Outline	The ioSTS model	Conf. testing theory	Test selection	Test execution	Conclusion

VTS: Conformance testing Symbolic model-based test selection

Thierry Jéron

・ロト ・日ト ・ヨト ・ヨト

Outline	The ioSTS model	Conf. testing theory	Test selection	Test execution	Conclusion
Brief	state of the	art			

- Conformance testing theory for finite state models e.g., FSM [LeeYann. 96], ioLTS [Tretmans 96].
- On-line/on-the-fly test generation algorithms and tools e.g., TorX [Belinfante et al. 99], TGV [Jard-Jéron 04].

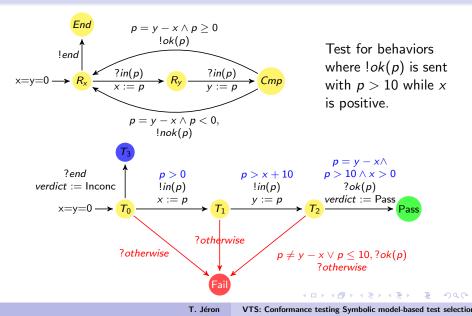
Successfully used on industrial size case studies, but may suffer from state explosion problems.

For large/infinite state models, solutions based on

- symbolic execution and constraint solving: Agatha [Gaston 06], BZ-TT [Legeard 02], Gatel [Marre-Arnoud 00], combination with random exploration: [Godefroid 05].
- abstractions: predicate abstraction [Ball 05], finite state generation + concretization [Calamé et al. 05].

Generate instantiated test cases i.e. finite paths

Motivating example



Outline	The ioSTS model	Conf. testing theory	Test selection	Test execution	Conclusion
What	we need				

- a model to specify reactive systems
- a model to express testing objectives
- a theory for reasoning about testing
- an algorithm to compute test cases with:
 - backward propagation of symbolic constraints
 - fix-point computation to deal with loops
 - approximation to ensure convergence

- 同下 - 三下 - 三下

Outline	The ioSTS model	Conf. testing theory	Test selection	Test execution	Conclusion
Contr	ibution				

- Conformance testing based on the ioco testing theory.
- Adapted to infinite state models: ioSTS.
- Focus on models with data variables: guards, assignments.
- Selection of test programs based on approximate analysis.
- Implemented in the STG tool.

イロン イボン イモン イモン 三日

Outline	The ioSTS model	Conf. testing theory	Test selection	Test execution	Conclusion

- 2 Conformance testing theory
- 3 Test selection using approximate analysis

4 Test execution

5 Conclusion and perspectives

• • = • • = •

Outline	The ioSTS model	Conf. testing theory	Test selection	Test execution	Conclusion
Outlir	ne				

1 The ioSTS model

- 2 Conformance testing theory
- 3 Test selection using approximate analysis

4 Test execution

5 Conclusion and perspectives

イロン 不同 とくほど 不良 とう

Э

Outline	The ioSTS model	Conf. testing theory	Test selection	Test execution	Conclusion
IOST	S syntax				

Definition

 $\mathcal{M} = (V, \Theta, \Sigma, T)$ where:

- $V = V_i \cup V_x$: partitioned set of (internal / external) variables
- $\Theta \subseteq \mathcal{D}_{V_i}$: initial condition with unique solution in \mathcal{D}_{V_i} .
- Σ = Σ_? ∪ Σ₁: finite alphabet of actions with communication parameters of type sig(a).

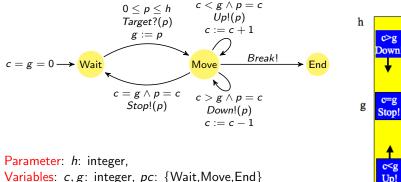
• T: finite set of symbolic transitions $t = (a, \vec{p}, G, A)$ where

- $a \in \Sigma$: action
- \vec{p} : tuple of communication parameters local to *t*;
- $G \subseteq \mathcal{D}_V \times \mathcal{D}_{\operatorname{sig}(a)}$: guard.
- $A: \mathcal{D}_V \times \mathcal{D}_{sig(a)} \to \mathcal{D}_{V_i}$: assignment.

