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Introduction to conformance testing

Testing that a black-box implementation (IUT) of a system behaves
correctly wrt its functional specifition Spec.

IUT: implementation under test
real system (hardware or software)

Main differences with structural testing (white box):

black box IUT: unknown code, but known interface

Spec is the reference.
=⇒ Oracle defined by admissible behaviors of Spec.
→ formal unambiguous specifications should be used.
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Conformance testing: general scheme
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Motivation

Industrial practice: manual design of test suites from informal
specifications

more than 30% of the development cost (≥ for critical
systems)

ad-hoc, long, repetitive, error prone,

maintenance is difficult in case of modifications of Spec,

no clear definition of conformance and of the testing process.

⇒ automatization of test synthesis from formal specifications
can be profit earning (effort ⇒ cost)

→ model-based testing/test generation
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Modeling

Description of a system in a language (syntax) which semantics can
be expressed in a mathematical model.
=⇒ allows to describe and analyze its properties : verification.
Depends on the application domain (here embedded system)
Models: algebraic spec., logics and sets, automata/ transition
systems (extended), timed automata, hybrid automata, etc.

Gain:

non-ambiguity, abstraction, masking of implementation
choices,

required properties of software / implementation choice

required for critical applications

useful for verification, code generation,

reference for test verdicts (oracle)
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Main ingredients of a testing theory

Specification, implementation and conformance

Specification: model of requested behaviors,

Implementations: model of observable real behavior

Conformance relation: formalizes “IUT conforms to Spec”

Tests cases and their executions

Test cases, test suites: model of tests (control/observation)

Test execution: interaction test ↔ IUT, produced observations,
associated verdicts (e.g. pass, fail)

Test suite properties: “IUT passes TS” ↔ “IUT conf S”

Test generation

Algorithms : tests = testgen(Spec) + TS properties & proofs
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Conformance testing of reactive systems

Reactive systems

System which reacts to its environment through its interfaces.

Environment: human, software, hardware

Interfaces: commands, captors, communication channels,
operations, methods, duration.

Difference btw control/observation: input/output + duration,
call /return, etc

IUT
control

PCO
observationSpecification

conforms to ?
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Testing theory for transition systems

Origins:

Models : labeled transition systems (LTS)

Testing pre-orders (Henessy, De Nicola), refusal testing
(Philips), canonical tester (Brinksma)

Not directly useful for test generation.
Problem : no distinction btw observation and control.

Models : LTS with distinction btw input and output (IOSM,
IOTS, IOLTS).
Extensions: TIOA (input output timed automata), IOSTS (input
output transition systems + data), hybrid automata
Conformance relations : ioco, tioco, etc

Tools : TVeda, TGV, TorX, TestComposer, etc
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Overview

Models

IOLTS, semantics
Quiescence, non-determinism

Testing theory

Specifications, implementations, conformance
relation
Tests and their properties

Test generation for finite state IOLTSs

Random generation: algorithm and properties
Generation guided by a test purpose: algorithm
and properties

Test generation for infinite state systems

The IOSTS model
Generation by approximate analysis
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The IOLTS model: input/output labeled transition systems

M = (Q,Λ?,Λ!,T ,→,Q0) with
• Q: enumerable set of states,
• Λ = Λ? ∪ Λ! ∪ T : action alphabet , where

Λ?: inputs (?a), Λ!: outputs (!x),
T : internal actions (τi),
ΛVIS = Λ \ T = Λ? ∪ Λ!: visible actions

• →⊆ Q × Λ × Q: transition relation,
• Q0 ⊆ Q: set of initial states.

Assumption: no τ -divergence.
i.e. no infinite sequence of τ
through infinitely many states

?a

S

!z

!x!x

q1

q6

q0

q7

q5

q3q2

q4

τ3

τ1 τ2

τ4

?b
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IOLTS semantics

Let M = (Q,Λ?,Λ!,T ,→,Q0) an IOLTS,

Run : ρ = q0
λ0→ q1

λ1→ . . .
λn−1
→ qn s.t. q0 ∈ Q0 is a run.

