Concurrent systems

- Transition systems
 - suited for modeling sequential data-dependent systems
 - and for modeling sequential hardware circuits

- How about concurrent systems?
 - multi-threading
 - distributed algorithms and communication protocols

- Can we model:
 - multi-threading with shared variables?
 - synchronous communication?
 - synchronous composition of hardware?

Overview Lecture #3

⇒ Concurrency
 - The interleaving paradigm

- Communication principles
 - Shared variable "communication"
 - Handshaking
 - Synchronous communication

- Channel systems

- The state-space explosion problem

Interleaving

- Abstract from decomposition of system in components

- Actions of independent components are merged or "interleaved"
 - a single processor is available
 - on which the actions of the processes are interlocked

- No assumptions are made on the order of processes
 - possible orders for non-terminating independent processes \(P \) and \(Q \):
 \[
 \begin{align*}
 P & Q P P Q P Q Q P \ldots \\
 P & P Q P P Q P P Q \ldots \\
 P & Q P P Q P P Q \ldots
 \end{align*}
 \]

 - assumption: there is a scheduler with an a priori unknown strategy
Interleaving

• Justification for interleaving:
 the effect of concurrently executed, independent actions \(\alpha \) and \(\beta \) equals
 the effect when \(\alpha \) and \(\beta \) are successively executed in arbitrary order

• Symbolically this is stated as:

\[
\text{Effect}(\alpha ||| \beta, \eta) = \text{Effect}((\alpha ; \beta) + (\beta ; \alpha), \eta)
\]

- \(||| \) stands for the (binary) interleaving operator
- \(; \) stands for sequential execution, and \(+ \) for non-deterministic choice

Interleaving of transition systems

Let \(TS_i = (S_i, Act_i, \rightarrow_i, I_i, AP_i, L_i) \quad i = 1, 2 \) be two transition systems

Transition system

\[TS_1 ||| TS_2 = (S_1 \times S_2, Act_1 \uplus Act_2, \rightarrow, I_1 \times I_2, AP_1 \uplus AP_2, L) \]

where \(L((s_1, s_2)) = L_1(s_1) \cup L_2(s_2) \) and the transition relation \(\rightarrow \) is defined by the rules:

- \(s_1 \xrightarrow{\alpha} s_1' \) and \(s_2 \xrightarrow{\alpha} s_2' \)

What are program graphs?

A program graph \(PG \) over a set \(\text{Var} \) of typed variables is a tuple

\((\text{Loc}, \text{Act}, \text{Effect}, \rightarrow, \text{Loc}_0, g_0) \) where

- \(\text{Loc} \) is a set of locations with initial locations \(\text{Loc}_0 \subseteq \text{Loc} \)
- \(\text{Effect} : \text{Act} \times \text{Eval}(\text{Var}) \rightarrow \text{Eval}(\text{Var}) \) is the effect function
- \(\rightarrow \subseteq \text{Loc} \times \text{Cond}(\text{Var}) \times \text{Act} \times \text{Loc} \), transition relation
 Boolean conditions over \(\text{Var} \)
- \(g_0 \in \text{Cond}(\text{Var}) \) is the initial condition.
From program graphs to transition systems

- **Basic strategy:** unfolding
 - state = location (current control) ℓ + data valuation η
 - initial state = initial location satisfying the initial condition g_0

- **Propositions and labeling**
 - propositions: "at ℓ" and "$x \in D$" for $D \subseteq \text{dom}(x)$
 - $\langle \ell, \eta \rangle$ is labeled with "at ℓ" and all conditions that hold in η

- if $\ell \xrightarrow{\alpha} \ell'$ and g holds in η, then $\langle \ell, \eta \rangle \xrightarrow{\alpha} \langle \ell', \text{Effect}(\alpha, \eta) \rangle$

Interleaving of program graphs

For program graphs PG_1 (on Var_1) and PG_2 (on Var_2) **without** shared variables, i.e., $\text{Var}_1 \cap \text{Var}_2 = \varnothing$,

$$TS(PG_1) \ ||| \ TS(PG_2)$$

faithfully describes the concurrent behavior of PG_1 and PG_2.