Assumption

Guards are expressed in a theory in which satisfiability is decidable;

Running example: a simple lift-controller



Variables: c, g: integer, pc: {Wait, Move, End} Inputs: Target?; Outputs: Up!, Down!, Stop!, Break!; Communication parameters: p;

イロト イポト イヨト イヨト

0

Outline	The ioSTS model	Conf. testing theory	Test selection	Test execution	Conclusion
IOLTS	S semantics	of IOSTS			

The semantics of an ioSTS $\mathcal{M} = (V, \Theta, \Sigma, T)$ is an ioLTS $\llbracket \mathcal{M} \rrbracket = (Q, Q_0, \Lambda, \rightarrow)$ where:

- $Q = \mathcal{D}_V$: (infinite) set of states;
- $Q^0 = \{ \vec{\nu} = \langle \vec{\nu}_i, \vec{\nu}_x \rangle \mid \vec{\nu}_i \in \Theta \land \vec{\nu}_x \in \mathcal{D}_{V_x} \}$: set of initial states;
- Λ = {⟨a, π⟩ | a ∈ Σ ∧ π ∈ D_{sig(a})}: set of valued actions partitioned into Λ = Λ_? ∪ Λ_!;
- \rightarrow : transition relation defined by the rule:

$$\begin{array}{ccc} (a,\vec{p},G,A)\in T & \vec{\nu}=\langle\vec{\nu}_i,\vec{\nu}_x\rangle\in\mathcal{D}_V & \vec{\pi}\in\mathcal{D}_{\mathrm{sig}(a)} \\ \vec{\nu}'=\langle\vec{\nu}_i',\vec{\nu}_x'\rangle\in\mathcal{D}_V & G(\vec{\nu},\vec{\pi}) & \vec{\nu}_i'=A(\vec{\nu},\vec{\pi}) \\ & \vec{\nu}\stackrel{\langle a,\vec{\pi}\rangle}{\longrightarrow}\vec{\nu}' \end{array}$$

イロト 不得 トイラト イラト・ラ

Outline	The ioSTS model	Conf. testing theory	Test selection	Test execution	Conclusion
Runs,	Traces				

$$\begin{array}{l} \operatorname{Runs}(\mathcal{M}) \\ \langle pc = Wait, g = 0, c = 0 \rangle \xrightarrow{\operatorname{Target}?(3)} \langle Move, 3, 0 \rangle \xrightarrow{Up!(0)} \cdots \\ \langle Move, 3, 1 \rangle \xrightarrow{Up!(1)} \langle Move, 3, 2 \rangle \xrightarrow{Up!(2)} \langle Move, 3, 0 \rangle \xrightarrow{\operatorname{Stop!}(3)} \langle Wait, 3, 0 \rangle \end{array}$$

Traces: $Traces(\mathcal{M})$: projection of runs on valued actions Target?(3).Up!(0).Up!(1).Up!(2).Stop!(3)

 \rightarrow Accepted runs, accepted traces in $F \subseteq Q$ $Runs_F(\mathcal{M}), Traces_F(\mathcal{M}).$

Outline	The ioSTS model	Conf. testing theory	Test selection	Test execution	Conclusion
Deter	ministic ioS ⁻	ГS			

Restriction to deterministic ioSTS, where an ioSTS $\mathcal{M} = (V, \Theta, \Sigma, T)$ is deterministic if for any action $a \in \Sigma$, and any pair of transitions $t_1 = (a, \vec{p}, G_1, A_1)$ and $t_2 = (a, \vec{p}, G_2, A_2)$ carrying the same action, the conjunction of the guards $G_1 \wedge G_2$ is unsatisfiable.

Determinization of ioSTS is not always possible.

Deterministic ioSTS form a strict subclass of ioSTS.

 \rightarrow Determinization heuristic terminates for a subclass of bounded lookahead ioSTS.

Outline	The ioSTS model	Conf. testing theory	Test selection	Test execution	Conclusion
Obser	rvability for t	esting			

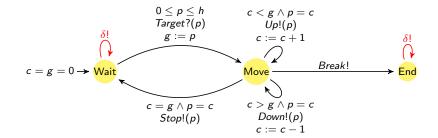
The tester controls / observes:

- Inputs / Outputs
- Quiescence: state q is quiescent if no output is fireable in q.

