
Introduction Testing theory for LTS Test selection Conclusion

VTS : Verification and Testing
of Embedded Systems

Conformance Testing of reactive systems

Thierry Jéron

IRISA / INRIA Rennes, France
jeron@irisa.fr

http://www.irisa.fr/prive/jeron/

VerTeCS project team
http://www.irisa.fr/vertecs

T. Jéron VTS

Introduction Testing theory for LTS Test selection Conclusion

1 Introduction to conformance testing

2 Testing theory for LTS
The IOLTS model
Non-determinism
Quiescence
Conformance relation
Canonical tester
Test execution and verdicts
Test suite properties

3 Test selection
Non-deterministic selection
Test selection guided by test purpose

4 Conclusion

T. Jéron VTS

Introduction Testing theory for LTS Test selection Conclusion

Outline

1 Introduction to conformance testing

2 Testing theory for LTS
The IOLTS model
Non-determinism
Quiescence
Conformance relation
Canonical tester
Test execution and verdicts
Test suite properties

3 Test selection
Non-deterministic selection
Test selection guided by test purpose

4 Conclusion

T. Jéron VTS

Introduction Testing theory for LTS Test selection Conclusion

Introduction to conformance testing

Testing that a black-box implementation (IUT) of a system behaves
correctly wrt its functional specifition Spec.

IUT: implementation under test
real system (hardware or software)

Main differences with structural testing (white box):

black box IUT: unknown code, but known interface

Spec is the reference.
=⇒ Oracle defined by admissible behaviors of Spec.
→ formal unambiguous specifications should be used.

T. Jéron VTS

Introduction Testing theory for LTS Test selection Conclusion

Conformance testing: general scheme

IUT
(real system)

Test

Conformance
Testing

Properties
Requirements

cases

test execution

Verdicts

code generation

verification

Specification

Test generation

T. Jéron VTS

Introduction Testing theory for LTS Test selection Conclusion

Motivation

Industrial practice: manual design of test suites from informal
specifications

more than 30% of the development cost (≥ for critical
systems)

ad-hoc, long, repetitive, error prone,

maintenance is difficult in case of modifications of Spec,

no clear definition of conformance and of the testing process.

⇒ automatization of test synthesis from formal specifications
can be profit earning (effort ⇒ cost)

→ model-based testing/test generation

T. Jéron VTS

Introduction Testing theory for LTS Test selection Conclusion

Modeling

Description of a system in a language (syntax) which semantics can
be expressed in a mathematical model.
=⇒ allows to describe and analyze its properties : verification.
Depends on the application domain (here embedded system)
Models: algebraic spec., logics and sets, automata/ transition
systems (extended), timed automata, hybrid automata, etc.

Gain:

non-ambiguity, abstraction, masking of implementation
choices,

required properties of software / implementation choice

required for critical applications

useful for verification, code generation,

reference for test verdicts (oracle)

T. Jéron VTS

Introduction Testing theory for LTS Test selection Conclusion

Main ingredients of a testing theory

Specification, implementation and conformance

Specification: model of requested behaviors,

Implementations: model of observable real behavior

Conformance relation: formalizes “IUT conforms to Spec”

Tests cases and their executions

Test cases, test suites: model of tests (control/observation)

Test execution: interaction test ↔ IUT, produced observations,
associated verdicts (e.g. pass, fail)

Test suite properties: “IUT passes TS” ↔ “IUT conf S”

Test generation

Algorithms : tests = testgen(Spec) + TS properties & proofs

T. Jéron VTS

Introduction Testing theory for LTS Test selection Conclusion

Conformance testing of reactive systems

Reactive systems

System which reacts to its environment through its interfaces.

Environment: human, software, hardware

Interfaces: commands, captors, communication channels,
operations, methods, duration.

Difference btw control/observation: input/output + duration,
call /return, etc

IUT
control

PCO
observationSpecification

conforms to ?

T. Jéron VTS

Introduction Testing theory for LTS Test selection Conclusion

Outline

1 Introduction to conformance testing

2 Testing theory for LTS
The IOLTS model
Non-determinism
Quiescence
Conformance relation
Canonical tester
Test execution and verdicts
Test suite properties

3 Test selection
Non-deterministic selection
Test selection guided by test purpose

4 Conclusion

T. Jéron VTS

Introduction Testing theory for LTS Test selection Conclusion

Testing theory for transition systems

Origins:

Models : labeled transition systems (LTS)

Testing pre-orders (Henessy, De Nicola), refusal testing
(Philips), canonical tester (Brinksma)

Not directly useful for test generation.
Problem : no distinction btw observation and control.