Runs(M) ⊆ Q0.(Λ.Q)∗: set of runs of M.

Sequence: projection of a run ρ on Λ :
µ = projΛ(ρ) = λ0.λ1 . . . λn−1 .

Language generated by M: L(M) = projΛ(Runs(M)) ⊆ Λ∗.

Traces: projection σ = projΛVIS
(ρ) = a1.a2 . . . ak of a run ρ on ΛVIS

Traces(M) = projΛVIS
(Runs(M)) ⊆ Λ∗

VIS : set of traces of M.
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IOLTS seen as automata

An IOLTS M = (Q,Λ?,Λ!,T ,→,Q0) with set of marked states
X ⊆ Q can be interpreted as an automaton:
Run accepted in X :

ρ = q0
λ0→ q1

λ1→ . . .
λn−1
→ qn ∈ Runs(M) s.t. qn ∈ X .

Accepted sequence = projection on Λ∗ of an accepted run.
Accepted trace = projection on Λ∗

VIS of an accepted run.

RunsX (M) ⊆ Runs(M) = RunsQ(M),
LX (M) = projΛ(RunsX (M)) ⊆ L(M) = LQ(M),
TracesX (M) = projΛVIS

(RunsX (M)) ⊆ Traces(M) = TracesQ(M).
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⇒ and after relations

Let M = (Q,Λ?,Λ!,T ,→,Q0) be an IOLTS.
The trace semantics induces a relation ⇒⊆ Q × Λ∗

VIS × Q defined
by :
• q

ε
⇒ q′ , q = q′ or ∃τ1, τ2 . . . τn ∈ T : q

τ1.τ2···τn→ q′

• a ∈ ΛVIS, q
a
⇒ q′ , ∃q1, q2 : q

ε
⇒ q1

a
→ q2

ε
⇒ q′,

• for σ = a1 · · · an ∈ Λ∗
VIS,

q
σ
⇒ q′ , ∃q0, . . . qn : q = q0

a1⇒ · · ·
an⇒ qn = q′

The after notation:
• q after σ , {q′ ∈ Q | q

σ
⇒ q′}

• for P ⊆ Q, P after σ ,
⋃

q∈P q after σ

M after σ , Q0 after σ denotes the set of states where M can
stay after observing σ from an initial state.
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Illustration

?a

S

!z

!x!x

q1

q6

q0

q7

q5

q3q2

q4

τ3

τ1 τ2

τ4

?b

q1
ε
⇒ q2 et q1

ε
⇒ q3

q1
!x
⇒ q4, q1

!x
⇒ q6, q1

!x
⇒ q5, q1

!x
⇒ q7,

q1
!x .!z
⇒ q0

q0 after ?a.!x = {q4, q5, q6, q7},
q0 after ?a.!z = ∅

{q2, q3} after !x = {q4, q5, q6, q7}

Traces(S) = {ε, ?a, ?a.!x , ?a.!x .!z, ?a.!x .?b, . . .}
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Non-determinism and choice

Non-determinism in the usual automata meaning: existence of
internal actions τ and → is a relation

?x
!a

!a

s

s’

s"

s

!a

s’
!b

s" s’’’

τ

M is deterministic if it has no internal action,
Card(Q0) = 1 and ∀q ∈ Q,∀a ∈ ΛVIS, Card({q′ | q

a
→ q′}) ≤ 1.

Uncontrolled choice: sometimes called observable non-determinism

?x
!a

s

s’

s"!b
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Determinization of IOLTSs

For a finite IOLTS M = (Q,Λ?,Λ!,T ,→,Q0) (Q is finite), one can
build a deterministic IOLTS det(M) with same traces as M.

