1. Brief Self-Introduction
2. Multi-player Arenas
3. The Logic(s)
4. Strategies
5. Relativization
6. Expressing properties of strategies
Biography

- Postdoctorate Sussex University
- Lecturer U. Rennes1 and Researcher in S4* project (INRIA) (*) System Synthesis and Supervision, Scenarios)
- Marie Curie Fellowship CSL RSISE ANU (2006)
Sophie Pinchinat

Scientific coordinator of the Marie Curie Scientific Project MASLOG 021669 (FP6-2004-Mobility-6)

Advisory Board of the MCFA

Board of Directors of IFSIC (U. Rennes 1)
Research Interests

- Logics: temporal logics, second order temporal logics, mu-calculus, satisfiability, model-checking
- Automata and Games: tree automata, parity automata, games (two players, multi players)
- Synthesis: models synthesis from logical specifications
- Open and Component-based Systems
- Planning and Games
- Theory of Control: discrete-event systems, controller synthesis, architectures of control, partial observation, decentralized and modular control
- Observability Issues
- Diagnosis: diagnosis patterns, diagnosis of open systems
Current Research on Logics for Multi-player Arenas

Relevance of the topic: open systems, component-based systems, multi-agents paradigm, etc.
Current Research on Logics for Multi-player Arenas

- Interpretation of (temporal and modal) logics in multi-player arenas
- Monadic Second Order Extensions
- Commitments
- Decidability Issues for the Model-Checking Problem
e.g. Automata Constructions
- Subsumes Alternating Time Logics [Alur et al. 2002]
Multi-player Arenas

- A subclass of Kripke Structures
- A set of players P who individually select in each state some subsets of successors; when all the players have chosen, a single successor is designated
- Similar to Concurrent Game Structures

Definition

$$S = \langle S, R, \bar{\Lambda}, \bar{\lambda}, P \rangle$$

- States S, successor binary relation $R \subseteq S \times S$, labeling of state $\lambda : \Lambda \rightarrow 2^S$
Multi-player Arenas

Definition

\[S = \langle S, R, \bar{\Lambda}, \bar{\lambda}, P \rangle \]

- States \(S \), successor binary relation \(R \subseteq S \times S \), labeling of state \(\lambda : \Lambda \rightarrow 2^S \)

\[P = \{ U, V \} \text{ where } U \]
- (resp. \(V \)) controls variable \(u \) (resp. \(v \))
Multi-player Arenas

Definition

\[S = \langle S, R, \Lambda, \lambda, P \rangle \]

- States \(S \), successor binary relation \(R \subseteq S \times S \), labeling of state \(\lambda : \Lambda \rightarrow 2^S \)

![Diagram of states and transitions]

- \(u, (\{1, 2\}, U) \)
- \(q_u \)
- \(q_v \)
- \(q_{uv} \)
- \((\{1\}, V) \)
- \((\{2\}, V) \)
- \((\{1\}, U) \)
- \((\{2\}, U) \)
- \((\{1\}, V) \)
- \((\{1\}, U) \)
- \((\{1\}, V) \)
Multi-player Arenas

Definition

\[S = \langle S, R, \bar{\Lambda}, \bar{\lambda}, P \rangle \]

- States \(S \), successor binary relation \(R \subseteq S \times S \), labeling of state \(\lambda : \Lambda \rightarrow 2^S \)
- \(R \) has a finite maximal degree \(m \)
- Directions are elements of \([m] \) (\(= \{1, \ldots, m\} \))
- \(\bar{\Lambda} = \Lambda \cup (\mathcal{P}([m]) \times P) \) and \(\bar{\lambda} : \bar{\Lambda} \rightarrow 2^S \)

\[\bar{\lambda}(q_u) \text{ contains } u, \text{ but also } (\{1, 3\}, U), (\{2, 4\}, U) \]
Kripke Structures as Trees
Kripke Structures as Trees

\[(\{1, 3\}, U), (\{2, 4\}, U), (\{1, 2\}, V), (\{3, 4\}, V) \]
Kripke Structures as Trees

(\{1, 3\}, U), (\{2, 4\}, U), (\{1, 2\}, V), (\{3, 4\}, V)