Models : LTS with distinction btw input and output (IOSM,
IOTS, IOLTS).
Extensions: TIOA (input output timed automata), IOSTS (input
output transition systems + data), hybrid automata
Conformance relations : ioco, tioco, etc

Tools : TVeda, TGV, TorX, TestComposer, etc

T. Jéron VTS

Introduction Testing theory for LTS Test selection Conclusion

Overview

Models

IOLTS, semantics
Quiescence, non-determinism

Testing theory

Specifications, implementations, conformance
relation
Tests and their properties

Test generation for finite state IOLTSs

Random generation: algorithm and properties
Generation guided by a test purpose: algorithm
and properties

Test generation for infinite state systems

The IOSTS model
Generation by approximate analysis

T. Jéron VTS

Introduction Testing theory for LTS Test selection Conclusion

Bibliography

J. Tretmans. Test Generation with Inputs, Outputs and Repetitive
Quiescence, Software-Concepts and Tools, 17(3), pp 103-120, 1996
C. Jard, T. Jéron TGV: theory, principles and algorithms, A tool
for the automatic synthesis of conformance test cases for
non-deterministic reactive systems, Software Tools for Technology
Transfer (STTT), 6, October 2004.
http://www.irisa.fr/vertecs/Publis/Ps/2004-STTT.pdf
M. Broy, B. Jonsson, J.-P. Katoen, M. Leucker, A.
Pretschner (eds.), Model-Based Testing of Reactive Systems.
Lecture Notes in Computer Science No 3472, Springer Verlag,
2005. http://www.springerlink.com/content/br3e64927j30/

T. Jéron VTS

Introduction Testing theory for LTS Test selection Conclusion

Bibliography(2)

Testing from FSM:
D. Lee and M. Yannakakis Principles and methods of testing
finite state machines - a survey," Proc. of the IEEE, vol. 84, pp.
1090–1123, Aug 1996.
http://citeseer.ist.psu.edu/lee96principles.html
Timed automata testing:
M. Krichen and S. Tripakis. Black-box conformance testing for
real-time systems. In SPIN’04 Workshop on Model Checking
Software.
http://www-verimag.imag.fr/ tripakis/papers/timetest.pdf
Testing infinite state systems:
B. Jeannet, T. Jéron, V. Rusu, E. Zinovieva, Symbolic Test
Selection based on Approximate Analysis, in TACAS’05, Volume
3440 of LNCS, p349-364, 2005.
http://www.irisa.fr/vertecs/Publis/Ps/tacas05.pdf

T. Jéron VTS

Introduction Testing theory for LTS Test selection Conclusion

The IOLTS model: input/output labeled transition systems

M = (Q,Λ?,Λ!,T ,→,Q0) with
• Q: enumerable set of states,
• Λ = Λ? ∪ Λ! ∪ T : action alphabet , where

Λ?: inputs (?a), Λ!: outputs (!x),
T : internal actions (τi),
ΛVIS = Λ \ T = Λ? ∪ Λ!: visible actions

• →⊆ Q × Λ × Q: transition relation,
• Q0 ⊆ Q: set of initial states.

Assumption: no τ -divergence.
i.e. no infinite sequence of τ
through infinitely many states

?a

S

!z

!x!x

q1

q6

q0

q7

q5

q3q2

q4

τ3

τ1 τ2

τ4

?b

T. Jéron VTS

Introduction Testing theory for LTS Test selection Conclusion

IOLTS semantics

Let M = (Q,Λ?,Λ!,T ,→,Q0) an IOLTS,

Run : ρ = q0
λ0→ q1

λ1→ . . .
λn−1
→ qn s.t. q0 ∈ Q0 is a run.

Runs(M) ⊆ Q0.(Λ.Q)∗: set of runs of M.

Sequence: projection of a run ρ on Λ :
µ = projΛ(ρ) = λ0.λ1 . . . λn−1 .

Language generated by M: L(M) = projΛ(Runs(M)) ⊆ Λ∗.

Traces: projection σ = projΛVIS
(ρ) = a1.a2 . . . ak of a run ρ on ΛVIS

Traces(M) = projΛVIS
(Runs(M)) ⊆ Λ∗

VIS : set of traces of M.

T. Jéron VTS

Introduction Testing theory for LTS Test selection Conclusion

IOLTS seen as automata

An IOLTS M = (Q,Λ?,Λ!,T ,→,Q0) with set of marked states
X ⊆ Q can be interpreted as an automaton:
Run accepted in X :

ρ = q0
λ0→ q1

λ1→ . . .
λn−1
→ qn ∈ Runs(M) s.t. qn ∈ X .

Accepted sequence = projection on Λ∗ of an accepted run.
Accepted trace = projection on Λ∗

VIS of an accepted run.

RunsX (M) ⊆ Runs(M) = RunsQ(M),
LX (M) = projΛ(RunsX (M)) ⊆ L(M) = LQ(M),
TracesX (M) = projΛVIS

(RunsX (M)) ⊆ Traces(M) = TracesQ(M).

T. Jéron VTS

Introduction Testing theory for LTS Test selection Conclusion

⇒ and after relations

Let M = (Q,Λ?,Λ!,T ,→,Q0) be an IOLTS.
The trace semantics induces a relation ⇒⊆ Q × Λ∗

VIS × Q defined
by :
• q

ε
⇒ q′ , q = q′ or ∃τ1, τ2 . . . τn ∈ T : q

τ1.τ2···τn→ q′

• a ∈ ΛVIS, q
a
⇒ q′ , ∃q1, q2 : q

ε
⇒ q1

a
→ q2

ε
⇒ q′,

• for σ = a1 · · · an ∈ Λ∗
VIS,

q
σ
⇒ q′ , ∃q0, . . . qn : q = q0

a1⇒ · · ·
an⇒ qn = q′

The after notation:
• q after σ , {q′ ∈ Q | q

σ
⇒ q′}

• for P ⊆ Q, P after σ ,
⋃

q∈P q after σ

M after σ , Q0 after σ denotes the set of states where M can
stay after observing σ from an initial state.