Determinized automaton

det(M) = (2Q ,Λ?,Λ!,→det ,Q0 after ε) where

2Q = P(Q) is the powerset of Q

for P ,P ′ ∈ 2Q and a ∈ ΛVIS = Λ? ∪ Λ!,
P

a
→det P ′ iff P ′ = P after a

Traces(M) = Traces(det(M))
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Determinization: example
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Complete IOLTS

Let M = (Q,Λ?,Λ!,T ,→,Q0) be an IOLTS, q ∈ Q a state of M
and A ⊆ ΛVIS a sub-alphabet of visible actions.

q is strongly A-complete if any action in A is fireable in q :

∀λ ∈ A, q
λ
→

q is weakly A-complete if any action in A is fireable after some
internal actions:
∀λ ∈ A, q

λ
⇒

M is (str/wk) A-complete if every state in Q is A-complete.

Proposition

M deterministic ⇒ strongly = weakly
M deterministic and ΛVIS-complete ⇒ Traces(M) = Λ∗

VIS
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Testing Models

Specification : IOLTS S = (QS,Λ?,Λ!,T
S,→S, q

S

0)

Implementation : IOLTS I = (Q I,Λ?,Λ!,T
I,→I, q

I

0)
The implementation is unknown, except for its
interface, identical to S ’s
Hyp.: I is weakly Λ?-complete :
∀q ∈ Q I,∀a ∈ Λ?, q

a
⇒.

In every state, I accepts any input, possibly after
internal actions (e.g. replies by an error).
NB: assumption required to avoid deadlocks in the
interaction tester/IUT.
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Specification and implementation: example

!y

!x

?a

IUT

!y

?a

S

!z

!z
?a?a

?a

!x

?a
!z

Pass

τ3

τ2

τ4
τ3

τ4
?x

?y

TC

Inconc

?b

?b

?b

?b ?b

?b
τ1

θ

Fail

?otherw
ise

θFail

?otherw
ise

Fail

Fail

τ1

?z

θ

!a
Fail
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Observation of quiescence

In testing practice, one can observe traces of the IUT , but also its
quiescences with timers.
Only IUT ’s quisecences unspecified in S should be rejected.

τ

τ

τ

τ

?a

?b

deadlock

livelock

!x

output
quiescence

X

X

X X

X X

Notation: Γ(q) , {a ∈ Λ | q
a
→}

q ∈ deadlock(M) , Γ(q) = ∅

q ∈ livelock(M) , ∃τ1, . . . , τn, q
τ1.···τn→ q

q ∈ outputlock(M) , Γ(q) ⊆ Λ?

quiescent(M) = deadlock(M) ∪ livelock(M) ∪ outputlock(M)
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Lost of quiescence by determinization

Determinization preserves trace equivalence but not quiescence.
A more refined equivalence is needed
⇒ quiescence must be explicited before determinization.
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Explicitation of quiescence

Suspension

The suspension IOLTS of M = (Q,Λ?,Λ!,T ,→, q0) is an IOLTS
∆(M) = (Q,Λ?,Λ! ∪ {δ},T ,→δ, q0) where
→δ = → ∪ {(q, δ, q) | q ∈ quiescent(M)}

We note Λδ
! = Λ! ∪ {δ}

δ is considered as an output (it is observable)
and Λδ = Λ ∪ {δ} = Λ? ∪ Λ! ∪ {δ} ∪ T

τ

τ

τ

τ

?a

?b

deadlock !x !x

τ

de sortie
blocage

?b

?a

livelock

τ τ

τ

δ

δ

δ

T. Jéron VTS



Introduction Testing theory for LTS Test selection Conclusion

Suspension traces

det(

3

!δ

4

?a ?b

τ

τ τ

!x

!y

!z

?b

!δ !δ

!δ !δ

0

1 2

3 4 5

!z!y

!δ

?a ?b

!δ

0,1,2

!δ 1,2

4,5

!δ

?a ?b

!xdeterminization (S))(S) ∆ ∆

Suspension traces

STraces(M) , Traces(∆(M)) = Traces(det(∆(M)))

STraces(S) and STraces(I ) represent visible behaviors of S and I
for testing ⇒ a base for the definition of conformance.
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Conformance relation