What if they have variables in common?
#3: Concurrency

Shared variable communication

\[x := 2x \ ||\ |\ x := x + 1 \]

\[\text{action } \alpha \quad |\quad \text{action } \beta \]

with initially \(x = 3 \)

\[
\begin{array}{c}
\downarrow \alpha \\
\downarrow \beta \\
\hline
\begin{array}{c}
\alpha \\
\beta \\
\end{array}
\end{array}
\]

\[
\begin{array}{c}
\downarrow \beta \\
\downarrow \alpha \\
\hline
\begin{array}{c}
\beta \\
\alpha \\
\end{array}
\end{array}
\]

\(\langle x=6, x=4 \rangle \) is an \textit{inconsistent} state!

\(\Rightarrow \) no faithful model of the concurrent execution of \(\alpha \) and \(\beta \)

Modeling concurrent program graphs

- If \(PG_1 \) and \(PG_2 \) share no variables:
 \[TS(PG_1) || TS(PG_2) \]
 - interleaving of transition systems

- If \(PG_1 \) and \(PG_2 \) share some variables:
 \[TS(PG_1 ||| PG_2) \]
 - interleaving of program graphs

- In general: \(TS(PG_1) || TS(PG_2) \neq TS(PG_1 ||| PG_2) \)

Interleaving of program graphs

Let \(PG_i = (Loc_i, Act_i, Effect_i, \longrightarrow_i, Loc_{0,i}, g_{0,i}) \) over variables \(Var_i \).

Program graph \(PG_1 ||| PG_2 \) over \(Var_1 \cup Var_2 \) is defined by:

\[
(\text{Loc}_1 \times \text{Loc}_2, \text{Act}_1 \cup \text{Act}_2, \text{Effect}, \longrightarrow, \text{Loc}_{0,1} \times \text{Loc}_{0,2}, g_{0,1} \land g_{0,2})
\]

where \(\longrightarrow \) is defined by the inference rules:

\[
\begin{array}{c}
\ell_1 \xrightarrow{g^{\alpha}_1} \ell'_1 \\
\ell_2 \xrightarrow{g^{\alpha}_2} \ell'_2
\end{array}
\]

and \(Effect(\alpha, \eta) = Effect_i(\alpha, \eta) \) if \(\alpha \in \text{Act}_i \).

Example

\[x := 2x \ ||\ |\ x := x + 1 \]

\[\text{action } \alpha \quad |\quad \text{action } \beta \]

with initially \(x = 3 \)

\[\langle x=6, x=4 \rangle \]
#3: Concurrency

On atomicity

\[
x := x + 1; y := 2x + 1; z := \text{y div } x \quad || \quad x := 0
\]

Possible execution fragment:

\[
\langle x = 11 \rangle \xrightarrow{x := x + 1} \langle x = 12 \rangle \xrightarrow{y := 2x + 1} \langle x = 12 \rangle \xrightarrow{x := 0} \langle x = 0 \rangle \xrightarrow{z := y \div x} \ldots
\]

Atomic

\[
\langle x := x + 1; y := 2x + 1; z := y \div x \rangle \quad || \quad x := 0
\]

Either the left process or the right process is completed first:

\[
\langle x = 11 \rangle \xrightarrow{x := x + 1} \langle x = 12 \rangle \xrightarrow{y := 2x + 1} \langle x = 12 \rangle \xrightarrow{z := y \div x} \langle x = 12 \rangle \xrightarrow{x := 0} \langle x = 0 \rangle
\]

#3: Concurrency

Peterson’s mutual exclusion algorithm

\[
P_1\quad \text{loop forever}
\]

\[
\begin{align*}
&: \quad (* \text{ non-critical actions } *) \\
&\langle b_1 := \text{true}; x := 2 \rangle; \quad (* \text{ request } *) \\
&\text{wait until } (x = 1 \lor \neg b_2) \\
&\text{do critical section } \text{od} \\
&b_1 := \text{false} \quad (* \text{ release } *) \\
&:\quad (* \text{ non-critical actions } *)
\end{align*}
\]

\[b_i\text{ is true if and only if process } P_i\text{ is waiting or in critical section}
\]

if both processes want to enter their critical section, \(x \) decides who gets access

#3: Concurrency

Banking system

Person Left behaves as follows:

```plaintext
while true {
    .......
    nc : \langle b_1, x = \text{true}, 2 \rangle
    wt : \text{wait until}(x == 1 \lor \neg b_2) \{ \\
    cs : \ldots \text{@account} \ldots \\
    b_1 = \text{false}; \\
    .......
}
```

Person Right behaves as follows:

```plaintext
while true {
    .......
    nc : \langle b_2, x = \text{true}, 1 \rangle
    wt : \text{wait until}(x == 2 \lor \neg b_1) \{ \\
    cs : \ldots \text{@account} \ldots \\
    b_2 = \text{false}; \\
    .......
}
```

Can we guarantee that only one person at a time has access to the bank account?