T. Jéron VTS

Introduction Testing theory for LTS Test selection Conclusion

Illustration

?a

S

!z

!x!x

q1

q6

q0

q7

q5

q3q2

q4

τ3

τ1 τ2

τ4

?b

q1
ε
⇒ q2 et q1

ε
⇒ q3

q1
!x
⇒ q4, q1

!x
⇒ q6, q1

!x
⇒ q5, q1

!x
⇒ q7,

q1
!x .!z
⇒ q0

q0 after ?a.!x = {q4, q5, q6, q7},
q0 after ?a.!z = ∅

{q2, q3} after !x = {q4, q5, q6, q7}

Traces(S) = {ε, ?a, ?a.!x , ?a.!x .!z, ?a.!x .?b, . . .}

T. Jéron VTS

Introduction Testing theory for LTS Test selection Conclusion

Non-determinism and choice

Non-determinism in the usual automata meaning: existence of
internal actions τ and → is a relation

?x
!a

!a

s

s’

s"

s

!a

s’
!b

s" s’’’

τ

M is deterministic if it has no internal action,
Card(Q0) = 1 and ∀q ∈ Q,∀a ∈ ΛVIS, Card({q′ | q

a
→ q′}) ≤ 1.

Uncontrolled choice: sometimes called observable non-determinism

?x
!a

s

s’

s"!b

T. Jéron VTS

Introduction Testing theory for LTS Test selection Conclusion

Determinization of IOLTSs

For a finite IOLTS M = (Q,Λ?,Λ!,T ,→,Q0) (Q is finite), one can
build a deterministic IOLTS det(M) with same traces as M.

Determinized automaton

det(M) = (2Q ,Λ?,Λ!,→det ,Q0 after ε) where

2Q = P(Q) is the powerset of Q

for P ,P ′ ∈ 2Q and a ∈ ΛVIS = Λ? ∪ Λ!,
P

a
→det P ′ iff P ′ = P after a

Traces(M) = Traces(det(M))

T. Jéron VTS

Introduction Testing theory for LTS Test selection Conclusion

Determinization: example

4

1

3

2

?a

!y

?a ?b

τ

τ

?b

τ

!x

!z

!y

0

5

0,1,2

3 4,5

!z

M
!x

?b

determinisation det(M)

T. Jéron VTS

Introduction Testing theory for LTS Test selection Conclusion

Complete IOLTS

Let M = (Q,Λ?,Λ!,T ,→,Q0) be an IOLTS, q ∈ Q a state of M
and A ⊆ ΛVIS a sub-alphabet of visible actions.

q is strongly A-complete if any action in A is fireable in q :

∀λ ∈ A, q
λ
→

q is weakly A-complete if any action in A is fireable after some
internal actions:
∀λ ∈ A, q

λ
⇒

M is (str/wk) A-complete if every state in Q is A-complete.

Proposition

M deterministic ⇒ strongly = weakly
M deterministic and ΛVIS-complete ⇒ Traces(M) = Λ∗

VIS

T. Jéron VTS

Introduction Testing theory for LTS Test selection Conclusion

Testing Models

Specification : IOLTS S = (QS,Λ?,Λ!,T
S,→S, q

S

0)

Implementation : IOLTS I = (Q I,Λ?,Λ!,T
I,→I, q

I

0)
The implementation is unknown, except for its
interface, identical to S ’s
Hyp.: I is weakly Λ?-complete :
∀q ∈ Q I,∀a ∈ Λ?, q

a
⇒.

In every state, I accepts any input, possibly after
internal actions (e.g. replies by an error).
NB: assumption required to avoid deadlocks in the
interaction tester/IUT.

T. Jéron VTS

Introduction Testing theory for LTS Test selection Conclusion

Specification and implementation: example

!y

!x

?a

IUT

!y

?a

S

!z

!z
?a?a

?a

!x

?a
!z

Pass

τ3

τ2

τ4
τ3

τ4
?x

?y

TC

Inconc

?b

?b

?b

?b ?b

?b
τ1

θ

Fail

?otherw
ise

θFail

?otherw
ise

Fail

Fail

τ1

?z

θ

!a
Fail

?otherwise

T. Jéron VTS

Introduction Testing theory for LTS Test selection Conclusion

Observation of quiescence

In testing practice, one can observe traces of the IUT , but also its
quiescences with timers.
Only IUT ’s quisecences unspecified in S should be rejected.

τ

τ

τ

τ

?a

?b

deadlock

livelock

!x

output
quiescence

X

X

X X

X X

Notation: Γ(q) , {a ∈ Λ | q
a
→}

q ∈ deadlock(M) , Γ(q) = ∅

q ∈ livelock(M) , ∃τ1, . . . , τn, q
τ1.···τn→ q

q ∈ outputlock(M) , Γ(q) ⊆ Λ?

quiescent(M) = deadlock(M) ∪ livelock(M) ∪ outputlock(M)

T. Jéron VTS

Introduction Testing theory for LTS Test selection Conclusion

Lost of quiescence by determinization

Determinization preserves trace equivalence but not quiescence.
A more refined equivalence is needed
⇒ quiescence must be explicited before determinization.