The conformance relation defines the set of IUT I that are
conformant to S .
Let S = (QS,Λ?,Λ!,T

S,→S, q
S

0) be a specification and
I = (Q I,Λ?,Λ!,T

I,→I, q
I

0) an implementation with same interface

Conformance

I ioco S

,

∀σ ∈ STraces(S),Out(∆(IUT ) after σ) ⊆ Out(∆(S) after σ)

with Out(P) , Γ(P) ∩ Λδ
! the set of output/quiescences in P

Intuition : I conforms to S if and only if, after any suspension
trace of S , all outputs and quiescences of I are specified by S .
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ioco: example

Specification
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!y
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δ

δ
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δ
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δ
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δ
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Characterization of ioco in terms of STraces

Proposition

I ioco S ⇐⇒ STraces(I ) ∩ [STraces(S).Λδ
! ] ⊆ STraces(S) (1)

⇐⇒ STraces(I ) ∩ [STraces(S).Λδ
! \ STraces(S)] = ∅ (2)

STraces(I )= visible behaviors of I
STraces(S) = visible behaviors of S
STraces(S).Λδ

! = visible behaviors of S prolongated by output or δ.

(1): STraces of I prolongating STraces of S by outputs or
quiescences should remain STraces of S .

(2): I has no STrace which is an STrace of S prolongated by an
output or quiscence without being an STrace of S .
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Canonical tester of S

Can(S) = (Qc ,Λc
? = Λδ

! ,Λ
c
! = Λ?,→c , q

c
0 , ) equiped with Fail ∈ Qc

built from det(∆(S)) = (Qd ,Λ?,Λ
δ
! ,→

d , qd
0 ) as follows :

Qc , Qd ∪ {Fail}, Fail /∈ Qd (new state Fail )

qc
0 , qd

0

→c,→d ∪{q
a
→c Fail | q ∈ Qd , a ∈ Λδ

! = Λc
? ∧ ¬(q

a
→d)}

i.e. output completion to Fail (notation q
?othw
→ c Fail ).

Language recognized by Can(S):
TracesFail (Can(S)) = STraces(S).Λδ

! \ STraces(S)

I ioco S ⇐⇒ STraces(I ) ∩ TracesFail(Can(S)) = ∅
i.e. Can(S) is a non-conformance observer

Rem.: For a given S , I ioco S is a safety property on STraces(I ).
Can(S) is an observer of the negation of this property.

T. Jéron VTS



Introduction Testing theory for LTS Test selection Conclusion

Canonical tester: example

Fail

?y,?z
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?x

?y

?z

!b

!x!y !z ?b

?b!x?a

?a

?b

!z

!y !y

?y

!a !b

0

1 2

3

τ

5

τ τ 4

τ

τ
determinisation

(S) ∆ (S))

!δ

!δ

!δ

∆

3,4,5

?δ

?δ

?δ
?δ

0,1,2

  2

3,5

!δ

!δ

!δ
!δ

3,4,5

0,1,2

  2

3,5

T. Jéron VTS



Introduction Testing theory for LTS Test selection Conclusion

Test Case

A test case for S is an IOLTS TC = (QTC,ΛTC

? ,ΛTC

! ,→TC, q
TC
0 ) s.t. :

TC is deterministic

ΛTC

! = Λ? and ΛTC

? = Λδ
! = Λ! ∪ {δ} (input/output inversion)

TC is equipped with a set of trap states (q s.t.
∀a ∈ ΛTC,¬(q

a
→)) representing verdicts :

In general Verdicts = Pass ∪ Fail ∪ Inconc ⊆ QTC

states of TC , except Verdicts, are ΛTC

? -complete
i.e. TC is ready to receive any input in ΛTC

? = output in Λδ
! .

?othw denotes the complement of a set of input.

