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Principles of Model Checking
Christel Baier and Joost-Pieter Katoen

Principles of M
odel C

hecking 
Baier and Katoen

 computer science 

 Our growing dependence on increasingly complex computer and software systems necessitates the development of 
formalisms, techniques, and tools for assessing functional properties of these systems. One such technique that has 
emerged in the last twenty years is model checking, which systematically (and automatically) checks whether a model 
of a given system satisfies a desired property such as deadlock freedom, invariants, or request-response properties. This 
automated technique for verification and debugging has developed into a mature and widely used approach with many 
applications. Principles of Model Checking offers a comprehensive introduction to model checking that is not only a 
text suitable for classroom use but also a valuable reference for researchers and practitioners in the field.

  The book begins with the basic principles for modeling concurrent and communicating systems, introduces different 
classes of properties (including safety and liveness), presents the notion of fairness, and provides automata-based 
algorithms for these properties. It introduces the temporal logics LTL and CTL, compares them, and covers algorithms 
for verifying these logics, discussing real-time systems as well as systems subject to random phenomena. Separate 
chapters treat such efficiency-improving techniques as abstraction and symbolic manipulation. The book includes an 
extensive set of examples (most of which run through several chapters) and a complete set of basic results accompanied 
by detailed proofs. Each chapter concludes with a summary, bibliographic notes, and an extensive list of exercises of 
both practical and theoretical nature.

 Christel Baier is Professor and Chair for Algebraic and Logical Foundations of Computer Science in the Faculty of 
Computer Science at the Technical University of Dresden. Joost-Pieter Katoen is Professor at the RWTH Aachen 
University and leads the Software Modeling and Verification Group within the Department of Computer Science. He is 
affiliated with the Formal Methods and Tools Group at the University of Twente.

“ This book offers one of the most comprehensive introductions to logic model checking techniques available today. The 
authors have found a way to explain both basic concepts and foundational theory thoroughly and in crystal-clear prose. 
Highly recommended for anyone who wants to learn about this important new field, or brush up on their knowledge of 
the current state of the art.”

 Gerard J. Holzmann, NASA/JPL Laboratory for Reliable Software 

“  Principles of Model Checking, by two principals of model-checking research, offers an extensive and thorough coverage 
of the state of art in computer-aided verification. With its coverage of timed and probabilistic systems, the reader gets 
a textbook exposition of some of the most advanced topics in model-checking research. Obviously, one cannot expect 
to cover this heavy volume in a regular graduate course; rather, one can base several graduate courses on this book, 
which belongs on the bookshelf of every model-checking researcher.”

 Moshe Vardi, Director, Computer and Information Technology Institute, Rice University

The MIT Press 2008, 984 pages

see [BK08] in the bibliography and referenced in this course as “Le [PoM]”
currently cited about 3000 times, and more to come ...
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Modelling Systems: Transition Systems

I Model to describe the behaviour of systems

I Directed graph where nodes represent states and edges represent
transitions that are “state changes”.
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A Beverage Vending Machine
#2: Transition systems Model Checking

A beverage vending machine

pay

selectsprite beer

insert coin

τ
τ

get sprite get beer

states? actions?, transitions?, initial states?
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Peterson’s Mutual Exclusion

Parallelism and Communication 47

〈n1, n2, x = 2〉

〈w1, n2, x = 2〉

〈w1, w2, x = 1〉

〈c1, w2, x = 1〉

〈n1, n2, x = 1〉

〈n1, w2, x = 1〉

〈w1, w2, x = 2〉

〈w1, c2, x = 2〉

〈c1, n2, x = 2〉 〈n1, c2, x = 1〉

Figure 2.10: Transition system of Peterson’s mutual exclusion algorithm.

and 〉 in the program text, and is also indicated in the program graphs PG1 and PG2.
We like to emphasize that this is not essential, and has only been done to simplify the
transition system TSPet . Mutual exclusion is also ensured when both processes perform
the assignments bi := true and x := . . . in this order but in a nonatomic way. Note that, for
instance, the order “first x := . . ., then bi := true” does not guarantee mutual exclusion.
This can be seen as follows. Assume that the location inbetween the assignments x := . . .
and bi := true in program graph Pi is called reqi. The state sequence

〈noncrit1, noncrit2, x = 1, b1 = false, b2 = false〉
〈noncrit1, req2, x = 1, b1 = false, b2 = false〉

〈req1, req2, x = 2, b1 = false, b2 = false〉
〈wait1, req2, x = 2, b1 = true, b2 = false〉
〈crit1, req2, x = 2, b1 = true, b2 = false〉
〈crit1, wait2, x = 2, b1 = true, b2 = true〉
〈crit1, crit2, x = 2, b1 = true, b2 = true〉

is an initial execution fragment where P1 enters its critical section first (as b2 = false)
after which P2 enters its critical section (as x = 2). As a result, both processes are
simultaneously in their critical section and mutual exclusion is violated.