4

1

3

2

?a

!y

?a ?b

τ

τ

?b

τ

!x

!z

deadlock

!y

0

5

0,1,2

3 4,5

!z

S
!x

?b

determinisation det(S)

blocage de sortie

livelock

T. Jéron VTS

Introduction Testing theory for LTS Test selection Conclusion

Explicitation of quiescence

Suspension

The suspension IOLTS of M = (Q,Λ?,Λ!,T ,→, q0) is an IOLTS
∆(M) = (Q,Λ?,Λ! ∪ {δ},T ,→δ, q0) where
→δ = → ∪ {(q, δ, q) | q ∈ quiescent(M)}

We note Λδ
! = Λ! ∪ {δ}

δ is considered as an output (it is observable)
and Λδ = Λ ∪ {δ} = Λ? ∪ Λ! ∪ {δ} ∪ T

τ

τ

τ

τ

?a

?b

deadlock !x !x

τ

de sortie
blocage

?b

?a

livelock

τ τ

τ

δ

δ

δ

T. Jéron VTS

Introduction Testing theory for LTS Test selection Conclusion

Suspension traces

det(

3

!δ

4

?a ?b

τ

τ τ

!x

!y

!z

?b

!δ !δ

!δ !δ

0

1 2

3 4 5

!z!y

!δ

?a ?b

!δ

0,1,2

!δ 1,2

4,5

!δ

?a ?b

!xdeterminization (S))(S) ∆ ∆

Suspension traces

STraces(M) , Traces(∆(M)) = Traces(det(∆(M)))

STraces(S) and STraces(I) represent visible behaviors of S and I
for testing ⇒ a base for the definition of conformance.

T. Jéron VTS

Introduction Testing theory for LTS Test selection Conclusion

Conformance relation

The conformance relation defines the set of IUT I that are
conformant to S .
Let S = (QS,Λ?,Λ!,T

S,→S, q
S

0) be a specification and
I = (Q I,Λ?,Λ!,T

I,→I, q
I

0) an implementation with same interface

Conformance

I ioco S

,

∀σ ∈ STraces(S),Out(∆(IUT) after σ) ⊆ Out(∆(S) after σ)

with Out(P) , Γ(P) ∩ Λδ
! the set of output/quiescences in P

Intuition : I conforms to S if and only if, after any suspension
trace of S , all outputs and quiescences of I are specified by S .

T. Jéron VTS

Introduction Testing theory for LTS Test selection Conclusion

ioco: example

Specification

?a

!y

!z

δ

δ

!x

?a

!x !y

!z

δ

δ

!z

?b

?a
!z

δ

!x

?a

!x !y

!z

δ

δ
δ

IUT4
IUT3

!z

?a

!x !y

!z

δ

δ

δ

choix
d’implementation

IUT1 IUT2

specification partielle

sortie interdite blocage interdit

T. Jéron VTS

Introduction Testing theory for LTS Test selection Conclusion

Characterization of ioco in terms of STraces

Proposition

I ioco S ⇐⇒ STraces(I) ∩ [STraces(S).Λδ
!] ⊆ STraces(S) (1)

⇐⇒ STraces(I) ∩ [STraces(S).Λδ
! \ STraces(S)] = ∅ (2)

STraces(I)= visible behaviors of I
STraces(S) = visible behaviors of S
STraces(S).Λδ

! = visible behaviors of S prolongated by output or δ.

(1): STraces of I prolongating STraces of S by outputs or
quiescences should remain STraces of S .

(2): I has no STrace which is an STrace of S prolongated by an
output or quiscence without being an STrace of S .

T. Jéron VTS

Introduction Testing theory for LTS Test selection Conclusion

Canonical tester of S

Can(S) = (Qc ,Λc
? = Λδ

! ,Λ
c
! = Λ?,→c , q

c
0 ,) equiped with Fail ∈ Qc

built from det(∆(S)) = (Qd ,Λ?,Λ
δ
! ,→

d , qd
0) as follows :

Qc , Qd ∪ {Fail}, Fail /∈ Qd (new state Fail)

qc
0 , qd

0

→c,→d ∪{q
a
→c Fail | q ∈ Qd , a ∈ Λδ

! = Λc
? ∧ ¬(q

a
→d)}

i.e. output completion to Fail (notation q
?othw
→ c Fail).

Language recognized by Can(S):
TracesFail (Can(S)) = STraces(S).Λδ

! \ STraces(S)

I ioco S ⇐⇒ STraces(I) ∩ TracesFail(Can(S)) = ∅
i.e. Can(S) is a non-conformance observer

Rem.: For a given S , I ioco S is a safety property on STraces(I).
Can(S) is an observer of the negation of this property.