TracesVerdict(TC ) =
TracesFail(TC ) ∪ TracesPass(TC ) ∪ Traces Inconc(TC )

T. Jéron VTS
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Test execution

Modelled by the parallel composition TC‖∆(I ) with
synchronization on actions of the common interface Λδ

VIS :

TC‖∆(I ) = (QTC × Q I,ΛI,→TC‖∆(I ), (q
TC

0 , qI

0))
where →TC‖∆(I ) is defined by:

tc
a
→TC tc ′ q

a
→∆(I ) q′ a ∈ Λδ

VIS

(tc , q)
a
→TC‖∆(I ) (tc ′, q′)

q
τ
→∆(I ) q′ τ ∈ T I

(tc , q)
τ
→TC‖∆(I ) (tc , q′)

Prop

Traces(TC‖∆(I )) = Traces(TC ) ∩ STraces(I )

Prop

I weakly Λ?-complete and TC Λδ
! -complete (except in Verdicts)

⇒ TC‖∆(I ) is never blocked except in Verdicts states of TC

T. Jéron VTS
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Example
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Verdicts

We say that a test case TC rejects (fails) I iff an execution of
TC‖∆(I ) reaches Fail
This expresses a possibility for rejection.

TC fails I , STraces(I ) ∩ TracesFail(TC ) 6= ∅

! due to non-controlable choices of I , a single test case applied on
a single IUT can produce all different verdicts !
See the preceding example where
STraces(I ) ∩ TracesFail(TC ) 6= ∅ and
STraces(I ) ∩ TracesPass(TC ) 6= ∅ and
STraces(I ) ∩ Traces Inconc(TC ) 6= ∅

T. Jéron VTS
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Test suites properties

The verdicts obtained by the execution of a test suite on an
implementation should be related to conformance:

rejection should imply non-conformance (soundness)

conversely, it would be fine if non-conformance imply rejection
(exhaustiveness)

T. Jéron VTS
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Soundness

Soundness of a test case/ a test suite

A test case TC is sound for S wrt ioco if it may reject
non-conformant IUTs only:

TC sound/S , ∀ I , [TC fails I ⇒ ¬(I ioco S)]

( ⇐⇒ ∀ I , [I ioco S ⇒ ¬(TC fails I )] )

A test suite TS is sound if all its test cases are sound.

TS sound/S , ∀TC ∈ TS ,TC sound/ioco,S

T. Jéron VTS
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Necessary and sufficient condition for soundness

Remember that

I ioco S ⇐⇒ STraces(I ) ∩ TracesFail(Can(S)) = ∅

TC fails I ⇐⇒ STraces(I ) ∩ TracesFail(TC ) 6= ∅

TC sound/S ⇐⇒ ∀ I , [I ioco S ⇒ ¬(TC fails I )]

This implies the necessary and sufficient condition :

Proposition

TC sound/S ⇐⇒ TracesFail(TC ) ⊆ TracesFail(Can(S))
TS sound/S ⇐⇒

⋃
TC∈TS TracesFail(TC ) ⊆ TracesFail(Can(S))

T. Jéron VTS
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Exhaustiveness

Exhaustiveness of a test suite

A test suite TS is exhaustive for S wrt ioco if for any
non-conformant IUT, there exists a test case in TS that may
reject it:

TS exhaustive , ∀I , [¬(I ioco S) ⇒ [∃TC ∈ TS ,TC fails I ]]

( ⇐⇒ ∀I , [[∀TC ∈ TS ,¬(TC fails I )] ⇒ I ioco S])

i.e. for any I , if no TC can reject I , then I conforms to S

Proposition

TS exhaustive/S ⇐⇒ TracesFail(Can(S)) ⊆
⋃

TC∈TS

TracesFail(TC )
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Canonical tester / soundness and exhaustiveness

Proposition

TS is complete (sound and exhaustive)/ioco,S ⇐⇒⋃
TC∈TS TracesFail(TC ) = TracesFail(Can(S))

In particular TS = {Can(S)} is sound and exhaustive.