Sophie Pinchinat
Marie Curie Fellow funded by European Union

Logics for Multi-player Arenas
Temporal Logics with Decision Modalities

- Branching time propositional mu-calculus [Kozen83]

\[g \mid \top \mid \neg \beta \mid \beta_1 \lor \beta_2 \mid \text{EX} \beta \mid Z \mid \mu Z. \beta(Z) \]
Temporal Logics with Decision Modalities

- Branching time propositional mu-calculus [Kozen83]
 \[g \mid T \mid \neg \beta \mid \beta_1 \lor \beta_2 \mid \text{EX} \beta \mid Z \mid \mu Z. \beta(Z) \]

- easier with CTL
 \[g \mid T \mid \neg \beta \mid \beta_1 \lor \beta_2 \mid \text{EX} \beta \mid \text{E} \beta_1 \text{U} \beta_2 \mid \ldots \]
Temporal Logics with Decision Modalities

- Branching time propositional mu-calculus [Kozen83]
 \[
g | \top | \neg \beta | \beta_1 \lor \beta_2 | \mathbf{E} \mathbf{X} \beta | Z | \mu Z.\beta(Z)
 \]

- easier with \textit{CTL}
 \[
g | \top | \neg \beta | \beta_1 \lor \beta_2 | \mathbf{E} \mathbf{X} \beta | \mathbf{E} \beta_1 \mathbf{U} \beta_2 | \ldots
 \]

- Add \textit{decision modalities}
Temporal Logics with Decision Modalities

- Branching time propositional mu-calculus [Kozen83]
 \[g \mid T \mid \neg \beta \mid \beta_1 \lor \beta_2 \mid EX \beta \mid Z \mid \mu Z. \beta(Z) \]

- easier with CTL
 \[g \mid T \mid \neg \beta \mid \beta_1 \lor \beta_2 \mid EX \beta \mid E \beta_1 U \beta_2 \mid \ldots \]

- Add decision modalities

Definition

A decision modality is written $(p)f$

- where f is a proposition, and $p \in Players$

- “All propositions in f matches a decision of p”
Temporal Logics with Decision Modalities

- $g \models T \models (p) \models \neg \beta \models \beta_1 \lor \beta_2 \models EX \beta \models \ldots$

\[
[[g]]_S = \{s \in S | s \in \lambda(g)\} \quad [[\top]]_S = S
[[\neg \beta]]_S = S \setminus [[\beta]]_S \quad [[\beta_1 \lor \beta_2]]_S = [[\beta_1]]_S \cup [[\beta_2]]_S
[[EX \beta]]_S = \{s \in S | \exists s' \in sR \cap [[\beta]]_S\}
Temporal Logics with Decision Modalities

- **$g \mid \top \mid (p)f \mid \neg \beta \mid \beta_1 \lor \beta_2 \mid \mathbf{E} \mathbf{X} \beta \mid \ldots$**

 $[[g]]_S = \{s \in S \mid s \in \lambda(g)\}$
 $[[\top]]_S = S$
 $[[\neg \beta]]_S = S \setminus [[\beta]]_S$
 $[[\beta_1 \lor \beta_2]]_S = [[\beta_1]]_S \cup [[\beta_2]]_S$
 $[[\mathbf{E} \mathbf{X} \beta]]_S = \{s \in S \mid \exists s' \in sR \cap [[\beta]]_S\}$

Definition

A *decision modality* is written $(p)f$ where f is a proposition, and $p \in \text{Players}$.

- $[[(p)f]]_S = \{s \in S \mid sR \cap \lambda(f) \in \text{dec}(s, p)\}$
Temporal Logics with Decision Modalities

- $g \mid \top \mid (p)f \mid \neg \beta \mid \beta_1 \lor \beta_2 \mid \text{EX} \beta \mid \ldots$

\[
[[g]]_S = \{s \in S \mid s \in \lambda(g)\} \quad [[\top]]_S = S
\]
\[
[[\neg \beta]]_S = S \setminus [[\beta]]_S \quad [[\beta_1 \lor \beta_2]]_S = [[\beta_1]]_S \cup [[\beta_2]]_S
\]
\[
[[\text{EX} \beta]]_S = \{s \in S \mid \exists s' \in sR \cap [[\beta]]_S\}
\]
\[
[[(p)f]]_S = \{s \in S \mid sR \cap \lambda(f) \in \text{dec}(s, p)\}
\]