Suspension of $\mathcal{M} = (V, \Theta, \Sigma, T)$: $\Delta(\mathcal{M}) = (V, \Theta, \Sigma^{\delta}, T_{\delta}) \text{ where:}$ • $\Sigma^{\delta} = \Sigma_{1}^{\delta} \cup \Sigma_{2} \text{ with } \Sigma_{1}^{\delta} = \Sigma_{1} \cup \{\delta\},$ • $T_{\delta} = T \cup \{\langle \delta, G_{\delta}, Id_{V} \rangle\} \text{ with}$ $G_{\delta} = \neg \left(\bigvee_{(a, \vec{p}, G, A) \in T, \ a \in \Sigma_{1}} \exists \vec{\pi} \in \mathcal{D}_{\operatorname{sig}(a)} : G(\vec{\nu}, \vec{\pi})\right)$

Observable behavior for testing: $STraces(\mathcal{M}) \triangleq Traces(\Delta(\mathcal{M}))$

Suspension automaton: example



・ロト ・回ト ・ヨト ・ヨト

臣

Outline	The ioSTS model	Conf. testing theory	Test selection	Test execution	Conclusion
Outlir	ie				

The ioSTS model

2 Conformance testing theory

3 Test selection using approximate analysis

4 Test execution

5 Conclusion and perspectives

イロン イヨン イヨン

Э

Outline	The ioSTS model	Conf. testing theory	Test selection	Test execution	Conclusion
Testi	ng frameworl	k			

Specification

Deterministic ioSTS
$$S = (V^S, \Theta^S, \Sigma, T^S)$$
, with $\Sigma = \Sigma_! \cup \Sigma_?$
and $V_x^S = \emptyset$ (only internal variables).
 $[S] = S = (Q, Q^0, \Lambda, \rightarrow)$ with $\Lambda = \Lambda_! \cup \Lambda_?$.

Implementation

unknown
$$\Lambda_{?}$$
-complete ioLTS $I = (Q_I, Q_I^0, \Lambda_! \cup \Lambda_?, \rightarrow_I).$

Test case

ioSTS $TC = (V^{TC}, \Theta^{TC}, \Sigma^{TC}, T^{TC})$, with $\Sigma_{?}^{TC} = \Sigma_{!}, \Sigma_{!}^{TC} = \Sigma_{?}$ + variable Verdict with $\mathcal{D}_{verdict} = \{\text{none}, \text{fail}, \text{pass}, \text{inconc}\}$ deterministic, $\Sigma_{?}^{TC}$ -complete in all states where Verdict = none. $[TC] = TC = (Q^{TC}, q_{0}^{TC}, \Lambda^{TC}, \rightarrow_{TC})$ Fail = (Verdict = fail), Pass = (Verdict = pass), Inconc = (Verdict = inconc)

Outline	The ioSTS model	Conf. testing theory	Test selection	Test execution	Conclusion
Confo	ormance rela	tion			

Definition (Tretmans 96)

$$I \text{ ioco } S \triangleq \forall \sigma \in Straces(S), \\Out(\Delta(I) \text{ after } \sigma) \subseteq Out(\Delta(S) \text{ after } \sigma)$$

i.e., after a suspension trace of S, outputs (and quiescences) allowed by I are allowed by S.

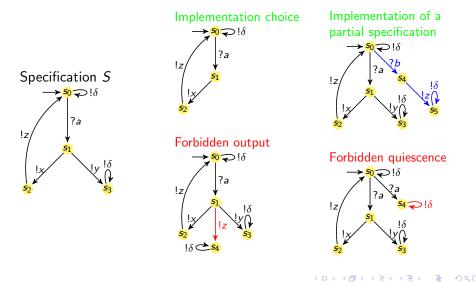
Alternative characterization

 $I \text{ ioco } \mathcal{S} \iff STraces(I) \cap [STraces(\mathcal{S}) \cdot \Lambda_!^{\delta} \setminus STraces(\mathcal{S})] = \emptyset$

 $STraces(S) \cdot \Lambda_!^{\delta} \setminus STraces(S)$: minimal non-conformant traces

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ○ ○ ○

Outline	The ioSTS model	Conf. testing theory	Test selection	Test execution	Conclusion
Exam	ples				



T. Jéron VTS: Conformance testing Symbolic model-based test selection

Outline	The IOSTS model	Conf. testing theory	lest selection	lest execution	Conclusion
Cano	nical tester				