T. Jéron VTS

Introduction Testing theory for LTS Test selection Conclusion

Canonical tester: example

Fail

?y,?z

?x,?y,?z

det(

?x,?z

?x,?z

Can(S)
?x

?y

?z

!b

!x!y !z ?b

?b!x?a

?a

?b

!z

!y !y

?y

!a !b

0

1 2

3

τ

5

τ τ 4

τ

τ
determinisation

(S) ∆ (S))

!δ

!δ

!δ

∆

3,4,5

?δ

?δ

?δ
?δ

0,1,2

 2

3,5

!δ

!δ

!δ
!δ

3,4,5

0,1,2

 2

3,5

T. Jéron VTS

Introduction Testing theory for LTS Test selection Conclusion

Test Case

A test case for S is an IOLTS TC = (QTC,ΛTC

? ,ΛTC

! ,→TC, q
TC
0) s.t. :

TC is deterministic

ΛTC

! = Λ? and ΛTC

? = Λδ
! = Λ! ∪ {δ} (input/output inversion)

TC is equipped with a set of trap states (q s.t.
∀a ∈ ΛTC,¬(q

a
→)) representing verdicts :

In general Verdicts = Pass ∪ Fail ∪ Inconc ⊆ QTC

states of TC , except Verdicts, are ΛTC

? -complete
i.e. TC is ready to receive any input in ΛTC

? = output in Λδ
! .

?othw denotes the complement of a set of input.

TracesVerdict(TC) =
TracesFail(TC) ∪ TracesPass(TC) ∪ Traces Inconc(TC)

T. Jéron VTS

Introduction Testing theory for LTS Test selection Conclusion

Test execution

Modelled by the parallel composition TC‖∆(I) with
synchronization on actions of the common interface Λδ

VIS :

TC‖∆(I) = (QTC × Q I,ΛI,→TC‖∆(I), (q
TC

0 , qI

0))
where →TC‖∆(I) is defined by:

tc
a
→TC tc ′ q

a
→∆(I) q′ a ∈ Λδ

VIS

(tc , q)
a
→TC‖∆(I) (tc ′, q′)

q
τ
→∆(I) q′ τ ∈ T I

(tc , q)
τ
→TC‖∆(I) (tc , q′)

Prop

Traces(TC‖∆(I)) = Traces(TC) ∩ STraces(I)

Prop

I weakly Λ?-complete and TC Λδ
! -complete (except in Verdicts)

⇒ TC‖∆(I) is never blocked except in Verdicts states of TC

T. Jéron VTS

Introduction Testing theory for LTS Test selection Conclusion

Example

!x

?a

!z

!y?a

IUT

!z

?a

?a ?a

Pass

TC || IUT

Pass

τ3

τ4

?b

?b ?b

?b
τ1

?b

?x
?y

TC

Fail

?otherw
ise

Fail

?otherw
ise

Fail
?z

!a

!δ

!δ

!δ

Inconc

Fail
Fail

τ1

Inconc

Fail

?otherwise

!a

?y

?x
?z

?z

?δ ?δ

?δ ?δ

T. Jéron VTS

Introduction Testing theory for LTS Test selection Conclusion

Verdicts

We say that a test case TC rejects (fails) I iff an execution of
TC‖∆(I) reaches Fail
This expresses a possibility for rejection.

TC fails I , STraces(I) ∩ TracesFail(TC) 6= ∅

! due to non-controlable choices of I , a single test case applied on
a single IUT can produce all different verdicts !
See the preceding example where
STraces(I) ∩ TracesFail(TC) 6= ∅ and
STraces(I) ∩ TracesPass(TC) 6= ∅ and
STraces(I) ∩ Traces Inconc(TC) 6= ∅

T. Jéron VTS

Introduction Testing theory for LTS Test selection Conclusion

Test suites properties

The verdicts obtained by the execution of a test suite on an
implementation should be related to conformance:

rejection should imply non-conformance (soundness)

conversely, it would be fine if non-conformance imply rejection
(exhaustiveness)

T. Jéron VTS

Introduction Testing theory for LTS Test selection Conclusion

Soundness

Soundness of a test case/ a test suite

A test case TC is sound for S wrt ioco if it may reject
non-conformant IUTs only:

TC sound/S , ∀ I , [TC fails I ⇒ ¬(I ioco S)]

(⇐⇒ ∀ I , [I ioco S ⇒ ¬(TC fails I)])

A test suite TS is sound if all its test cases are sound.

TS sound/S , ∀TC ∈ TS ,TC sound/ioco,S

T. Jéron VTS

Introduction Testing theory for LTS Test selection Conclusion

Necessary and sufficient condition for soundness

Remember that

I ioco S ⇐⇒ STraces(I) ∩ TracesFail(Can(S)) = ∅

TC fails I ⇐⇒ STraces(I) ∩ TracesFail(TC) 6= ∅

TC sound/S ⇐⇒ ∀ I , [I ioco S ⇒ ¬(TC fails I)]

This implies the necessary and sufficient condition :

Proposition

TC sound/S ⇐⇒ TracesFail(TC) ⊆ TracesFail(Can(S))
TS sound/S ⇐⇒

⋃
TC∈TS TracesFail(TC) ⊆ TracesFail(Can(S))

T. Jéron VTS

Introduction Testing theory for LTS Test selection Conclusion

Exhaustiveness

Exhaustiveness of a test suite

A test suite TS is exhaustive for S wrt ioco if for any
non-conformant IUT, there exists a test case in TS that may
reject it:

TS exhaustive , ∀I , [¬(I ioco S) ⇒ [∃TC ∈ TS ,TC fails I]]

(⇐⇒ ∀I , [[∀TC ∈ TS ,¬(TC fails I)] ⇒ I ioco S])

i.e. for any I , if no TC can reject I , then I conforms to S

Proposition

TS exhaustive/S ⇐⇒ TracesFail(Can(S)) ⊆
⋃

TC∈TS

TracesFail(TC)

T. Jéron VTS

Introduction Testing theory for LTS Test selection Conclusion

Canonical tester / soundness and exhaustiveness

Proposition

TS is complete (sound and exhaustive)/ioco,S ⇐⇒⋃
TC∈TS TracesFail(TC) = TracesFail(Can(S))

In particular TS = {Can(S)} is sound and exhaustive.

