constraint). Let C↓S be an unsolved con-
straint system such that MC↓S only contains membership constraints. Let σ ∈ SolNC(C↓S).
There exists a constraint system C′ such that C↓S C′, σ ∈ SolNC(C′) and µ(C′σ) < µ(C↓Sσ).

T
?
` x x

?
∈ Bd(T ′, u) with T (T ′ T ′ can be weakened to T RA

in all the side proofs

T
?
` x x

?
∈ Bd(T ′, u) with T (T ′ T ′ can be weakened to T RB

in some of the side proofs

T
?
` x x

?
∈ Bd(T, u) RC

x
?
∈ Bd(T,w)

Corollary 4. Let C be a pure constraint system in simplified form and σ ∈ SolNC(C). There
exists a constraint system C′ in solved form such that C ∗ C′ (by a derivation of a finite
length) and σ ∈ SolNC(C′).

Proof. We show this result by induction on µ(Cσ). Note that the ordering < that we use to
compare µ(Cσ) and µ(C′σ′) is well-founded, as it is based on multiset extension and lexico-
graphic composition of well-founded orderings.

Base case: µ(Cσ) = ∅. In such a case, C = ∅ and thus in solved form. We easily conclude.

19

Induction step: µ(Cσ) 6= ∅. Either C is in solved form and we easily conclude. Otherwise, we
consider its first unsolved constraint and depending on whether this constraint is a deducibility
constraint or a membership constraint, we apply Proposition 4 or Proposition 5. We deduce
that there exists C′′ such that C C′′, σ ∈ SolNC(C′′) and µ(C′′σ) < µ(Cσ). Thanks to
Lemma 3, we deduce that σ ∈ SolNC(C′′↓S), and it is easy to check that our measure µ does
not increase when we apply the simplification rules, i.e. µ(C′′↓Sσ) ≤ µ(C′′σ). Altogether, this
allows us to conclude. �

7. Decision procedure

Given two substitutions σ and θ, their composition is a substitution denoted by σ ◦ θ and
defined by x(σ ◦ θ) = (xθ)σ, for all variable x. Given a set of equations E, we denote by
mgu(E) its most general unifier: mgu(E) is a solution of E and for all solution σ of E there
is a substitution σ′ such that σ = σ′ ◦mgu(E).
Let C0 be a pure constraint system. Our simplification procedure works as follows:

1. Guess a set of equalities E between subterms of C0. Solve E: let θE be a mgu of E (if
there is no solution, then return ⊥).

2. Apply non-deterministically the transformation rules (Figure 4) and simplification rules
(Figure 3) on each CθE until either a solved form is reached or a loop is detected (i.e.
C ∗ C with a derivation of length at least one), in which case we return ⊥.

Considering all possible non-deterministic choices that do not yield ⊥, the procedure
computes solve(C0) a finite set of pairs (Ei, Ci) such that every Ci is in solved form.

Theorem 1. The procedure described above is sound (any solution of an output pair is a
solution of the input), complete (any solution of the input is a solution of some output pair)
and terminates.

Thanks to Theorem 1 and Lemma 5, deciding whether a constraint system is satisfiable
amounts to decide the existence of a solved form. The proof of Theorem 1 is summarized in
sections 7.1 and 7.2.

7.1. Guessing equalities

As a first step, we guess all equalities between subterms of a constraint system C. This
might not be the best way if we want to implement the constraint solving procedure, as we
would immediately get an exponential branching. However, it simplifies a lot the presentation
and the proofs.

Formally, given a pure constraint system C0, we guess an equivalence relation ≈ on st(C0).
Then we consider the unification problem

∧
s≈t

s = t. Let θ be a mgu of this set of equations (if

any), which does not introduce new variables. Then we consider the pure constraint system
C0θ. Note that this is indeed a constraint system.

We show that we can restrict ourselves to solutions that do not map two distinct subterms
of the constraint system to the same term.

Lemma 10. Let C be a constraint system and σ ∈ Sol(C). There exists an equivalence
relation ≈ on st(C) and σ′ ∈ SolNC(Cθ) such that σ = σ′ ◦ θ where θ = mgu(

∧
s≈t s = t).

20

Proof. Let σ be a solution of C. We let ≈ be the equivalence relation on st(C) defined by
t ≈ u if, and only if, tσ = uσ. Let σ≈ be the most general unifier of

∧
s≈t s = t. By definition

of the mgu, there is a substitution σ′ such that σ = σ′ ◦σ≈, which implies that σ′ is a solution
of Cσ≈. Now, in order to show that σ′ ∈ SolNC(Cσ≈), it remains to show that σ′ is non-
confusing. We use the following observation: if τ is a mgu of u, v which does not introduce
any new variable, then, for every variable x ∈ vars(u, v), xτ ∈ (st({u, v}) r X)τ .

Let t ∈ st(Cσ≈). We want to show that t ∈ st(C)σ≈. We have that either t ∈ st(C)σ≈
or there is a variable x such that t ∈ st(xσ≈). In the latter case, let {x1, . . . , xn} ⊆ vars(C)
such that t ∈ st(xiσ≈). Note that n ≥ 1. Let i0 be an indice in {1, . . . , n} such that xi0σ≈ is
minimal w.r.t. the subterm ordering among {x1σ≈, . . . , xnσ≈}. Thanks to our observation, we
have in particular that xi0σ≈ ∈ (st(C) rX)σ≈. Hence, there exists ti0 ∈ st(C) rX such that
ti0σ≈ = xi0σ≈. If t = xi0σ≈ then we easily conclude. Otherwise, we have that t ∈ st(y)σ≈
for some variable y ∈ st(ti0). Hence, yσ≈ ∈ st(xi0σ≈) with t ∈ st(yσ≈). This contradicts the
choice of the indice i0.This case is impossible.

