Homework TVA - due November 21, 2016 ${ }^{1}$

Sophie Pinchinat and Blaise Genest

Exercice 1 Fragments of CTL

Consider the fragment ECTL of CTL which consists of formulas built according to the following grammar:

$$
\begin{gathered}
\Phi::=a|\neg a| \Phi \wedge \Phi \mid \exists \varphi \\
\varphi::=\bigcirc \Phi|\square \Phi| \Phi \cup \Phi
\end{gathered}
$$

Therefore, ECTL-formulas are built by atomic propositions, negated atomic propositions, the Boolean connective \wedge and the path quantifier \exists together with the modalities \bigcirc, \square and U .

For two transition systems $T S_{1}=\left(S_{1}, A c t, \rightarrow_{1}, I_{1}, A P, L_{1}\right)$ and $T S_{2}=\left(S_{2}, A c t, \rightarrow_{2}, I_{2}, A P, L_{2}\right)$, we write $T S_{1} \subseteq T S_{2}$ whenever $S_{1} \subseteq S_{2}, \rightarrow_{1} \subseteq \rightarrow_{2}, I_{1}=I_{2}$ and $L_{1}(s)=L_{2}(s)$ for all $s \in S_{1}$.

1. Prove that, for all ECTL-formulas Φ and all transition systems $T S_{1}, T S_{2}$ with $T S_{1} \subseteq T S_{2}$, its holds:

$$
T S_{1} \models \Phi \text { implies } T S_{2} \models \Phi
$$

2. Give a CTL-formula which is not equivalent to any ECTL-formula. Justify your answer!

Exercice 2 CTL with fairness assumption

Let fair $=\square \diamond \forall \bigcirc(a \wedge \neg b) \rightarrow \square \diamond \forall \bigcirc(b \wedge \neg a) \wedge \diamond \square \exists \diamond b \rightarrow \square \diamond b$. Check that the transition system $T S$ depicted in Figure 1 verifies $T S \models_{\text {fair }} \forall \square(a \rightarrow \forall \diamond(b \wedge \neg a))$.

Figure 1: $T S$

[^0]
Exercice 3 Timed Automata Modeling

You have to model a smart light switch with a timed automaton, where the description of the switch is as follows.

The ligth can be in three modes: off, dim and bright. The switch sense whether a user is touching it or not. There are two ways to cycle through the light modes: each new short tap makes it go from off to dim, from dim to bright and from bright to off. A long touch follows the cycle backwards.

Exercice 4 Markov decision processes

Let M be an MDP. Let Goal be a subset of S. Let s be a state. We want to find an algorithm to determine the probability (=weight of the set of infinite paths) P_{s} (Always some day Goal) of the set of infinite paths that see infinitely often any state of Goal from s.

1. Show that the set "Always some day Goal" of infinite paths is mesurable in the algebra of cylinders.
2. Consider that M is a Markov Chain (MDP with only one action, hence no choice). Consider the strongly connected components of S.
2.1. What are the states of S with $P_{s}($ Always some day Goal $)=0$?
2.2. What are the states of S with P_{s} (Always some day Goal $)=1$?
2.3. How to compute P_{s} (Always some day Goal) for the other states?
3. Consider the general case for M a MDP.
3.4. Give an algorithm to compute the states of S with P_{S} (Always some day Goal) $=0$.
3.5. How to compute $P_{s}($ Always some day Goal $)=0$ for the other states?
4. Compute P_{s} (Always some day $\{2,5\}$) for all states of the MDP M depicted Figure 2.

Figure 2: MDP M

[^0]: ${ }^{1}$ It is recommended to work in pairs