I ioco S ⇐⇒ STraces(I) ∩ TracesFail (Can(S)) = ∅ (def of ioco)
⇐⇒ ¬(Can(S) fails I) (def. of fails)

Can(S) is a canonical tester for S wrt ioco i.e. the most general
test case.
Pb: Can(S) has too much behaviors ⇒ selection.

T. Jéron VTS

Introduction Testing theory for LTS Test selection Conclusion

Outline

1 Introduction to conformance testing

2 Testing theory for LTS
The IOLTS model
Non-determinism
Quiescence
Conformance relation
Canonical tester
Test execution and verdicts
Test suite properties

3 Test selection
Non-deterministic selection
Test selection guided by test purpose

4 Conclusion

T. Jéron VTS

Introduction Testing theory for LTS Test selection Conclusion

Test case selection

Objective : Find an algorithm that, for ioco and for a given S ,
produces a test suite TS which is both

sound (easy to obtain from Can(S))

limit-exhaustive i.e. by considering the infinite suite of test
cases that can be produced

Two techniques :

1 Non-deterministic selection (à la TorX)

2 Selection guided by a test purpose (à la TGV)

T. Jéron VTS

Introduction Testing theory for LTS Test selection Conclusion

Non-deterministic selection: simplified view

Algorithm

After any trace σ in Can(S)

emit a Fail verdict if Can(S) after σ ⊆ Fail

otherwise make a choice between

stop and produce a Pass verdict,

observe an output or quiescence of I by an input of

Can(S) after σ and continue.

choose one output among those of Can(S) after σ, emit it to I

and continue.

Properties

Test suite TS= all finite and controlable unfoldings of Can(S).
TS is sound and exhaustive:

⋃

TC∈TS

TracesFail(TC) = TracesFail(Can(S))

.
T. Jéron VTS

Introduction Testing theory for LTS Test selection Conclusion

Example

Can(S)

? othw
Fail

det(

!z

!y

?y

!a !b ?x

?y

!x

?z

?b

!b

?a

!y

?b

?b

!z

!x?a

!y

?y ?oth

?δ

!a

!b ?δ
?oth?y

?oth Pass Pass

Fail

Fail

FailPass PassPass

?y
?z ?δ

TC1

0

1 2

3

τ

5

τ τ 4

τ

τ

(S)

!δ

!δ

!δ

∆

0,1,2

 2

3,5

!δ

!δ
!δ

3,4,5

!δ

∆ (S))

 2

3,4,5

0,1,2 2 3,5

!b

?y
?z ?δ

Fail

Pass Pass
Pass

?δ
Fail

TC2
?oth

?oth

0,1,2
?x

Pass

0,1,2

 2

3,5 3,4,5

?δ

?δ

?δ
?δ

determinisation

3,5

0,1,2

3,4,5
3,5

3,5

0,1,2

0,1,2 2 3,5

0,1,2

T. Jéron VTS

Introduction Testing theory for LTS Test selection Conclusion

Test selection guided by a test purpose

Main difference with preceding algorithm:

test selection by test purposes.

off-line selection, a posteriori execution

Test purpose: describes a set of behaviors to be tested, targetted
by a test case.
⇒ modelling with reachability observers (accepted language)
⇒ “model-checking”-like selection algorithms.

T. Jéron VTS

Introduction Testing theory for LTS Test selection Conclusion

Test purpose

Test purpose

IOLTS TP = (QTP,Λδ
VIS ,→TP, q

TP
0),

deterministic and complete for Λδ
VIS

(complete: ∀q,∀a ∈ Λδ
VIS , q

a
→TP),

equipped with a set AcceptTP of trap states
(trap: ∀a ∈ Λδ

VIS ,Accept
a
→TP Accept).

TracesAccept(TP) = LAccept(TP) is "extension-closed" and
Traces(TP) = L(TP) = (Λδ

VIS)
∗

TP can be seen as an observer of a reachability property.

Rem: if Accept is interpreted as Bad, TP models the negation of a
safety property ⇒ different interpretation of verdicts.

T. Jéron VTS

Introduction Testing theory for LTS Test selection Conclusion

Test purpose example

TP

*

det(

Refuse

*

*

*

Accept

3

?b

!x

!y

!y

?b

!y ?a, !y
?a

!z 1

0

2

(S))

!δ

!δ

!δ
!δ

!δ

∆

0

 1

2 3

T. Jéron VTS

Introduction Testing theory for LTS Test selection Conclusion

Selection principle

Generate test cases which are both

non-conformance observers
TracesFail(TC) ⊆ TracesFail(Can(S))
(implies soundness)

reachability observers
TracesPass(TC) ⊆ TracesAccept(TP)

while focusing on accepted traces STraces(S) ∩ TracesAccept(TP)
(or Traces(Can(S)) ∩ TracesBad(TP))

T. Jéron VTS

Introduction Testing theory for LTS Test selection Conclusion

Selection scheme

?