So, for any t, u ∈ st(Cσ≈), there are t0, u0 ∈ st(C) such that t = t0σ≈ and u = u0σ≈.
Then, tσ′ = uσ′ implies t0σ = u0σ, hence t0 ≈ u0 and therefore t0σ≈ = u0σ≈, yielding t = u.

�

7.2. Soundness, completeness, and termination

Termination. We cannot expect termination without any restriction on the application of the
rules: this is quite straightforward if we consider rules Rf and Rbd only. We could avoid non-
termination by a careful control on the rules. This would however require a heavy machinery.
We prefer to keep a non-terminating system. Indeed, since the set of subterms is bounded
by the subterms of the original system, there is a finite number of simplified systems and
any non-terminating sequence must include a loop. Then getting a terminating system (yet
complete and correct) is easy: simply cut-off looping branches.

Soundness. If (E, Cs) is a pair returned by our procedure, and σ is a solution of Cs, then there
exists θ an mgu of E. Let C1 = C0θ. C1 is a pure constraint system and thus C1 is well-formed.
C1 ∗ Cs by a derivation of a finite length.Thanks to Proposition 1, σ ∈ Sol(C1) and thus
σ ◦ θ ∈ Sol(C0).

Completeness. Let σ ∈ Sol(C0). By Lemma 10, there exists an equivalence relation ≈ on
st(C0) and σ′ ∈ SolNC(C0θ) such that θ = mgu(E) where E =

∧
s≈t s = t. We compute such a

system C0θ during our first step. Let σ = σ′ ◦ θ and C1 = C0θ. C1 is a pure constraint system.
Now, we apply our transformation rules and thanks to Corollary 4, there exists Cs in solved
form such that C1 ∗ Cs and σ′ ∈ SolNC(Cs). Then σ = σ′ ◦ θ is a solution of (E, Cs).

Complexity. Our procedure does not aim to achieve the best computation time, but leaves
instead some flexibility in the choice of the simplification strategy. The size of a constraint
system obtained after any transformation sequence is bounded by a polynomial in the size of
the original system (provided we keep a DAG representation of terms). However, our termina-
tion proof only shows an exponential upper bound in the length of a transformation sequence,
because there are, a priori, exponentially many constraint systems that are built using the
subterms of the original system only. Furthermore, our procedure is non-deterministic in
many respects. In summary, we can only derive a non-deterministic exponential upper bound
on the complexity, but we conjecture that a careful design of the strategy would yield a NP
decision procedure.

21

7.3. Application to trace properties

Secrecy is a trace property that can be expressed by a constraint system C. However, to
handle more general trace properties, for instance agreement [10], we consider a first-order
formula φ, whose free variables may contain some of the free variables of C. The formula φ
is interpreted over the same domain as C, that is the set of first-order terms. Then, the
conjunction C ∧ ¬φ expresses the existence of an attack against the desired property φ.

Corollary 5. The satisfiability of C ∧ ¬φ is decidable.

Indeed, it suffices to solve first ¬φ (using for instance the algorithm of [9]), getting finitely
many formulas of the form:

∃~z. x1 = t1 ∧ . . . ∧ xn = tn ∧ u1 6= v1 ∧ . . . ∧ um 6= vm

Then replace xi with ti in C, guess the equalities of C to obtain a substitution θ and compute
the corresponding solved forms of Cθ. We conclude using Lemma 5: there is an attack if, and
only if, there is a solved form for which no disequality became a trivial equality uiθ = viθ.

Trace properties, that are defined in other logics (such as the absence of key cycles or the
absence of timing attacks) can also benefit from the solved form computation, as demonstrated
in [10].

8. Application to homomorphic encryption

We sketch here another example of security primitive, for which we can compute solved
forms in the same way as we did for blind signatures. We consider the Dolev-Yao inference
rules for symmetric encryption, however using an ECB encryption mode (or a homomor-
phic encryption). For such an encryption mode, the attacker may retrieve the encrypted
components of a pair from the encryption of the pair itself:

T ` enc(〈x1, x2〉, y)

T ` enc(x1, y)

T ` enc(〈x1, x2〉, y)

T ` enc(x2, y)

Again, such rules impair the locality property.

enc(〈〈u, v〉 , w〉 , k)

enc(〈u, v〉 , k)

enc(v, k)

contains an intermediate step enc(〈u, v〉 , k), which is neither a subterm of the hypotheses, nor
a subterm of the conclusion. By saturation, we get however, together with the classical Dolev-
Yao inference rules, the infinite local deduction system displayed in Figure 5. We denote by
P(T, u) the least set S of terms that contains u and such that, for every v, 〈u, v〉 and 〈v, u〉
are in S when u ∈ S. The rules enc, pair , and hom are called compositions, whereas the rules
dec, proj l, and proj r are called decompositions.

We consider a proof normalization procedure (see Figure 6), that allows one to consider
only proofs that have the subformula property. The following lemma and corollary still hold
in this case.

22

Rule enc Rule dec Rule proj l Rule proj r

T ` u T ` v

T ` enc(u, v)

T ` enc(u, v) T ` v

T ` u

T ` 〈u, v〉

T ` u

T ` 〈u, v〉

T ` v

Rule pair Rule hom

T ` u T ` v

T ` 〈u, v〉
T ` enc(u1, v)

for any u1 ∈ P(T, u2)
T ` enc(u2, v)

Figure 5: Deduction rules for a homomorphic encryption mode

Lemma 11 (locality). Let T be a set of terms and v be a term such that T ` v. Let P be
a normal proof of T ` v. The proof P only contains terms in st(T ∪ {v}). Moreover, if P is
reduced to a leaf or ends with a decomposition rule then v ∈ st(T).