#3: Concurrency

Program graph representation

Is the banking system safe?

Banking system with non-atomic assignment

Person Left behaves as follows:

```
while true {
    ....
    nc : x = 2;
    rq : b1 = true;
    wt : wait until(x == 1 || ¬b2) {
        cs : ...@account...
        b1 = false;
        ....
    }
    ....
}
```

Person Right behaves as follows:

```
while true {
    ....
    nc : x = 1;
    rq : b2 = true;
    wt : wait until(x == 2 || ¬b1) {
        cs : ...@account...
        b2 = false;
        ....
    }
    ....
}
```

On atomicity again

Assume that the location inbetween the assignments \(x := \ldots \) and \(b_i := \) true in program graph \(PG \), is called \(rq_i \). Possible state sequence:

\[
\langle nc_1, nc_2, x = 1, b_1 = false, b_2 = false \rangle
\]

\[
\langle nc_1, rq_2, x = 1, b_1 = false, b_2 = false \rangle
\]

\[
\langle rq_1, rq_2, x = 2, b_1 = false, b_2 = false \rangle
\]

\[
\langle wt_1, rq_2, x = 2, b_1 = true, b_2 = false \rangle
\]

\[
\langle cs_1, rq_2, x = 2, b_1 = true, b_2 = false \rangle
\]

\[
\langle cs_1, wt_2, x = 2, b_1 = true, b_2 = true \rangle
\]

\[
\langle cs_1, cs_2, x = 2, b_1 = true, b_2 = true \rangle
\]

Manually inspect whether two may have access to the account simultaneously: No

Parallelism and handshaking

- Concurrent processes run truly in parallel
- To obtain cooperation, some interaction mechanism is needed
- If processes are distributed there is no shared memory
 \(\Rightarrow \) Message passing
 - synchronous message passing (= handshaking)
 - asynchronous message passing (= channel communication)
Handshaking

- Concurrent processes interact by *synchronous message passing*
 - processes execute synchronized actions together
 - that is, in interaction both processes need to participate at the same time
 - the interacting processes “shake hands”

- Abstract from information that is exchanged
 - H is a set of *handshake actions*
 - actions outside H are independent and are interleaved
 - actions in H need to be synchronized

Let $TS_i = (S_i, Act_i, I_i, AP_i, L_i), i=1,2$ and $H \subseteq Act_1 \cap Act_2$

$TS_1 \parallel_H TS_2 = (S_1 \times S_2, Act_1 \cup Act_2, I_1 \times I_2, AP_1 \cup AP_2, L)$

where $L((s_1, s_2)) = L_1(s_1) \cup L_2(s_2)$ and with \rightarrow defined by:

- $s_1 \xrightarrow{\alpha_{1}} s'_1 \land s_2 \xrightarrow{\alpha_{2}} s'_2$ handshaking for $\alpha \in H$

\parallel_{H} is a shorthand for \parallel with $H = Act_1 \cap Act_2$
Pairwise handshaking

$TS_1 \parallel \ldots \parallel TS_n$ for $H_{i,j} = \text{Act}_i \cap \text{Act}_j$ with $H_{i,j} \cap \text{Act}_k = \emptyset$ for $k \notin \{i, j\}$

State space of $TS_1 \parallel \ldots \parallel TS_n$ is the Cartesian product of those of TS_i

- for $\alpha \in \text{Act} \setminus \left(\bigcup_{i \neq j} H_{i,j} \right)$ and $0 < i \leq n$:

 $s_i \xrightarrow{\alpha} s'_i$

 $(s_1, \ldots, s_i, \ldots, s_n) \xrightarrow{\alpha} (s_1, \ldots, s'_i, \ldots, s_n)$

- for $\alpha \in H_{i,j}$ and $0 < i < j \leq n$:

 $s_i \xrightarrow{\alpha} s'_i \land s_j \xrightarrow{\alpha} s'_j$

 $(s_1, \ldots, s_i, \ldots, s_j, \ldots, s_n) \xrightarrow{\alpha} (s_1, \ldots, s'_i, \ldots, s'_j, \ldots, s_n)$