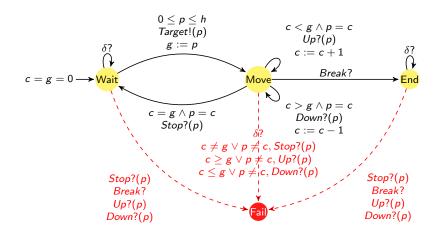
Build an observer that recognizes $STraces(S) \cdot \Lambda_!^{\delta} \setminus STraces(S)$

Canonical Tester of $\mathcal{S} = (V^{\mathcal{S}}, \Theta^{\mathcal{S}}, \Sigma, T^{\mathcal{S}})$ $Can(S) = (V^{Can}, \Theta^{Can}, \Sigma^{Can}, T^{Can})$ such that: • $V^{Can} = V^{S} \cup \{ Verdict \} \text{ where } \mathcal{D}_{Verdict} = \{ none, fail \}$ • $\Theta^{Can} = \Theta^{S} \wedge \text{Verdict} = \text{none};$ • $\Sigma_2^{Can} = \Sigma_1^{\delta}$ and $\Sigma_1^{Can} = \Sigma_2$ (alphabet is mirrored / $\Delta(S)$) • $T^{Can} = T^{\Delta(S)} + \text{transitions defined by the rules:}$ $a \in \Sigma_1^{\delta} = \Sigma_2^{Can}$ $G_a = \bigwedge_{(a, \vec{p}, G, A) \in T^{\Delta(S)}} \neg G$ $[a(\vec{p}) : G_a(\vec{v}, \vec{p})$? Verdict' := fail $] \in T^{Can}$

 $Traces_{\mathsf{Fail}}(Can(\mathcal{S})) = STraces(\mathcal{S}) \cdot \Lambda^{\delta}_{!} \setminus STraces(\mathcal{S})$

・ロット (雪) (日) (日) (日)

Canonical tester of the lift specification



<回と < 回と < 回と

Outline	The ioSTS model	Conf. testing theory	Test selection	Test execution	Conclusion
Mode	ling test exe	cution			

Test execution of \mathcal{TC} on I

modelled by the parallel composition of $\Delta(I) \text{ and } \llbracket \mathcal{TC} \rrbracket = \mathcal{TC} = (Q^{\mathcal{TC}}, q_0^{\mathcal{TC}}, \Lambda_? \cup \Lambda_! \cup \{\delta\}):$ $\Delta(I) \| \mathcal{TC} = (Q^I \times Q^{\mathcal{TC}}, Q_0^I \times \{q_0^{\mathcal{TC}}\}, \Lambda_! \cup \{\delta\} \cup \Lambda_?, \rightarrow_{\Delta(I) \| \mathcal{TC}})$ where $\rightarrow_{\Delta(I) \| \mathcal{TC}}$, is defined by the rule:

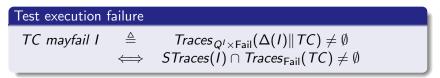
$$\frac{\alpha \in \Lambda_{!} \cup \{\delta\} \cup \Lambda_{?} \quad q_{1} \xrightarrow{\alpha} \Delta(I) \quad q_{2} \quad q_{1}' \xrightarrow{\alpha} \tau_{C} \quad q_{2}'}{(q_{1}, q_{1}') \xrightarrow{\alpha} \Delta(I) || \tau_{C} \quad (q_{2}, q_{2}')}$$

 $Traces(\Delta(I) || TC) = STraces(I) \cap Traces(TC) = STraces(I) \cap Traces(TC).$

イロト イポト イヨト イヨト 二日

Outline	The ioSTS model	Conf. testing theory	Test selection	Test execution	Conclusion
Test f	ailure				

For $P \in \{\text{Fail}, \text{Pass}, \text{Inconc}\},\$ $Traces_{Q' \times P}(\Delta(I) || TC) = STraces(I) \cap Traces_P(TC).$



Similar definitions for maypass, mayinconc.