Corollary 6. Let T be a set of terms and v be a term such that T ` v. Let u ∈ st(v). Either
u ∈ st(T) or there exists a normal proof of T ` u that ends with a composition rule.

The notion of simple proof is defined in the same way and we can show the following
lemma.

Lemma 12. Let T1 ⊆ T2 ⊆ . . . ⊆ Tn be a sequence of sets of terms. If Ti ` u for some
i ∈ {1, . . . , n}, then there is a simple proof of Ti ` u.

We consider two different kinds of elementary constraints:

• a deducibility constraint is a constraint of the form T
?
` u

• a membership constraint is a constraint of the form v
?
∈ P(T, u).

The definition of constraint system is similar to the one given for blind signatures. It
is obtained by replacing Bd(T, u) with P(T, u). The notion of solutions and non-confusing
solutions is adapted to this case.

The membership constraints are simplified according to the simplification rules given in
Figure 7. A difference with blind signatures is the fact that the simplified form of a constraint
system C is not unique, so C↓S denotes a set of constraint systems.

Lemma 13. Simplification rules described in Figure 7 transform a constraint system into a
constraint system, i.e. if C is a simplified constraint system and C C′ then C′↓S is a set of
constraints system. Moreover, we have that st(C′↓S) ⊆ st(C).

The notion of solved forms is similar, however allowing several membership constraints
for the same variable:

Definition 9 (solved form). A constraint system C = {C1, . . . , C`} is in solved form if:

each Ci is either of the form Ti
?
` xi or of the form xi

?
∈ P(Ti, ui) where xi is a variable.

Moreover, for every x ∈ vars(C) there is a unique deducibility constraint T
?
` x ∈ C and every

membership constraint x
?
∈ P(T ′, v′) is such that T = T ′.

23

enc(u1, v)
u1 ∈ P(T, u2)

enc(u2, v)
u2 ∈ P(T, u3)

enc(u3, v)

−→
enc(u1, v)

u1 ∈ P(T, u3)
enc(u3, v)

enc(u1, v)
u1 ∈ P(T, u2)

enc(u2, v) v

u2

−→

enc(u1, v) v

u1··· (proj l/proj r)
u2

u1 v

enc(u1, v)
u1 ∈ P(T, u2)

enc(u2, v)

−→

u1··· (proj l/proj r)
u2 v

enc(u2, v)

u v

enc(u, v) v

u

−→ u

u1 u2

〈u1, u2〉

ui

−→ ui

Figure 6: Proof normalization rules for homomorphic encryption

Again, a constraint system in solved form is not necessarily satisfiable and we keep a
well-formedness invariant. Let D be a set of constraints in simplified form. We define ≤D
on vars(D) as the least relation closed by transitivity and reflexivity and such that:

x
?
∈ P(T, u) ∈ D and y ∈ vars(u) =⇒ y ≤D x.

This defines an ordering, which is extended into a quasi-ordering on sets of variables allowing
us to define the notion of well-formed constraint system as for blind signatures. We get:

Lemma 14. Any solved well-formed simplified constraint system C has at least one solution.
Moreover, if t1, . . . , tm, u1, . . . , um are sequences of terms such that, for every i, ti is distinct
from ui, then C ∧ t1 6= u1 ∧ · · · ∧ tm 6= um has a solution.

Then, we use the transformation rules of Figure 8 and get the same sequence of results as
for blind signatures.

Completeness. The proof is similar to the case of blind signatures. Note that the witness
for a deducibility constraint is a single proof, whereas the witness for a membership constraint
will be (by convention) a proof of size 0. To deal with membership constraints, we only have
the rule RA. Indeed, this rule will be sufficient to reach a solved form. The transformation
rule RC is not needed anymore since we allow several membership constraints of the form

x
?
∈ P(T, v1), . . . , x

?
∈ P(T, vn) in a solved form. Moreover, RB is not useful: it is always

possible to apply RA since the semantics of P(T, v) does not depend on its first argument.

24

Sax : u
?
∈ P(T, u) → >

Sleft : 〈u, v〉
?
∈ P(T,w) → u

?
∈ P(T,w) if 〈u, v〉 6= w

Sright : 〈u, v〉
?
∈ P(T,w) → v

?
∈ P(T,w) if 〈u, v〉 6= w

Sf : f(t1, . . . , tn)
?
∈ P(T, v) → ⊥ if f 6= 〈 〉 and f(t1, . . . , tn) 6= v

Scycle : x1
?
∈ P(T1, v1[x2]) ∧ . . . ∧ xn

?
∈ P(Tn, vn[x1]) → ⊥

if there exists i such that vi 6= ε or #{x1, . . . , xn} > 1

Figure 7: Simplification rules for homomorphic encryption

Rax : T
?
` u > if u ∈ T r X

Rtriv : T
?
` x ∧ T ′

?
` x T

?
` x if T ⊆ T ′

Rf : T
?
` f(t1, . . . , tn) T

?
` t1, . . . , T

?
` tn f ∈ {〈 〉, enc}

R〈 〉 : T
?
` ui T

?
` 〈u1, u2〉 if 〈u1, u2〉 ∈ st(T)

Rdec : T
?
` v T

?
` enc(v, u) ∧ T

?
` u if enc(v, u) ∈ st(T)

Rhomenc : T
?
` enc(v, u) T

?
` enc(w, u) ∧ w

?
∈ P(T, v) if enc(w, u) ∈ st(T)

RA : T
?
` x ∧ x

?
∈ P(T ′, v) T

?
` x ∧ T

?
` v ∧ x

?
∈ P(T, v) if T (T ′

Figure 8: Transformation rules for homomorphic encryption

Proposition 6 (completeness). Let C↓S be an unsolved constraint system. Let σ ∈ SolNC(C↓S).
There exists a constraint system C′ such that C↓S C′, σ ∈ SolNC(C′) and µ(C′σ) < µ(C↓Sσ).