“The proposition in f matches a decision of p”
Temporal Logics with Decision Modalities

- $g \mid \top \mid (p)f \mid \neg \beta \mid \beta_1 \lor \beta_2 \mid EX \beta \mid \ldots$

$[[g]]_S = \{s \in S \mid s \in \lambda(g)\}$
$[[\top]]_S = S$
$[[\neg \beta]]_S = S \setminus [[\beta]]_S$
$[[\beta_1 \lor \beta_2]]_S = [[\beta_1]]_S \cup [[\beta_2]]_S$
$[[EX \beta]]_S = \{s \in S \mid \exists s' \in sR \cap [[\beta]]_S\}$

- $[[(p)f]]_S = \{s \in S \mid sR \cap \lambda(f) \in dec(s, p)\}$

$[[(p)\Gamma]]_S = \{s \in S \mid sR \cap \bigcap_{f \in \Gamma} \lambda(f) \in dec(s, p)\}$
Temporal Logics with Decision Modalities

- $g \models \top \models (p) \models \neg \beta \models \beta_1 \lor \beta_2 \models \text{EX} \beta \models \ldots$

\[
[[g]]_S = \{s \in S \mid s \in \lambda(g)\} \\
[[\top]]_S = S \\
[[\neg \beta]]_S = S \setminus [[\beta]]_S \\
[[\beta_1 \lor \beta_2]]_S = [[\beta_1]]_S \cup [[\beta_2]]_S \\
[[\text{EX} \beta]]_S = \{s \in S \mid \exists s' \in sR \cap [[\beta]]_S\} \\
[[(p)f]]_S = \{s \in S \mid sR \cap \lambda(f) \in \text{dec}(s, p)\}
\]

- Write $S, s \models \beta$ for $s \in [[\beta]]_S$
Brief Self-Introduction
Multi-player Arenas

The Logic(s)
Strategies
Relativization
Expressing properties of strategies

Example of Decision Modalities
Example of Decision Modalities

\[
(\{1, 3\}, U), (\{2, 4\}, U), (\{1, 2\}, V), (\{3, 4\}, V)
\]
Example of Decision Modalities
Example of Decision Modalities

$(V)f_1 \land \neg(U)f_1$
Example of Decision Modalities

$$(V)f_1 \text{ and } \neg(U)f_1$$

$$\neg(V)f_2 \text{ and } \neg(U)f_2$$
Example of Decision Modalities

\[(V)f_1 \text{ and } \neg(U)f_1\]
\[\neg(V)f_2 \text{ and } \neg(U)f_2\]
\[\neg(V)f_3 \text{ and } \neg(U)f_3\]
Labelings and Strategies

Definition

A \textit{f-labeling} of S from s_0 is a (complete) Kripke Structure \mathcal{E} with the only proposition f.

To label S, take $S \times \mathcal{E}$ which starts from (s_0, r).

Sophie Pinchinat
Marie Curie Fellow funded by European Union
Labelings and Strategies

Consider a labeling of S

![Diagram of a labeled graph with nodes and edges labeled with q, q_u, q_v, q_{uv}, and transitions labeled with f_V]
Labelings and Strategies

\[S \]

\[q \]

\[u \]

\[q_u \]

\[q_v \]

\[q_{uv} \]

\[u, v \]

\[\mathcal{E} \]

\[r \]

\[1, 2 \]

\[3, 4 \]

\[f_V \]
Definition

A \(f \)-labeling \(\mathcal{E} \) of \(S \) from \(s_0 \) is a **p-strategy** whenever

\[
S \times \mathcal{E}, (s_0, r) \models \text{AG} (p)f
\]
Given a p-strategy, say using proposition f_p, cut everything which leaves f_p. Obtain $\text{OUT}(f_p, S, s_0)$.
Summary

1. The tree of S from s_0 can be decorated with a proposition f, via a f-labeling, E.

2. We can express that the decoration by f respects (everywhere) a possible choice of some player p, with $\text{AG}[(p)f]$.