Due to choices of the implementation, a test case may fail, pass and inconc on the same implementation

(日本) (日本) (日本)

0		÷	ī	:		~
U	u	L	5	5		e

Test case properties

Soundness, Exhaustiveness, Completeness

A set of test cases TS is

- Sound $\triangleq \forall I : (I \text{ ioco } S \implies \forall TC \in TS : \neg (TC \text{ mayfail } I)),$ i.e., only non-conformant I may be rejected by a $TC \in TS$.
- Exhaustive $\triangleq \forall I : (\neg (I \text{ ioco } S) \implies \exists TC \in TS : TC \text{ mayfail } I),$ i.e., any non-conformant I may be rejected by a $TC \in TS$.
- Complete = Sound and Exhaustive
- Using TC mayfail $I \iff STraces(I) \cap Traces_{Fail}(TC) \neq \emptyset$: $I \text{ ioco } S \iff STraces(I) \cap Traces_{\mathsf{Fail}}(Can(S)) = \emptyset$

TS sound iff $\bigcup_{T \in TS} Traces_{Fail}(TC) \subseteq Traces_{Fail}(Can(S))$ iff $\bigcup_{T \in TS} Traces_{Fail}(TC) \supseteq Traces_{Fail}(Can(S))$ TS exhaustive

Outline	The ioSTS model	Conf. testing theory	Test selection	Test execution	Conclusion
Outlin	ne				

The ioSTS model

- 2 Conformance testing theory
- 3 Test selection using approximate analysis

4 Test execution

5 Conclusion and perspectives

イロン イヨン イヨン

Э

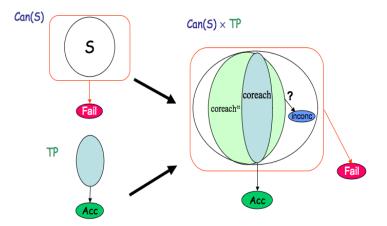
Outline	The ioSTS model	Conf. testing theory	Test selection	Test execution	Conclusion
Princ	iple: overviev	N			

Guide test selection by Test Purpose: abstract description of behaviors to be tested.

- Test Purpose specified by observer of Can(S): ioSTS TP.
- Compute the behaviors of Can(S) accepted by TP.
- Problem similar to computing feasible behaviors to a goal.
- Exact computation is not possible
 - \implies compute over-approximation.

(1月) (3日) (3日) 日

Outline	The ioSTS model	Conf. testing theory	Test selection	Test execution	Conclusion
Select	tion principle	2			



(日) (四) (분) (분) (분) (분)

Outline	The ioSTS model	Conf. testing theory	Test selection	Test execution	Conclusion
Test	purpose				

Test selection is guided by a non-intrusive observer:

Test Purpose

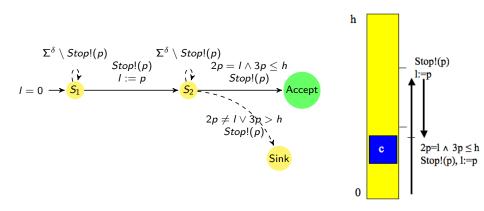
deterministic ioSTS $TP = (V^{TP}, \Theta^{TP}, \Sigma^{\delta}, T^{TP})$ such that:

- $V_x^{TP} = V_i^S$: TP is allowed to observe the internal state of S;
- $V_i^{TP} \cap V_i^S = \emptyset$ with $pc^{TP} \in V_i^{TP}$ and $accept \in \mathcal{D}_{pc^{TP}}$. Accept $\triangleq (pc^{TP} = accept)$.
- \mathcal{TP} is complete except in accept: $\forall a \in \Sigma^{\delta}, \ pc^{TP} \neq \text{accept} \Rightarrow \bigvee_{(a,\vec{p},G,A) \in \mathcal{T}^{TP}} G = true.$

Note: most coverage criteria can be described by a set of Test Purposes.

イロト 不得 トイラト イラト・ラ

A Test Purpose for the lift-controller



<回と < 回と < 回と

Outline	The ioSTS model	Conf. testing theory	Test selection	Test execution	Conclusion
Synch	nronous Proc	luct			

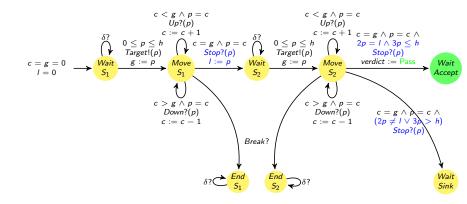
Used to identify accepting runs.