Theorem 2. There is a procedure that is terminating, sound, complete, and that transforms
any pure constraint system into a finite set of well-formed solved forms.

Corollary 7. The satisfiability of C ∧ φ, where C is a pure constraint system and φ is a
first-order formula with equality, is decidable for homomorphic encryption.

9. Conclusion

We claim that the key property of the inference system, that allows one to solve the
deducibility constraints, is locality. Given an inference system, the general procedure then
consists in completing the inference rules into a local inference system. When such a system is
infinite, we need additional abstractions and constraint solving rules. We have shown in this
paper that this is possible, in the case study of blind signatures. We demonstrated that the
method is general enough, by giving another example of application. It remains to provide

25

C↓S contains MC↓S contains C Last rule in the proof P Rule
among others witness of C

T
?
` x T ′

?
` x Rtriv

T
?
` u axiom Rax

T
?
` f(u1, u2) enc, pair Rf

T
?
` u proj l, proj r R〈 〉

T
?
` u dec Rdec

T
?
` enc(u1, u2) hom Rhomenc

T
?
` x x

?
∈ P(T ′, u) with T (T ′ RA

Figure 9: Summary: completeness proof

with a general way of abstracting some classes of infinite inference systems, that would be
amenable to deducibility constraint solving.

Acknowledgements. This work has been partially supported by the ANR projects PROSE
and JCJC VIP no 11 JS02 006 01.

[1] M. Abadi and C. Fournet. Mobile values, new names, and secure communication. In
POPL, pages 104–115, 2001.

[2] D. Basin and H. Ganzinger. Automated complexity analysis based on ordered resolution.
Journal of the Association of Computing Machinery, 48(1):70–109, January 2001.

[3] V. Bernat and H. Comon-Lundh. Normal proofs in intruder theories. In Proceedings
of the 11th Asian Computing Science Conference (ASIAN’06), volume 4435 of LNCS.
Springer, 2008.

[4] S. Bursuc, S. Delaune, and H. Comon-Lundh. Deducibility constraints. In Proceedings
of the 13th Asian Computing Science Conference (ASIAN’09), volume 5913 of LNCS,
pages 24–38. Springer, 2009.

[5] D. Chaum. Blind signature system. In D. Chaum, editor, CRYPTO, page 153. Plenum
Press, New York, 1983.

[6] Y. Chevalier, R. Kuester, M. Rusinowitch, and M. Turuani. An NP decision procedure
for protocol insecurity with XOR. In Proceedings of the 18th Annual IEEE Symposium
on Logic in Computer Science (LICS’03). IEEE Computer Society Press, 2003.

[7] Y. Chevalier, R. Küsters, M. Rusinowitch, and M. Turuani. Deciding the security of
protocols with Diffie-Hellman exponentiation and products in exponents. In Proceedings
of the 23rd Conference on Foundations of Software Technology and Theoretical Computer
Science (FST&TCS’03), volume 2914 of LNCS. Springer, 2003.

26

[8] Y. Chevalier and M. Rusinowitch. Symbolic protocol analysis in the union of disjoint
intruder theories: Combining decision procedures. Theor. Comput. Sci., 411(10):1261–
1282, 2010.

[9] H. Comon and P. Lescanne. Equational Problems and Disunification. Journal of Symbolic
Computation, 7:371–425, 1989.

[10] H. Comon-Lundh, V. Cortier, and E. Zalinescu. Deciding security properties of crypto-
graphic protocols. Application to key cycles. Transaction on Computational Logic, 11(2),
2010.

[11] H. Comon-Lundh and V. Shmatikov. Intruder deductions, constraint solving and in-
security decision in preence of exclusive or. In Proceedings of the 18th Annual IEEE
Symposium on Logic in Computer Science (LICS’03). IEEE Computer Society Press,
2003.

[12] S. Delaune, S. Kremer, and M. D. Ryan. Symbolic bisimulation for the applied pi calculus.
Journal of Computer Security, 18(2):317–377, Mar. 2010.

[13] S. Delaune, P. Lafourcade, D. Lugiez, and R. Treinen. Symbolic protocol analysis for
monoidal equational theories. Information and Computation, 206(2-4):312–351, 2008.

[14] A. Fujioka, T. Okamoto, and K. Ohta. A practical secret voting scheme for large scale
elections. In J. Seberry and Y. Zheng, editors, AUSCRYPT, volume 718 of Lecture Notes
in Computer Science, pages 244–251. Springer, 1992.

[15] S. Kremer and M. D. Ryan. Analysis of an electronic voting protocol in the applied pi-
calculus. In Proceedings of the 14th European Symposium on Programming (ESOP’05),
volume 3444 of LNCS, pages 186–200. Springer, 2005.

[16] D. McAllester. Automatic recognition of tractability in inference relations. Journal of
the ACM, 40(2), 1993.

[17] J. Millen and V. Shmatikov. Constraint solving for bounded-process cryptographic pro-
tocol analysis. In Proceedings of the 8th ACM Conference on Computer and Communi-
cations Security, 2001.

[18] J. Millen and V. Shmatikov. Symbolic protocol analysis with an abelian group operator
or Diffie-Hellman exponentiation. Journal of Computer Security, 13(3):515–564, 2005.

[19] M. Rusinowitch and M. Turuani. Protocol insecurity with finite number of sessions
is np-complete. In Proceedings of the 14th Computer Security Foundations Workshop
(CSFW’01). IEEE Computer Society Press, 2001.

[20] M. Rusinowitch and M. Turuani. Protocol insecurity with a finite number of sessions,
composed keys is NP-complete. Theoretical Computer Science, 1-3(299):451–475, 2003.