∆det(

? othw

Can(S) x TP

? othw

(S))

Inconc

?

TC

Fail

Can(S)

Accept

TP

Fail

Accept

Fail

Pass

T. Jéron VTS

Introduction Testing theory for LTS Test selection Conclusion

Operations for selection

complétion
TC

CTG

TG

on−the−fly

−ctg

controlabilitéCan(S) PS

TP

S produit sélection
 (+ δ)

déterminisation
vis

suspension

T. Jéron VTS

Introduction Testing theory for LTS Test selection Conclusion

Synchronous product

Let M1 = (Q1,A,→1, q
1
0) equipped with F1

and M2 = (Q2,A,→2, q
2
0) equipped with F2

be two (IO)LTS with same alphabet A.
The synchronous product of M1 and M2 is the (IO)LTS
M1 × M2 = (Q1 × Q2,A,→, (q1

0 , q2
0)) equipped with F1 × F2

where → is defined by the rule:

q1
a
→1 q′

1 q2
a
→2 q′

2

(q1, q2)
a
→ (q′

1, q
′
2)

We get:

L(M1 × M2) = L(M1) ∩ L(M2) and
LF1×F2

(M1 × M2) = LF1
(M1) ∩ LF2

(M2).

T. Jéron VTS

Introduction Testing theory for LTS Test selection Conclusion

Synchronous product Can(S) × TP

Can(S) = (Qc ,Λδ
VIS,→c , q

c
0 ,) equipped with Fail ⊆ Qc and

TP = (QTP,Λδ
VIS,→TP, q

TP
0) equipped with AcceptTP ⊆ QTP

are two IOLTS with same alphabet Λδ
VIS.

Let PSVIS = Can(S) × TP equipped with the state sets

AcceptVIS = Qc \ {Fail} × AcceptTP and

FailVIS = {Fail} × QTP

TP being complete, we have Traces(TP) = (Λδ
VIS)

∗, thus

Traces(PSVIS) = Traces(Can(S))
TracesAccept(PSVIS) = STraces(S) ∩ TracesAccept(TP)
TracesFail(PSVIS) = TracesFail(Can(S))

T. Jéron VTS

Introduction Testing theory for LTS Test selection Conclusion

Example

X TP

TP

PS
VIS = Can(

3

Accept

(0,0)

(2,1)

(0,2)

(2,3)

(0,3)

det(

(1,1) (1,0)

Accept

Fail

Fail

*

*

Refuse

!a

?δ ?y

?y

!a

*

(3,1) (3,0)

?a, !y

!b
!b

?x

?z

?y

?y

!a

?y

!b ?x

?y

?z

!b

!b

?z

!y

0

1

2

!δ

∆ (S))

S)

0

 1

2 3

?δ

?δ

?δ
?δ

?δ

?δ

?δ

?δ

?δ

?δ

T. Jéron VTS

Introduction Testing theory for LTS Test selection Conclusion

Selection

Objective: Extract from PSVIS a test case with adequate verdicts:

Fail : detect STraces(S).Λδ
! \ STraces(S)

We have TracesFail(PSVIS) = TracesFail(Can(S))

Pass : detect STraces(S) ∩ TracesAccept(TP)
We have TracesAccept(PSVIS) = STraces(S) ∩ TracesAccept(TP)
Thus Pass = AcceptVIS

Inconc : detect
Rtraces(PSVIS) , STraces(S) \ pref≤(TracesAccept(PSVIS))
i.e. suspension traces of S that are not prefix of accepted
traces.

Observations :

Controlable inputs can be cut.

pref≤(TracesAccept(PSVIS)) = Tracescoreach(AcceptVIS)(PSVIS)
⇒ analysis of co-reachability to AcceptVIS

T. Jéron VTS

Introduction Testing theory for LTS Test selection Conclusion

Illustration

coreach(Accept)
? othw

Inconc

Fail

Λc

!

Λc

?

Accept

T. Jéron VTS

Introduction Testing theory for LTS Test selection Conclusion

Extraction of the complete test graph: illustration

Inconc

CTG
X TP

Pass

0
PS

VIS

?y?δ

!a

Fail

? othw

7
?y

Fail

(0,3)

(2,3)

65

4

3

12

(0,2)

(2,1)

(0,0)

Accept

(3,1)

? othw

(3,0)

!a

(1,1)
?y

(1,0) ?z

?x

!b
!b

?z

?y
?y

!b

?z

?x

!b

?z

?y
?y

!b
!b

?δ
?δ

?δ

= Can(S)

?δ

?δ

?δ

?δ
?δ

?δ?δ

?δ

?δ

T. Jéron VTS

Introduction Testing theory for LTS Test selection Conclusion

Reachability and co-reachability

postB(P) = {q′ ∈ QM | ∃b ∈ B ,∃q ∈ P , q
b
→M q′}

i.e. immediate successors of P by actions in B

reachB (P) = µX .P ∪ postB(X) =
⋃

i≥0 post i
B(P)

i.e. reachable from P by actions in B

preB (P) = {q′ ∈ QM | ∃b ∈ B ,∃q ∈ P , q′ b
→M q}

i.e. immediate predecessors of P by actions in B ,

coreachB (P) = µX .P ∪ preB(X) =
⋃

i≥0 pre i
B (P)

i.e. co-reachable from P by actions in B .