$$\begin{aligned} \mathcal{P} &= Can(\mathcal{S}) \times \mathcal{TP} = (V^{P}, \Theta^{P}, \Sigma^{Can}, T^{P}) \text{ where:} \\ \bullet \ V^{P} &= V_{i}^{P} \cup V_{x}^{P}, \text{ with } V_{i}^{P} = V_{i}^{Can} \cup V_{i}^{TP} \text{ and } V_{x}^{P} = \emptyset; \\ \bullet \ \Theta^{P}(\langle \vec{v}^{Can}, \vec{v}^{TP} \rangle) &= \Theta^{Can}(\vec{v}^{Can}) \wedge \Theta^{TP}(\vec{v}^{TP}); \\ \bullet \ T^{P} \text{ is defined by the following inference rule:} \\ & [a(\vec{p}) : G^{c}(\vec{v}^{c}, \vec{p})?(\vec{v}_{i}^{c})' := A^{c}(\vec{v}^{c}, \vec{p})] \in T^{Can} \\ & \frac{[a(\vec{p}) : G^{t}(\vec{v}^{t}, \vec{p})?(\vec{v}_{i}^{t})' := A^{t}(\vec{v}^{t}, \vec{p})] \in T^{TP}}{[a(\vec{p}) : G^{c}(\vec{v}^{c}, \vec{p}) \wedge G^{t}(\vec{v}^{t}, \vec{p})]} \\ & \mathcal{P}': \text{ ioSTS obtained by adding Verdict := pass to transitions with } \\ & pc' := \text{ accept.} \end{aligned}$$

<ロ> (日) (日) (日) (日) (日)

э

Synchronous product $Can(\mathcal{S}) \times \mathcal{TP}$ for the lift-controller



イロト イヨト イヨト イヨト

Properties of $\mathcal{P}' = Can(\mathcal{S}) \times \mathcal{TP}$

$$Traces(\mathcal{P}') \subseteq Traces(Can(\mathcal{S}))$$

 $Traces_{Fail}(\mathcal{P}') = Traces(\mathcal{P}') \cap Traces_{Fail}(Can(\mathcal{S})).$

 \mathcal{P}' detects every non-conformance along its traces. It is thus a sound test case.

 $Traces_{Pass}(\mathcal{P}') = Traces_{Accept}(\mathcal{P}) \subseteq$ $STraces(\mathcal{S}) \cap Traces_{Accept}(\mathcal{TP})$ (equality if TP does not observe variables of S).

(ロ) (同) (E) (E) (E) (E)

Over-approximation

Let $pre(A)(X)(\vec{v}, \vec{p}) = \exists \vec{v'} : X(\vec{v'}) \land \vec{v'} = A(\vec{v}, \vec{p}) = X(A(\vec{v}, \vec{p}))$ i.e., precondition of X by an assignment A and $pre^{\alpha}(A)(X)(\vec{v}, \vec{p}) \supseteq pre(A)(X)(\vec{v}, \vec{p})$ an over-apparoximation Let *coreach*(Pass) = $lfp(\lambda X.Pass \cup pre(X))$ where $pre(X) = \{q \mid \exists q' \in X, \exists \alpha \in \Lambda : q \xrightarrow{\alpha} q'\}$ is the set of states

from which X can be reached in one transition.

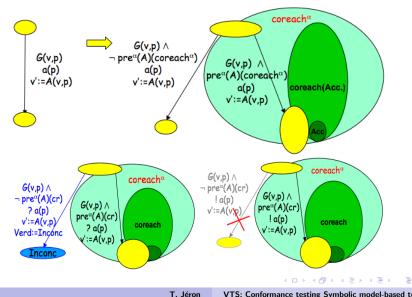
If coreach^{α} is an over-approximation of coreach(Pass), then

- $pre^{\alpha}(A)(coreach^{\alpha})$ is a necessary condition to stay in coreach(Pass)
- $\neg pre^{\alpha}(A)(coreach^{\alpha})$ is a sufficient condition to leave coreach(Pass).

Used to reinforce the guards and compute a test case from \mathcal{P}' .

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□ ◆ ○へ○

Test selection using approximation



VTS: Conformance testing Symbolic model-based test selection

The test case for S and TP is $TC = (V^{P'}, \Theta^{P'}, \Sigma^{Can}, T^{TC})$ where T^{TC} is defined from P' by the three rules:

(Select output):
$$\begin{array}{c} (a, \vec{p}, G, A) \in T^{P'} \quad a \in \Sigma_{!}^{Can} \\ G' = pre^{\alpha}(A)(coreach^{\alpha}) \\ \hline (a, \vec{p}, G \wedge G', A) \in T^{TC} \end{array}$$