[21] V. Shmatikov. Decidable analysis of cryptographic protocols with products and mod-
ular exponentiation. In Proceedings of the 13th European Symposium on Programming
(ESOP’04), volume 2986 of LNCS. Springer, 2004.

[22] A. Tiu, R. Goré, and J. E. Dawson. A proof theoretic analysis of intruder theories.
Logical Methods in Computer Science, 6(3), 2010.

27

Appendix A. Existence of simple proofs

Lemma 2. Let T1 ⊆ T2 ⊆ . . . ⊆ Tn be a sequence of sets of terms. If there is a proof of
Ti ` u for some i ∈ {1, . . . , n}, then there is a simple proof of Ti ` u w.r.t. T1, . . . , Tn.

Given a proof π of Ti ` u that is not necessarily left-minimal, level(π) = j when π is
reduced to an axiom and j is the minimal indice such that u ∈ Tj . Otherwise level(π) =
max(level(π1), . . . , level(πn)) where π1, . . . , πn are the direct subproofs of π.
Proof. We prove the result by induction on the pair (i,m) (considering the lexicographic
ordering) where i = level(π) and m is the size of the proof π.

Case i = 1: Let π′ be the proof obtained after applying the normalisation rules on π. We
have that level(π′) = 1 and thus π′ is left-minimal and in normal form.

Case i > 1 and there is j < i such that Tj ` u: Let π′ be a proof of Tj ` u. In such a case,
we apply our induction hypothesis on π′ to obtain the existence of a simple proof of Tj ` u.
This proof is also a simple proof of Ti ` u.

Case i > 1 and there is no j < i such that Tj ` u: In such a case, we apply our induction
hypothesis on the immediate subproofs π1, . . . , πn of the proof π of Ti ` u. Let π′1, . . . , π

′
n be

the resulting simple proofs. If π is obtained by applying an inference rule R to π1, . . . , πn then
let π′ be the proof obtained by applying R to π′1, . . . , π

′
n. Note that π′ is left-minimal but not

necessarily in normal form. However, all its subproofs are in normal form. We distinguish
several cases depending on the inference rule R:

Case 1. R is blind or sign: in such a case the proof π′ is in normal form and we easily
conclude.

Case 2. R is unblind : Either π′1 ends with an application of the rule blind , and after one
normalisation step, we obtain a subproof of π′1 that is a simple proof. Otherwise, the proof π′

was already in normal form.

Case 3. R is getmsg : if π′ is already in normal form, we conclude. If π′1 ends with an
instance of sign we easily conclude since after application of one normalisation rule, we ob-
tain a proof in normal form and that is still left-minimal. Otherwise, if π′1 ends with an
instance of unbdsign, we reach a normal form after application of the normalisation rule
(unbdsign /getmsg). This can be shown by inspecting the normalisation rules. However, the
resulting proof is not necessarily left-minimal because of the “new” intermediate nodes. Let
sign(bn(u, v1, . . . , vn), v) be the term labeling the root of π′1. The “new” intermediate nodes
are labeled with bk(u, v1, . . . , vk) for some k ∈ {1, . . . , n}. We have that Ti ` bk(u, v1, . . . , vk)
for any 1 ≤ k ≤ n. Let k be the smallest integer such that Tj ` bk(u, v1, . . . , vk) for some
j < i. If such a k does not exist, this means that the proof π′ is left-minimal. Otherwise, there
exists k and j < i such that Tj ` bk(u, v1, . . . , vk). By relying on our induction hypothesis, we
know that there exists π0 a simple proof of Tj ` bk(u, v1, . . . , vk). We have also some simple
proofs πs1, . . . , π

s
k of Ti ` v1, . . . , Ti ` vk. The proof obtained by applying several instances of

unblind on π0 with πsk, . . . , πs1 yields to a proof of Ti ` u that is simple. Indeed, the proof is
left-minimal. The proof is also in normal form since π0 can not end with an instance of blind .
Otherwise, this would mean that Tj ` bk−1(u, v1, . . . , vk−1) and thus k was not minimal.

Case 4. R is unbdsign and u = sign(u0, v0): Either π′ is in normal form or π′1 ends with an
instance of R1 that is either unbdsign or sign.

28

• R1 is unbdsign. We can apply the corresponding normalisation rule, we obtained a proof
in normal form and we do not introduce “new strict subproofs”. Thus all the subproofs
are left-minimal and since there is no j < i such that Tj ` u, we can not “improve the
level for the root”.

• R1 is sign. Assume that the root of π′1 is labeled with sign(bn(u0, v1, . . . , vn), v0). Let π′′

be the proof obtained from π′ after normalisation. After application of the normalisation
rule (sign/ unbdsign), the only rule that is applied to reach such a normal form is (blind
/unblind). Subproofs that occur in π′′ and not in π′ are labeled with bp(u0, v1, . . . , vp) for
some p ∈ {1, . . . , n}. Moreover, we have that Ti ` bk(u0, v1, . . . , vk) for any 1 ≤ k ≤ n.
Let k be the smallest integer such that Tj ` bk(u0, v1, . . . , vk) for some j < i. If Tj ` u0
for some j < i, we will consider, by convention, that k is equal to 0. If such a k does
not exist, this means that the proof π′′ is left-minimal. Otherwise, there exists k and
j < i such that Tj ` bk(u0, v1, . . . , vk). By relying on our induction hypothesis, we know
that there exists π0 a simple proof of Tj ` bk(u0, v1, . . . , vk). (When k = 0, this means
that we have a simple proof of Tj ` u0). We have also some simple proofs πs1, . . . , π

s
k of

Ti ` v1, . . . , Ti ` vk. The proof obtained by applying several instances of unblind on π0
with πsk, . . . , πs1 yields to a proof of Ti ` u0 that is simple. Let πL be the resulting proof.
Indeed, the proof is left-minimal. The proof is also in normal form since π0 can not end
with an instance of blind . Otherwise, this would mean that Tj ` bk−1(u, v1, . . . , vk−1)
and thus k was not minimal. By induction hypothesis, we have also a simple proof πR
of Ti ` v0. Then, applying the rule sign on πL and πR, we obtain a simple proof of
Ti ` sign(u0, v0). Indeed, this proof is left-minimal and in normal form. �

Appendix B. About the simplification rules

Lemma 3. Let D and D′ be two sets of elementary constraints such that D → D′. We have
that:

• If D is a constraint system then D′ is a constraint system;

• Sol(D′) ⊆ Sol(D) and SolNC(D) ⊆ SolNC(D′).