I ioco S ⇐⇒ STraces(I ) ∩ TracesFail (Can(S)) = ∅ (def of ioco)
⇐⇒ ¬(Can(S) fails I ) (def. of fails)

Can(S) is a canonical tester for S wrt ioco i.e. the most general
test case.
Pb: Can(S) has too much behaviors ⇒ selection.
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Test case selection

Objective : Find an algorithm that, for ioco and for a given S ,
produces a test suite TS which is both

sound (easy to obtain from Can(S))

limit-exhaustive i.e. by considering the infinite suite of test
cases that can be produced

Two techniques :

1 Non-deterministic selection (à la TorX)

2 Selection guided by a test purpose (à la TGV)

T. Jéron VTS



Introduction Testing theory for LTS Test selection Conclusion

Non-deterministic selection: simplified view

Algorithm

After any trace σ in Can(S)

emit a Fail verdict if Can(S) after σ ⊆ Fail

otherwise make a choice between

stop and produce a Pass verdict,

observe an output or quiescence of I by an input of

Can(S) after σ and continue.

choose one output among those of Can(S) after σ, emit it to I

and continue.

Properties

Test suite TS= all finite and controlable unfoldings of Can(S).
TS is sound and exhaustive:

⋃

TC∈TS

TracesFail(TC ) = TracesFail(Can(S))

.
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Example

Can(S)

? othw
Fail

det(

!z

!y

?y

!a !b ?x

?y

!x

?z

?b

!b

?a

!y

?b

?b

!z

!x?a

!y

?y ?oth

?δ

!a

!b ?δ
?oth?y

?oth Pass Pass

Fail

Fail

FailPass PassPass

?y
?z ?δ

TC1

0

1 2

3

τ

5

τ τ 4

τ

τ

(S) 

!δ

!δ

!δ

∆

0,1,2

  2

3,5

!δ

!δ
!δ

3,4,5

!δ

∆ (S))

  2

3,4,5

0,1,2   2 3,5

!b

?y
?z ?δ

Fail

Pass Pass
Pass

?δ
Fail

TC2
?oth

?oth

0,1,2
?x

Pass

0,1,2

  2

3,5 3,4,5

?δ

?δ

?δ
?δ

determinisation

3,5

0,1,2

3,4,5
3,5

3,5

0,1,2

0,1,2   2 3,5

0,1,2
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Test selection guided by a test purpose

Main difference with preceding algorithm:

test selection by test purposes.

off-line selection, a posteriori execution

Test purpose: describes a set of behaviors to be tested, targetted
by a test case.
⇒ modelling with reachability observers (accepted language)
⇒ “model-checking”-like selection algorithms.
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Test purpose

Test purpose

IOLTS TP = (QTP,Λδ
VIS ,→TP, q

TP
0 ),

deterministic and complete for Λδ
VIS

(complete: ∀q,∀a ∈ Λδ
VIS , q

a
→TP),

equipped with a set AcceptTP of trap states
(trap: ∀a ∈ Λδ

VIS ,Accept
a
→TP Accept).

TracesAccept(TP) = LAccept(TP) is "extension-closed" and
Traces(TP) = L(TP) = (Λδ

VIS)
∗

TP can be seen as an observer of a reachability property.

Rem: if Accept is interpreted as Bad, TP models the negation of a
safety property ⇒ different interpretation of verdicts.
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Test purpose example

TP

*

det(

Refuse

*

*

*

Accept

3

?b

!x

!y

!y

?b

!y ?a, !y
?a

!z 1

0

2

(S))

!δ

!δ

!δ
!δ

!δ

∆

0

  1

2 3
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Selection principle

Generate test cases which are both

non-conformance observers
TracesFail(TC ) ⊆ TracesFail(Can(S))
(implies soundness)

reachability observers
TracesPass(TC ) ⊆ TracesAccept(TP)

while focusing on accepted traces STraces(S) ∩ TracesAccept(TP)
(or Traces(Can(S)) ∩ TracesBad(TP))
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Selection scheme

?

∆det(

? othw

Can(S) x TP

? othw

(S))

Inconc

?