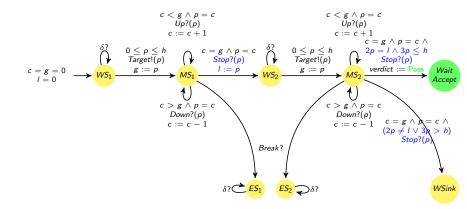
$$(\mathsf{Fail}): \begin{array}{cc} (a,\vec{p},G,A) \in T^{P'} & a \in \Sigma^{Can}_? & A_{\mathsf{Verdict}} = \mathsf{Verdict}' := \mathtt{fail} \\ & (a,\vec{p},G,A) \in T^{\mathcal{TC}} \end{array}$$

$$(Split): \begin{array}{c} (a,\vec{p},G,A) \in \mathcal{T}^{P'} \quad a \in \Sigma_{?}^{Can} \quad A_{Verdict} \neq Verdict' := \texttt{fail} \\ \hline G' = pre^{\alpha}(A)(coreach^{\alpha}) \\ \hline (a,\vec{p},G \wedge G',A), (a,\vec{p},G \wedge \neg G',A') \in \mathcal{T}^{TC} \\ \hline where A' \text{ is defined by} \begin{cases} A'_{Verdict} = Verdict' := \texttt{inconc}, \\ A'_{v} = A_{v} \text{ for } v \neq Verdict, \end{cases}$$

T. Jéron

VTS: Conformance testing Symbolic model-based test selection

Outline	The ioSTS model	Conf. testing theory	Test selection	Test execution	Conclusion
Appro	oximate anal	ysis			

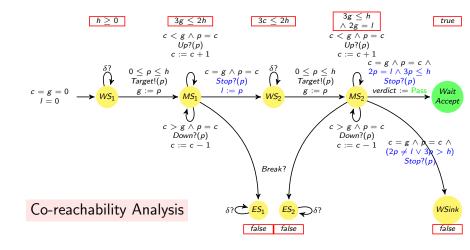


T. Jéron VTS: Conformance testing Symbolic model-based test selection

イロン イヨン イヨン イヨン

臣

Outline	The ioSTS model	Conf. testing theory	Test selection	Test execution	Conclusion
Appro	oximate anal	ysis			

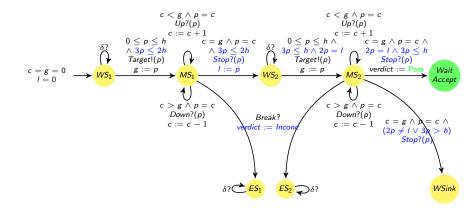


T. Jéron

イロト イヨト イヨト イヨト VTS: Conformance testing Symbolic model-based test selection

臣

Outline	The ioSTS model	Conf. testing theory	Test selection	Test execution	Conclusion
Appro	oximate anal	ysis			

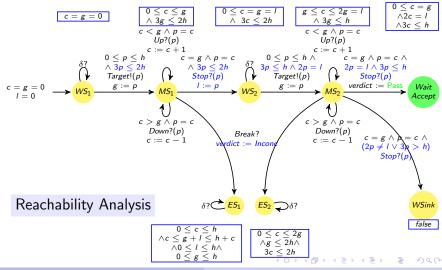


T. Jéron VTS: Conformance testing Symbolic model-based test selection

イロン イヨン イヨン イヨン

臣

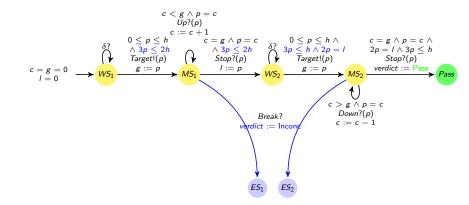
Approximate analysis



T. Jéron VTS: Conformance testing Symbolic model-based test selection

Outline The ioSTS model Conf. testing theory Test selection Test execution Conclusion

Test case for the lift controller



イロト イヨト イヨト イヨト

It can be shown that the (infinite) set of test cases that can be selected is:

Sound : comes from soundness of Can(S). No fail verdict added by subsequent transformations. Exhaustive : for any non-conformant implementation I,

choose a minimal non-conformant trace σ .!*a*, choose !*b* such that σ .!*b* \in *STraces*(*S*). Build *TP* recognizing σ .!*b*. The selected *TC* fails on σ .!*a*.