3. We can prune (S, s_0) according to f to get $\text{OUT}(f, S, s_0)$ the outcome of this policy of the player p

 + By considering several propositions $f_{p_1}, f_{p_2}, \ldots, f_{p_k}$, we can handle coalitions.
Given \((S, s_0)\) and a \(p\)-strategy \(\mathcal{E}\) (using proposition \(f\)), we have

Theorem

For any formula \(\beta\),

\[
\text{OUT}(f, S, s_0), s_0 \models \beta \iff S, s_0 \models (\beta \ast f)
\]

where

Definition

\((\beta \ast f)\), the \(f\)-relativization of \(\beta\), is defined by

\[
(EX \beta \ast f) = EX [f \land (\beta \ast f)]
\]
Back to the logic - Relativization

Given \((S, s_0)\) and a \(p\)-strategy \(E\) (using proposition \(f\)), we have

Theorem

For any formula \(\beta\),

\[
\text{OUT}(f, S, s_0), s_0 \models \beta \text{ iff } S, s_0 \models (\beta \ast f)
\]

where

Definition

\((\beta \ast f)\), the \(f\)-relativization of \(\beta\), is defined by

\[
(\text{EX} \beta \ast f) = \text{EX} [f \land (\beta \ast f)] \\
(g \ast f) = g \\
(\beta_1 \lor \beta_2 \ast f) = (\beta_1 \ast f) \lor (\beta_2 \ast f) \\
((p)f' \ast f) = (p)(f \land f')
\]

Sophie Pinchinat
Marie Curie Fellow funded by European Union

Logics for Multi-player Arenas
Back to the logic - Relativization

Given \((S, s_0)\) and a \(p\)-strategy \(E\) (using proposition \(f\)), we have

Theorem

For any formula \(\beta\),

\[
\text{OUT}(f, S, s_0), s_0 \models \beta \iff S, s_0 \models (\beta \ast f)
\]

where

Definition

\((\beta \ast f)\), the \(f\)-relativization of \(\beta\), is defined by

\[
(\text{EX} \ \beta \ast f) = \text{EX} [f \land (\beta \ast f)]
\]

\[
(E \ \beta_1 \ \text{U} \ \beta_2 \ast f) = E [f \land (\beta_1 \ast f)] \ \text{U} \ [f \land (\beta_2 \ast f)]
\]
Expressing properties of strategies

\[S, s_0 \models \textbf{AG}[(p)f] \land (\beta \ast f) \]

means

“player \(p \) has a strategy to guarantee \(\beta \)”

- Generalizes to a set of players
- Existence of strategies is captured by the monadic second order extension of the logic
Monadic second order extension of the logic

- $\mathcal{S}, s \models \exists f. \alpha(f)$ means there exists a f-labeling \mathcal{E} s.t.

 $$\mathcal{S} \times \mathcal{E}, (s_0, r) \models \alpha(f)$$
Monadic second order extension of the logic

- $S, s \models \exists f. \alpha(f)$ means there exists a f-labeling E s.t.
 $$S \times E, (s_0, r) \models \alpha(f)$$

- Automata constructions (based on the projection)
Monadic second order extension of the logic

- \(S, s \models \exists f. \alpha(f) \) means there exists a \(f \)-labeling \(\mathcal{E} \) s.t.
 \[
 S \times \mathcal{E}, (s_0, r) \models \alpha(f)
 \]

- Automata constructions (based on the projection)
 \(\Rightarrow \) Decidability
Monadic second order extension of the logic

- \(S, s \models \exists f. \alpha(f) \) means there exists a \(f \)-labeling \(\mathcal{E} \) s.t.
 \[
 S \times \mathcal{E}, (s_0, r) \models \alpha(f)
 \]

- Automata constructions (based on the projection)
 \[\Rightarrow\] Decidability
 \[\Rightarrow\] Polynomial in the size of \(S \)
Monadic second order extension of the logic

- \(S, s \models \exists f. \alpha(f) \) means there exists a \(f \)-labeling \(E \) s.t.

 \[
 S \times E, (s_0, r) \models \alpha(f)
 \]

- Automata constructions (based on the projection)
 - \(\Rightarrow \) Decidability
 - \(\Rightarrow \) Polynomial in the size of \(S \)
 - \(\Rightarrow \) Can compute \(E \), hence strategies
Monadic second order extension of the logic