TC

Fail

Can(S)

Accept

TP

Fail

Accept

Fail

Pass
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Operations for selection

complétion
TC

CTG

TG

on−the−fly

−ctg

controlabilitéCan(S) PS

TP

S produit sélection
 (+ δ)

déterminisation
vis

suspension
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Synchronous product

Let M1 = (Q1,A,→1, q
1
0) equipped with F1

and M2 = (Q2,A,→2, q
2
0) equipped with F2

be two (IO)LTS with same alphabet A.
The synchronous product of M1 and M2 is the (IO)LTS
M1 × M2 = (Q1 × Q2,A,→, (q1

0 , q2
0)) equipped with F1 × F2

where → is defined by the rule:

q1
a
→1 q′

1 q2
a
→2 q′

2

(q1, q2)
a
→ (q′

1, q
′
2)

We get:

L(M1 × M2) = L(M1) ∩ L(M2) and
LF1×F2

(M1 × M2) = LF1
(M1) ∩ LF2

(M2).
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Synchronous product Can(S) × TP

Can(S) = (Qc ,Λδ
VIS,→c , q

c
0 , ) equipped with Fail ⊆ Qc and

TP = (QTP,Λδ
VIS,→TP, q

TP
0 ) equipped with AcceptTP ⊆ QTP

are two IOLTS with same alphabet Λδ
VIS.

Let PSVIS = Can(S) × TP equipped with the state sets

AcceptVIS = Qc \ {Fail} × AcceptTP and

FailVIS = {Fail} × QTP

TP being complete, we have Traces(TP) = (Λδ
VIS)

∗, thus

Traces(PSVIS) = Traces(Can(S))
TracesAccept(PSVIS) = STraces(S) ∩ TracesAccept(TP)
TracesFail(PSVIS) = TracesFail(Can(S))
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Example

X TP

TP

PS
VIS = Can(

3
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?δ
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?δ

?δ

?δ

?δ

?δ
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Selection

Objective: Extract from PSVIS a test case with adequate verdicts:

Fail : detect STraces(S).Λδ
! \ STraces(S)

We have TracesFail(PSVIS) = TracesFail(Can(S))

Pass : detect STraces(S) ∩ TracesAccept(TP)
We have TracesAccept(PSVIS) = STraces(S) ∩ TracesAccept(TP)
Thus Pass = AcceptVIS

Inconc : detect
Rtraces(PSVIS) , STraces(S) \ pref≤(TracesAccept(PSVIS))
i.e. suspension traces of S that are not prefix of accepted
traces.

Observations :

Controlable inputs can be cut.

pref≤(TracesAccept(PSVIS)) = Tracescoreach(AcceptVIS )(PSVIS)
⇒ analysis of co-reachability to AcceptVIS
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Illustration

coreach(Accept)
? othw

Inconc

Fail

Λc

!

Λc

?

Accept
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Extraction of the complete test graph: illustration

Inconc

CTG
X TP

Pass

0
PS

VIS

?y?δ

!a

Fail

? othw

7
?y

Fail

(0,3)

(2,3)
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4

3

12

(0,2)
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(0,0)

Accept
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? othw

(3,0)

!a
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?y

(1,0) ?z

?x

!b
!b

?z

?y
?y

!b

?z

?x

!b

?z

?y
?y

!b
!b

?δ
?δ

?δ

= Can(S)

?δ

?δ

?δ

?δ
?δ

?δ?δ

?δ

?δ
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Reachability and co-reachability

postB(P) = {q′ ∈ QM | ∃b ∈ B ,∃q ∈ P , q
b
→M q′}

i.e. immediate successors of P by actions in B

reachB (P) = µX .P ∪ postB(X ) =
⋃

i≥0 post i
B(P)

i.e. reachable from P by actions in B

preB (P) = {q′ ∈ QM | ∃b ∈ B ,∃q ∈ P , q′ b
→M q}

i.e. immediate predecessors of P by actions in B ,

coreachB (P) = µX .P ∪ preB(X ) =
⋃

i≥0 pre i
B (P)

i.e. co-reachable from P by actions in B .
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Complete test graph (CTG): definition