T. Jéron VTS

Introduction Testing theory for LTS Test selection Conclusion

Complete test graph (CTG): definition

Let PSVIS = Can(S) × TP = (QVIS,Λδ
VIS,→VIS, q

VIS
0), equipped with

AcceptVIS and FailVIS.
The complete test graph is the IOLTS
CTG = (QVIS,Λδ

VIS,→CTG, qVIS
0) equipped with Pass , AcceptVIS,

Inconc ⊆ QVIS and Fail = FailVIS,
where Inconc and →CTG are defined by the rules:

Keep

q ∈ coreach(AcceptVIS)
q′ ∈ coreach(AcceptVIS) ∪ {FailVIS}

q
α
→VISq′ α∈Λδ

VIS

q
α
→CTGq′

Inconc

q∈coreach(AcceptVIS)
q′ 6∈(coreach(AcceptVIS) ∪ {FailVIS})

q
α
→VISq′ α∈Λδ

!

q
α
→CTGq′ q′∈Inconc

T. Jéron VTS

Introduction Testing theory for LTS Test selection Conclusion

Trace properties of CTG

TracesPass(CTG) = STraces(S) ∩ TracesAccept(TP)

pass is produced on any suspension trace of S accepted by TP .

Traces Inconc(CTG) = [STraces(S) ∩ pref≤(TracesAccept(TP))].Λδ
!

∩STraces(S) \ pref≤(TracesAccept(TP))

Inconc is produced on any suspension trace of S which last action
is an output or δ that cannot lead to the satisfaction of TP .

TracesFail(CTG) =
[STraces(S) ∩ pref≤(TracesAccept(TP))].Λδ

! \ STraces(S)

⇒ TracesFail (CTG) ⊆ TracesFail(Can(S)) (NSC for soundness)
Fail is produced on any suspension trace of S which is a prefix of a
trace leading to Accept, prolongated with an unspecified output of
S .

T. Jéron VTS

Introduction Testing theory for LTS Test selection Conclusion

Controlability conflits: test case computation

In practice, a test case should be controlable :

!a ?x!a !b ?x !a ?y

configurations interdites configurations autorisees

Algorithm: backward traversal of CTG from Pass states to initial
states and conflicts pruning.
Adapted from coreach(Pass).
TC is a sub-IOLTS of CTG thus
TracesFail(TC) ⊆ TracesFail(CTG) ⊆ Traces(Can(S))
⇒ soundness is preserved

T. Jéron VTS

Introduction Testing theory for LTS Test selection Conclusion

Pruning: example

Inconc

Pass

Inconc

CTG

Pass

Pass

Inconc

? othw

7

5 6

4

3

2 1

0

Fail

4

3

7

5
6

0

TC1

0

Fail

TC2

65

4

2 1

3

7

Fail

Fail

? othw

? othw
!b

?x

!b
!b

?z

?y

!b

?z

?y

?y

?z

!b

?y

?y

?x

!b

?y

?y

?z

?y

!b

?z

?δ

?δ

?δ

?δ

?δ

?δ

?δ

?δ

?δ

?δ

?δ

?δ

T. Jéron VTS

Introduction Testing theory for LTS Test selection Conclusion

Test case properties (I)

Theorem

The test suite composed of the (infinite) set of test cases that the
algorithm can produce is sound and exhaustive.

Soundness: TracesFail(TC) ⊆ TracesFail(Can(S))
⇒ TC is sound.
Exhaustiveness: if ¬(I ioco S) then ∃σ ∈ STraces(S),∃x ∈
Λδ

! , x ∈ Out(∆(I) after σ) ∧ x /∈ Out(∆(S) after σ).
We have ∃y ∈ Out(∆(S) after σ), (as Out(∆(S) after σ) 6= ∅).
Let σ′ = σ.y(∈ STraces(S)) and TP = σ′ finished by Accept.
By definition, CTG after σ.x ∈ Fail. Prune CTG in TC s.t.
σ.x ∈ Traces(TC) =⇒ TC after σ.x ∈ Fail. Thus TC fails IUT .

T. Jéron VTS

Introduction Testing theory for LTS Test selection Conclusion

Outline

1 Introduction to conformance testing

2 Testing theory for LTS
The IOLTS model
Non-determinism
Quiescence
Conformance relation
Canonical tester
Test execution and verdicts
Test suite properties

3 Test selection
Non-deterministic selection
Test selection guided by test purpose

4 Conclusion

T. Jéron VTS

Introduction Testing theory for LTS Test selection Conclusion

Conclusion

Testing theory for IOLTS

Non-deterministic selection: unfolding of Can(S)

Selection by test purpose: for finite IOLTSs based on
co-reachability analysis.

Problems:

(partial) enumeration of the set of reachable states.

Infinite state models: enumeration is impossible.

Example: models with data (IOSTS).
Analysis is undecidable ⇒ approximate analysis.

T. Jéron VTS

	Introduction to conformance testing
	Testing theory for LTS
	The IOLTS model
	Non-determinism
	Quiescence
	Conformance relation
	Canonical tester
	Test execution and verdicts
	Test suite properties

	Test selection
	Non-deterministic selection
	Test selection guided by test purpose

	Conclusion