Proof. We show the two points separately.

• First, it is clear that monotonicity still holds after the application of a simplification
rule. Origination still holds since when we remove a constraint (i.e. Sax), it is clear that
this constraint does not introduce any new variable. The transformation performed by
applying Sbd also preserves origination.

Now, we have to check that the condition on variables stated in Definition 4 holds. Let
x ∈ vars(D′). We have that x ∈ vars(D). Let Tx be the set of terms that introduces x

in D. If there exists Tx
?
` u ∈ D with x ∈ vars(u), then this constraint still exists in D′

and we easily conclude. Otherwise, there exists v
?
∈ Bd(Tx, u) ∈ D with x ∈ vars(u)

and Ty (Tx for every y ∈ vars(v). The only case where we have to pay attention is the
case of the rule Sbd. However, since vars(u) ⊆ vars(blind(u, v)), we easily conclude.

29

• We consider each simplification rule in turn. In case of Sax both inclusions follow

immediately from the semantics of
?
∈. Now, for the other simplication rules, it is easy

to see that Sol(D′) ⊆ Sol(D). For the other inclusion SolNC(D) ⊆ SolNC(D′), we have
to rely on the fact that the solution σ we consider is non-confusing. In case of Sbd (the
case of the rule Sf is similar), since blind(u, v) 6= w, we have also that blind(uσ, vσ) 6=
wσ. Since blind(uσ, vσ) ∈ Bd(Tσ,wσ), we necessarily have that uσ ∈ Bd(Tσ,wσ) and
Tσ ` vσ. This allows us to conclude that σ ∈ Sol(D′). Since the simplification rules do
not introduce subterms, we deduce that σ ∈ SolNC(D′). In case of Scycle, by relying on
the fact that σ is non-confusing, we will obtain a contradiction. Thus we will deduce
that SolNC(D) = ∅. �

Appendix C. Well-formedness

Lemma 8 (property of ≤D). Let D and D′ be two sets of constraints in simplified form
such that D D′ and D′ 6= ⊥. We have that ≤D ⊆ ≤D′.

Proof. We consider each transformation rule in turn. The cases of the rules Rax, Rtriv, Rf, Rbd

and Rget are easy since they do not affect membership constraints. The rule Rbdsgn introduces
a new membership constraint in D′ and thus we easily conclude that ≤D ⊆ ≤D′ . There remain
the following cases:

• RA: D0 ∧ T
?
` x ∧ x

?
∈ Bd(T ′, v) D0 ∧ T

?
` x ∧ T

?
` v ∧ x

?
∈ Bd(T, v) with T (T ′. In

this case, the ordering is not affected. We have that ≤D = ≤D′ .

• RB: D0 ∧ T
?
` x ∧ x

?
∈ Bd(T ′, v) D0 ∧ T

?
` x ∧ T

?
` w ∧ x

?
∈ Bd(T,w) ∧ w

?
∈ Bd(T ′, v)

with T (T ′ and w ∈ st(T). We have to show that y ≤D′ x for every y ∈ vars(v).

The simplification rules applied to w
?
∈ Bd(T ′, v) lead to a membership constraint of

the form z
?
∈ Bd(T ′, v) with z ∈ vars(w) or disappears only if v ∈ st(w). In both cases,

we easily conclude.

• RC: D0∧T
?
` x∧x

?
∈ Bd(T, v)∧x

?
∈ Bd(T, v′) D0∧T

?
` x∧x

?
∈ Bd(T, v)∧v

?
∈ Bd(T, v′)

with Tx = T . We have to show that y ≤D′ x for every y ∈ vars(v′). The simplification

rules applied to v
?
∈ Bd(T, v′) leads to a membership constraint of the form z

?
∈ Bd(T, v′)

with z ∈ vars(v) or disappears only if v′ ∈ st(v). Again, in both cases, we easily
conclude. �

Proposition 2. Let D and D′ be two sets of constraints in simplified form such that D D′,
and V ⊆ vars(D). We have that D′≺V |= D

≺
V .

Proof. Let D′′ be the set of constraints obtained after application of the transformation rule
on D. We have that D D′′ and D′′↓S = D′. First, by considering each transformation rule
in turn, we show that:

E ′′ def= {C | C ∈ D′′ ∧ vars(C) �D′ V } |= {C | C ∈ D ∧ vars(C) �D V } (= D�V).

Thanks to Lemma 8, we know that ≤D ⊆ ≤D′ and thus �D ⊆ �D′ .

30

• Rule Rax: D0 ∧ T
?
` u D0. Let C = T

?
` u. If C ∈ D�V then D�V E ′ ⊆ E ′′.

Otherwise, if C 6∈ D�V , we have that D�V ⊆ E ′′. In both cases, we have that E ′′ |= D�V
(Lemma 7).

• Rule Rtriv: D0 ∧ T
?
` x ∧ T ′

?
` x D0 ∧ T

?
` x. Let C = T ′

?
` x. If C ∈ D�V then T

?
` x

is also in D�V and we have that D�V E ′ ⊆ E ′′. Otherwise, if C 6∈ D�V , we have that

D�V ⊆ E ′′.