Let PSVIS = Can(S) × TP = (QVIS,Λδ
VIS,→VIS, q

VIS
0 ), equipped with

AcceptVIS and FailVIS.
The complete test graph is the IOLTS
CTG = (QVIS,Λδ

VIS,→CTG, qVIS
0 ) equipped with Pass , AcceptVIS,

Inconc ⊆ QVIS and Fail = FailVIS,
where Inconc and →CTG are defined by the rules:

Keep

q ∈ coreach(AcceptVIS)
q′ ∈ coreach(AcceptVIS) ∪ {FailVIS}

q
α
→VISq′ α∈Λδ

VIS

q
α
→CTGq′

Inconc

q∈coreach(AcceptVIS)
q′ 6∈(coreach(AcceptVIS) ∪ {FailVIS})

q
α
→VISq′ α∈Λδ

!

q
α
→CTGq′ q′∈Inconc
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Trace properties of CTG

TracesPass(CTG ) = STraces(S) ∩ TracesAccept(TP)

pass is produced on any suspension trace of S accepted by TP .

Traces Inconc(CTG ) = [STraces(S) ∩ pref≤(TracesAccept(TP))].Λδ
!

∩STraces(S) \ pref≤(TracesAccept(TP))

Inconc is produced on any suspension trace of S which last action
is an output or δ that cannot lead to the satisfaction of TP .

TracesFail(CTG ) =
[STraces(S) ∩ pref≤(TracesAccept(TP))].Λδ

! \ STraces(S)

⇒ TracesFail (CTG ) ⊆ TracesFail(Can(S)) (NSC for soundness)
Fail is produced on any suspension trace of S which is a prefix of a
trace leading to Accept, prolongated with an unspecified output of
S .
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Controlability conflits: test case computation

In practice, a test case should be controlable :

!a ?x!a !b ?x !a ?y

configurations interdites configurations autorisees

Algorithm: backward traversal of CTG from Pass states to initial
states and conflicts pruning.
Adapted from coreach(Pass).
TC is a sub-IOLTS of CTG thus
TracesFail(TC ) ⊆ TracesFail(CTG ) ⊆ Traces(Can(S))
⇒ soundness is preserved
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Pruning: example
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Test case properties (I)

Theorem

The test suite composed of the (infinite) set of test cases that the
algorithm can produce is sound and exhaustive.

Soundness: TracesFail(TC ) ⊆ TracesFail(Can(S))
⇒ TC is sound.
Exhaustiveness: if ¬(I ioco S) then ∃σ ∈ STraces(S),∃x ∈
Λδ

! , x ∈ Out(∆(I ) after σ) ∧ x /∈ Out(∆(S) after σ).
We have ∃y ∈ Out(∆(S) after σ), (as Out(∆(S) after σ) 6= ∅).
Let σ′ = σ.y(∈ STraces(S)) and TP = σ′ finished by Accept.
By definition, CTG after σ.x ∈ Fail. Prune CTG in TC s.t.
σ.x ∈ Traces(TC ) =⇒ TC after σ.x ∈ Fail. Thus TC fails IUT .
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Conclusion

Testing theory for IOLTS

Non-deterministic selection: unfolding of Can(S)

Selection by test purpose: for finite IOLTSs based on
co-reachability analysis.

Problems:

(partial) enumeration of the set of reachable states.

Infinite state models: enumeration is impossible.

Example: models with data (IOSTS).
Analysis is undecidable ⇒ approximate analysis.

T. Jéron VTS


	Introduction to conformance testing
	Testing theory for LTS
	The IOLTS model
	Non-determinism
	Quiescence
	Conformance relation
	Canonical tester
	Test execution and verdicts
	Test suite properties

	Test selection
	Non-deterministic selection
	Test selection guided by test purpose

	Conclusion