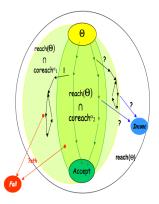
Consequences of over-approximation

For two abstractions α_1 and α_2 (e.g. α_1 : control vs α_2 : polyhedra) $pre_{\alpha_1}(A)(coreach_{\alpha_1}) \supseteq pre_{\alpha_2}(A)(coreach_{\alpha_2})$ $\implies Traces(TC_1) \supseteq Traces(TC_2)$ Less precise approximation \implies

- More infeasible traces to Accept
- More fail verdicts (all sound)

Limit cases:

- exact analysis: best guiding to Accept
- no analysis: no guiding to Accept



(4月) トイヨト イヨト

Outline	The ioSTS model	Conf. testing theory	Test selection	Test execution	Conclusion
Outlin	ne				

The ioSTS model

- 2 Conformance testing theory
- **3** Test selection using approximate analysis

4 Test execution

5 Conclusion and perspectives

イロン 不同 とくほど 不良 とう

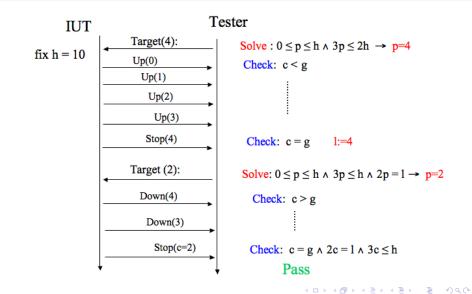
Э

Outline	The ioSTS model	Conf. testing theory	Test selection	Test execution	Conclusion
Test e	execution				

Start from the unique initial state. In each state \vec{v} , repeat until a verdict is set, choose either: Output: Using constraint solving, choose, $\vec{\pi}$ s.t. $G(\vec{v}, \vec{\pi})$ for (a, \vec{p}, G, A) , $a \in \Sigma_{\perp}$. If no solution, receive an input or observe quiescence. Send $a(\vec{\pi})$ to *I*. Move to state $\vec{v'} := A(\vec{v}, \vec{\pi})$. Input: Receive $a(\vec{\pi})$ from I (or observe quiescence δ). For each (a, \vec{p}, G, A) , $a \in \Sigma_2^{\delta}$, check $G(\vec{v}, \vec{\pi})$ until one of them is true (TC is input-complete) Move to state $v' := A(\vec{v}, \vec{\pi})$.

Outline The ioSTS model Conf. testing theory Test selection Test execution Conclusion

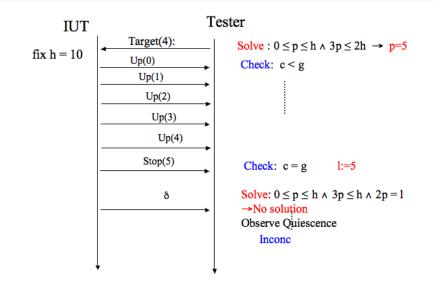
The lift-controller example



T. Jéron

VTS: Conformance testing Symbolic model-based test selection

Outline	The ioSTS model	Conf. testing theory	Test selection	Test execution	Conclusion
The I	ift-controller	example			



Outline	The ioSTS model	Conf. testing theory	Test selection	Test execution	Conclusion
Outlin	ne				

The ioSTS model

- 2 Conformance testing theory
- **3** Test selection using approximate analysis

4 Test execution

5 Conclusion and perspectives

イロン 不同 とくほど 不良 とう

Э

Outline	The ioSTS model	Conf. testing theory	Test selection	Test execution	Conclusion
Concl	usion				

- Test selection algorithm for infinite state (non-deterministic) models of reactive systems
- Using approximate analysis
- Test execution using constraint solving
- Implemented in STG using Nbac (AI) and Lucky (CS)
- Used for conformance testing but a similar approach can be used to eliminate infeasible paths for white box software testing [Denmat 08].

(日本) (日本) (日本)

Outline	The ioSTS model	Conf. testing theory	Test selection	Test execution	Conclusion
Persp	ectives				

- Tool improvement: simplification of guards, utility of conditions in guards, improved analysis on other domains.
- Similar approach for infinite state heterogeneous models
 - Timed models + data
 - Recursive programs modeled as pushdown systems: [Constant et al. 07]
- Coverage based selection
 - $\bullet~{\sf AI}+{\sf dynamic}$ partitioning as a basis for coverage criteria
 - More semantic based coverage criteria.

- 4 回 ト 4 日 ト - 日 日