• Rule Rf: D0 ∧ T
?
` f(t1, . . . , tn) D0 ∧ T

?
` t1 ∧ . . . ∧ T

?
` tn. Let C = T

?
` f(t1, . . . , tn)

and Ci = T
?
` ti for 1 ≤ i ≤ n. If C ∈ D�V then Ci ∈ E ′′ for each 1 ≤ i ≤ n, and thus

D�V E ′ ⊆ E ′′. Otherwise, if C 6∈ D�V , we have that D�V ⊆ E ′′. In both cases, we have

that E ′′ |= D�V (Lemma 7).

• Rules Rbd and Rget can be done similarly.

• Rule Rbdsgn: D0∧T
?
` sign(v, u) D0∧T

?
` sign(w, u) ∧w

?
∈ Bd(T, v) with sign(w, u) ∈

st(T). Let C = T
?
` sign(v, u). If C ∈ D�V then T

?
` sign(w, u) and w

?
∈ Bd(T, v) are in

E ′′ and thus D�V E ′ ⊆ E ′′. Otherwise, if C 6∈ D�V , we have that D�V ⊆ E ′′. In both

cases, we have that E ′′ |= D�V .

• Rule RA: D0∧T
?
` x∧x

?
∈ Bd(T ′, v) D0∧T

?
` x∧T

?
` v∧x

?
∈ Bd(T, v) with T (T ′.

Either vars(T ′ ∪ {v, x}) ≺D V and then vars(T ′ ∪ {v, x}) ≺D′ V (thanks to Lemma 8)

and thus T
?
` x, T

?
` v and x

?
∈ Bd(T, v) are in E ′′. We have that D�V E ′ ⊆ E ′′.

Otherwise, we have that D�V ⊆ E ′′. In both cases, we have that E ′′ |= D�V .

• Rule RB: D0∧T
?
` x∧x

?
∈ Bd(T ′, v) D0∧T

?
` x∧T

?
` w∧x

?
∈ Bd(T,w)∧w

?
∈ Bd(T ′, v)

with T (T ′ and w ∈ st(T). Either vars(T ′∪{v, x}) ≺D V and then vars(T ′∪{v, x}) ≺D′

V (thanks to Lemma 8) and thus T
?
` x, T

?
` w, x

?
∈ Bd(T,w) and w

?
∈ Bd(T ′, v) are in

E ′′. We have that D�V E ′ ⊆ E ′′. Otherwise, we have that D�V ⊆ E ′′ In both cases, we

have that E ′′ |= D�V .

• Rule RC: D0 ∧ T
?
` x∧ x

?
∈ Bd(T, v)∧ x

?
∈ Bd(T, v′) D0 ∧ T

?
` x∧ x

?
∈ Bd(T, v)∧ v

?
∈

Bd(T, v′) with Tx = T . First note that vars({v, v′}) �D x. Therefore we have that the

three constraints x
?
∈ Bd(T, v), x

?
∈ Bd(T, v′), and T

?
` x are either all in D�V or none of

them are in D�V . In the first case, we have that D�V E ′ ⊆ E ′′. Otherwise we have that

D�V ⊆ E ′′. In both cases, we have that E ′′ |= D�V .

Let V ′ = {x | x �D′ y for some y ∈ V }. Thanks to Corollary 3 and since D′′ →∗ D′, we
have that D′|V ′ |= D′′|V ′ (= E ′′). This allows us to conclude that D′�V |= D

�
V . �

31

Appendix D. Completeness

Proposition 4 (completeness - deducibility constraint). Let C↓S be an unsolved con-
straint system such that MC↓S contains a deducibility constraint. Let σ ∈ SolNC(C↓S). There
exists a constraint system C′ such that C↓S C′, σ ∈ SolNC(C′) and µ(C′σ) < µ(C↓Sσ).

Proof. Let T ` u be a deducibility constraint in MC↓S . Let P be a simple proof of Tσ ` uσ.
We distinguish several cases:

• u is a variable. In such a situation the rule Rtriv could be applied. We have that
σ ∈ SolNC(C′) and µ(C′σ) < µ(C↓Sσ).

• P is a reduced to a leaf or ends with a decomposition rule. If P is reduced to a leaf then
uσ ∈ Tσ and thus u ∈ T since σ is non-confusing. Hence, we can apply Rax. Clearly,
we have that σ ∈ SolNC(C′) and µ(C′σ) < µ(C↓Sσ).

Now, if P ends with an instance of the rule unblind , we have that there exists w such that
the direct subproof P1 (resp. P2) of P is labeled with T ` blind(uσ,w) (resp. T ` w).
We have that P is a simple normal proof, thus P1 can not end with a composition rule.
Thanks to Lemma 9, we deduce that blind(uσ,w) ∈ (st(T)rX)σ. Hence, by relying on
the fact that σ is non-confusing, there exists blind(u,w′) ∈ st(T) such that w′σ = w.
Hence, we can apply Rbd. Let C′ be the constraint system obtained after application of
the transformation rule. Note that σ ∈ SolNC(C′) and µ(C↓Sσ) > µ(C′σ), since we have
removed one inference rule in a proof tree witnessing the fact that σ is a solution of C′.
The case where P ends with an instance of getmsg is similar.