- \(S, s \models \exists f. \alpha(f) \) means there exists a \(f \)-labeling \(\mathcal{E} \) s.t.
 \[
 S \times \mathcal{E}, (s_0, r) \models \alpha(f)
 \]

- Automata constructions (based on the projection)
 - Decidability
 - Polynomial in the size of \(S \)
 - Can compute \(\mathcal{E} \), hence strategies
 - Always regular solutions!
Specializing the logic

Define $\exists (f \text{ of } p).\alpha \overset{\text{def}}{=} \exists f.[AG[(p)f] \land \alpha]$
Define $\exists (f \text{ of } p).\alpha \overset{\text{def}}{=} \exists f. [\mathbf{AG} [(p)f] \land \alpha]$

$\exists (f \text{ of } p). (\alpha \ast f)$ expresses a commitment of p:

Specializing the logic
Specializing the logic

- Define $\exists f (\text{of } p). \alpha \overset{\text{def}}{=} \exists f. [AG [(p)f] \land \alpha]$
- $\exists f (\text{of } p). (\alpha \ast f)$ expresses a commitment of p:
 - $\exists f (\text{of } p). (EF [\exists (f' \text{ of } p') (\alpha \ast f')] \ast f)$
 Inside the “f-subtree” there is a position from which a f'-subtree exists where α holds.
Specializing the logic

- Define \(\exists f \text{ of } p. \alpha \overset{\text{def}}{=} \exists f. [AG[(p)f] \land \alpha] \)
- \(\exists f \text{ of } p. (\alpha * f) \) expresses a commitment of \(p \):
 - \(\exists f \text{ of } p. (EF[\exists f' \text{ of } p'(\alpha * f')]*f) \)
 Inside the “\(f \)-subtree” there is a position from which a \(f' \)-subtree exists where \(\alpha \) holds.
 - However, we can express alternating time logics properties

\[
\langle \langle U \rangle \rangle G[\neg u \land \langle \langle U, V \rangle \rangle F(u \land v)]
\]

by using the \textit{bounded relativization}
Conclusion

- Multi-player arenas as Kripke structures
- Temporal logics with decision modalities
Conclusion

- Multi-player arenas as Kripke structures
- Temporal logics with decision modalities
- Second order extension to specify strategies
Conclusion

- Multi-player arenas as Kripke structures
- Temporal logics with decision modalities
- Second order extension to specify strategies
 - Address $S, s_0 \models \exists f. (\alpha * f)$
Multi-player arenas as Kripke structures

Temporal logics with decision modalities

Second order extension to specify strategies

Address $S, s_0 \models \exists \exists \exists (f \text{ of } p). (\alpha \ast f)$

(Parity Tree) Automata constructions
Conclusion

- Multi-player arenas as Kripke structures
- Temporal logics with decision modalities
- Second order extension to specify strategies
 - Address $S, s_0 \models \exists (f \text{ of } p). (\alpha \ast f)$
 - (Parity Tree) Automata constructions
 - Needs the Simulation Theorem of [Muller & Schupp 95]
Conclusion

- Multi-player arenas as Kripke structures
- Temporal logics with decision modalities
- Second order extension to specify strategies
 - Address $\mathcal{S}, s_0 \models \exists (\exists (f \text{ of } p).(\alpha \ast f))$
 - (Parity Tree) Automata constructions
 - Needs the Simulation Theorem of [Muller & Schupp 95]
 - Associated parity games to model-check
Conclusion

- Multi-player arenas as Kripke structures
- Temporal logics with decision modalities
- Second order extension to specify strategies
 - Address $S, s_0 \models \exists (f \text{ of } p).(\alpha \ast f)$
 - (Parity Tree) Automata constructions
 - Needs the Simulation Theorem of [Muller & Schupp 95]
 - Associated parity games to model-check
 - A winning strategy delivers a labeling, hence a p-strategy
Conclusion

- Multi-player arenas as Kripke structures
- Temporal logics with decision modalities
- Second order extension to specify strategies
 - Address $S, s_0 \models \exists (f \text{ of } p). (\alpha \ast f)$
 - (Parity Tree) Automata constructions
 - Needs the Simulation Theorem of [Muller & Schupp 95]
 - Associated parity games to model-check
 - A winning strategy delivers a labeling, hence a p-strategy
- Commitments easily specified
- Commitment not considered in Alternating Time Logics