1 Lattice Theory

1.1 Basic Lattices

Recall that a lattice $\langle L, \leq\rangle$ consists of a set L and a partial order \leq on L such that any pair of elements has a greatest lower bound, the meet (\wedge), and a least upper bound, the join (\vee). From a more algebraic, but equivalent, viewpoint, a lattice is a triple $\langle L, \wedge, \vee\rangle$ where \wedge and \vee satisfy the associative, commutative, idempotency, and absorption laws.

| (associative law) | $(a \vee b) \vee c$ | $=a \vee(b \vee c)$ |
| ---: | :--- | ---: | :--- |
| (commutative law) | $a \vee b$ | $=b \vee a$ |
| (idempotency law) | $a \vee a$ | $=a$ |
| (absorption law) | $a \vee(a \wedge b)$ | $=a$ |

Each law also has a dual, which is obtained by interchanging \vee and \wedge. We can then define $a \leq b \equiv(a \wedge b)=a$ and it follows that $a \leq b \equiv(a \vee b)=b$. We will stick to the algebraic view. Note that in light of associativity and commutativity, we do not need parentheses for sequences of joins or meets.

Here is a simple lemma about lattices.
Lemma 1 (1) $a \leq b \quad \Rightarrow \quad a \vee c \leq b \vee c \quad$ (2) $a \leq b \quad \Rightarrow \quad a \wedge c \leq b \wedge c$ Proof $a \vee c$
$\leq\{$ Absorption $(x \leq x \vee y)$, Associativity, Commutativity \} $a \vee c \vee b$ $=\{a \leq b$, hence $a \vee b=b\}$
$b \vee c$
The proof of (2) is similar.

1.2 Tarski-Knaster Fixpoint Theorem

A lattice $\langle L, \vee, \wedge\rangle$ is complete iff $\vee S, \wedge S$ is defined for all $S \subseteq L$. $f: L \rightarrow L$ is monotonic (order preserving) iff:

$$
\langle\forall x, y \in L:: x \leq y \rightarrow f . x \leq f . y\rangle
$$

x is a fixpoint of f iff $f . x=x$.
f^{n} is defined as: f^{0} is the identity function and $f^{n+1}=f \circ f^{n}$.
Note: f is monotonic implies that f^{n} is monotonic: The identity function is monotonic and composing two monotonic functions gives a monotonic function.

Theorem 1 (Tarski-Knaster) Let f be a monotonic function on $\langle L, \vee, \wedge, \leq\rangle$, a complete lattice. Let $S=\{b \mid f . b \leq b\}, \alpha=\wedge S$. Then α is the least fixpoint of f.

Proof (1): note that $f . \alpha \leq \alpha . \forall x \in S, \alpha \leq x$, thus $f . \alpha \leq f . x \leq x$. So, $f . \alpha \leq \wedge S$, i.e., f. $\alpha \leq \alpha$.
(2) note that $\alpha \leq f . \alpha$. By monotonicity applied to (1), we get $f(f . \alpha) \leq f . \alpha$, so $f . \alpha \in S$, so $f . \alpha \leq \alpha$.

Obviously α is a fixpoint and below all fixpoints (they are all in S), thus the least fixpoint.

One can similarly define the greatest fixpoint. With some set theory, one can prove that the least fixpoint can be obtained by starting with \perp and applying f until a fixpoint is reached. This will require at most κ steps, where $\kappa=|L|^{+}$, the next cardinal after $|L|$. (Recall that cardinals are just ordinals, but cardinal arithmetic is not ordinal arithmetic, e.g., w^{+}is the ordinal Ω, not $\omega+1$.)