• P ends with an instance of a composition rule. If P ends with an instance of sign
(resp. blind), we have that u = sign(u1, u2) (resp. u = blind(u1, u2)). In such a case,
we can apply the transformation rule Rf, and we easily conclude. Now, it remains to
deal with the case where P ends with an instance of unbdsign. In such a case, we
have that u = sign(u1, u2). Let P0, P1, . . . , Pk be the direct subtrees of P . We have
that P0 is labeled with Tσ ` sign(w, u2σ). Moreover, note that P0 is normal and
therefore does not end with a composition rule. Hence, thanks to Lemma 9, we have
that sign(w, u2σ) ∈ (st(T) r X)σ, i.e., by using the fact that σ is non-confusing, there
exists sign(w′, u2) ∈ st(T) such that w′σ = w. We deduce that the rule Rbdsgn can be
applied. Let C′ be the resulting constraint system. We have that σ ∈ SolNC(C′) and
µ(C′σ) < µ(C↓Sσ). �

Proposition 5 (completeness - membership constraint). Let C↓S be an unsolved con-
straint system such that MC↓S only contains membership constraints. Let σ ∈ SolNC(C↓S).
There exists a constraint system C′ such that C↓S C′, σ ∈ SolNC(C′) and µ(C′σ) < µ(C↓Sσ).

Proof. Let us note that, since C↓S is simplified, all the membership constraints are of the

form x
?
∈ Bd(T, u). Let us consider the set of variables VM = {x | x

?
∈ Bd(T ′, u) ∈ MC↓S}.

Let us choose a constraint x
?
∈ Bd(T ′, u) ∈ MC↓S such that x is maximal in VM with respect

to ≤C↓S . Note that, thanks to origination, definition of solved forms and the maximality of

32

x, we know that there exists a deducibility constraint T
?
` x that occurs in C↓S with T ⊆ T ′.

We distinguish several cases depending on the fact that T (T ′ or T = T ′.

• Case T (T ′. In such a case, we have that T
?
` x and x

?
∈ Bd(T ′, u) are in C↓S and

T (T ′. We will show that we can apply RA or RB. We have that xσ = bk(uσ, v1, . . . , vk)
with T ′σ ` v1, . . . , T ′σ ` vk. Note that k > 0 since σ is non-confusing. Depending on
whether all proofs of T ′σ ` vi can be weakened or not, we apply either RA or RB.

– Assume that Tσ ` vi for every 1 ≤ i ≤ k. Let C′ be the constraint system obtained
by applying the rule RA. We have that Tσ ` xσ, thus we deduce that Tσ ` uσ.
A proof tree witnessing this fact can be obtained by applying k times the rule
unblind on the proof of T ` xσ and by using the proof tree witnessing Tσ ` vi
for every 1 ≤ i ≤ k. Hence, we have that σ ∈ Sol(C′), and since no subterm is
introduced, we have that σ ∈ SolNC(C′). Lastly, we have that µ(C′σ) < µ(C↓Sσ)
since we replace at least one pair (T ′σ, n) (the one corresponding to the proof of
T ′σ ` v1) by a set of pairs whose first component is Tσ (T ′σ (this strict inclusion
is due to the fact that T (T ′ and σ non-confusing).

– Otherwise, let i0 be such that Tσ ` vj for each j > i0 and Tσ 6` vi0 . Note
that such a i0 exists since otherwise we fall into the first case. Note also that if
i0 = k, we have that any proof of Tσ ` xσ ends with an axiom or a decomposition
rule. Thus, by Lemma 9, we deduce that there exists t ∈ st(T) r X such that
tσ = xσ. Since σ is non-confusing, this case is impossible. Thus we have that
i0 6= k. Now, let us consider the case where 1 ≤ i0 < k. We have that Tσ `
blind(. . . blind(uσ, v1), . . . , vi0) by taking the proof of Tσ ` xσ, the proofs of Tσ `
vk, . . . , Tσ ` vi0+1 and applying k − i0 times the rule unblind . Let P be a simple
proof of Tσ ` bi0(uσ, v1, . . . , vi0). Now, since Tσ 6` vi0 , P can not end with a
composition rule. Hence, by Lemma 9, we deduce that there exists w ∈ (st(T)rX)
such that wσ = bi0(uσ, v1, . . . , vi0), implying that wσ ∈ Bd(T ′σ, uσ). Therefore,
we can apply the rule RB to get the constraint system C′. We have seen that σ
satisfies each constraint that has been added in C′, hence σ ∈ Sol(C′) and it is
easy to see that actually σ ∈ SolNC(C′). Lastly, we have that µ(C′σ) < µ(C↓Sσ)
since we replace at least one pair (T ′σ, n) (the one corresponding to the proof of
T ′σ ` vk) by several pairs whose first component is Tσ (T ′σ (this strict inclusion
is due to the fact that T (T ′ and σ non-confusing).

• Case T = T ′. In such a case, since x
?
∈ Bd(T ′, u) ∈ MC↓S , we must have that there exists

another membership constraint x
?
∈ Bd(T ′′, w). Note that, by definition of solved form,

we have T ′′ = T ′ = T . Moreover, we have that Tx = T . In such a case, we have that

– xσ = bk(uσ, v1, . . . , vk) with Tσ ` vi for 1 ≤ i ≤ k; and

– xσ = bp(wσ, v
′
1, . . . , v

′
p) with Tσ ` v′i for 1 ≤ i ≤ p.

Now, clearly, we have that either uσ ∈ st(wσ) and wσ ∈ Bd(Tσ, uσ) or symmetrically
wσ ∈ st(uσ) and uσ ∈ Bd(Tσ,wσ). We will assume w.l.o.g. that we are in the first case.
The other one can be done in a similar way. Hence, we can apply RC to get a constraint

system C′ = C r {x
?
∈ Bd(T, u)} ∪ {w

?
∈ Bd(T, u)}. It is clear that σ ∈ SolNC(C′). Now,

33

we have to show that the sequence of proof trees witnessing wσ ∈ Bd(Tσ, uσ) is strictly
smaller than the sequence witnessing xσ ∈ Bd(Tσ, uσ). This is due to the fact that
wσ is a strict subterm of xσ. Indeed, we have that wσ ∈ st(xσ) and wσ = xσ is not
possible since otherwise, we would have w = x and this would contradict the fact that
C↓S is simplified. �

34