2.2.3 Handshaking

So far, two mechanisms for parallel processes have been considered: interleaving and
shared-variable programs. In interleaving, processes evolve completely autonomously

Sophie Pinchinat Computation Tree Logic for formal verification TVA Part I 7/103
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Transition Systems: Formal Definition

TS = (S,→, I, AP, L) where

I S is a finite set of states, and I ⊆ S initial states

I →⊆ S × S is a transition relation

I AP is a finite set of atomic propositions

I L : S → 2AP is a labeling function.

The set AP is an abstraction of more
refined informations in local states.

#18: Computation tree logic Model checking

Transition systems and trees

s0

s2s3 { x = 0 }

{ x = 0 }

{ x != 0 }

{ x = 1, x != 0 }

(s0, 0)

(s1, 1)

(s2, 2) (s3, 2)

(s3, 3) (s2, 3) (s3, 3)

(s2, 4) (s3, 4) (s3, 4) (s2, 4) (s3, 4)

s1

c© JPK 7

Sophie Pinchinat Computation Tree Logic for formal verification TVA Part I 8/103



Models of systems Computation Tree Logic Syntax and Semantics CTL Model Checking and counter examples Bisimulation

Paths in TS and related notions

Let TS = (S,→, I, AP, L) be a TS.

I A finite path fragment π̂ of TS is a state sequence: π̂ = s0s1 . . . sn such
that si → si+1 for all 0 ≤ i < n where n ≥ 0

I An infinite path fragment π of TS is an infinite state sequence:
π = s0s1s2 . . . such that si → si+1 for all 0 ≤ i < n

I A path π = s0s1s2 . . . is an initial (i.e. s0 ∈ I) maximal path fragment

Without loss of generality, we assume that all maximal paths are infinite, and
we write PathsTS(s) the set of maximal path fragments π such that
first(π) = s, and simply PathsTS for the set of paths.

For π = s0s1s2 . . . ∈ PathsTS , we shall write

I π[i] ∈ S for si

I π[i..] ∈ Path(si) for the path fragment sisi+1 . . .

Sophie Pinchinat Computation Tree Logic for formal verification TVA Part I 9/103
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Example: A Triple Modular Redundant (TMR) System

Consider a triple modular redundant (TMR) system with three processors and a
single voter. As each component of this system can fail, the reliability is
increased by letting all processors execute the same program.

I The voter takes a majority vote of the outputs of the three processors. If a
single processor fails, the system can still produce reliable outputs.

I Each component can be repaired. It is assumed that only one component
at a time can fail and only one at a time can be repaired.

I On failure of the voter, the entire system fails.

I On repair of the voter, it is assumed that the system starts as being new,
i.e., with three processors and a voter.

We consider the TMR system to be operational if at least two processors are
functioning properly.

Sophie Pinchinat Computation Tree Logic for formal verification TVA Part I 10/103



Models of systems Computation Tree Logic Syntax and Semantics CTL Model Checking and counter examples Bisimulation

The TS of the Triple Modular Redundant (TMR) System

States are of the form si,j where i denotes the number of processors that are
currently up (0 < i ≤ 3) and j the number of operational voters (j = 0, 1).

Computation Tree Logic 323

s3,1 s2,1 s1,1 s0,1

s0,0

up0up2 up1up3

down

Figure 6.3: A transition system of the TMR system.

Property Formalization in CTL

Possibly the system never goes down ∃! ¬ down

Invariantly the system never goes down ∀! ¬ down

It is always possible to start as new ∀! ∃♦ up3

The system always eventually goes down
and is operational until going down ∀ ((up3 ∨ up2)U down)

Table 6.2: Some properties for the TMR system and their formalization in CTL.

black-colored states satisfy the proposition black, gray states are labeled with gray, and
all other states are labeled neither with black nor with gray.

Example 6.6. A Triple Modular Redundant System

Consider a triple modular redundant (TMR) system with three processors and a single
voter. As each component of this system can fail, the reliability is increased by letting
all processors execute the same program. The voter takes a majority vote of the outputs
of the three processors. If a single processor fails, the system can still produce reliable
outputs. Each component can be repaired. It is assumed that only one component at a
time can fail and only one at a time can be repaired. On failure of the voter, the entire
system fails. On repair of the voter, it is assumed that the system starts as being new,
i.e., with three processors and a voter. The transition system of this TMR is depicted in
Figure 6.3. States are of the form si,j where i denotes the number of processors that is
currently up (0 < i # 3) and j the number of operational voters (j = 0, 1). We consider the
TMR system to be operational if at least two processors are functioning properly. Some
interesting properties of this system and their formulation in CTL are listed in Table 6.2
on page 323. We consider each of the formulae in isolation:

temporal operator has to be immediately followed by a state formula.

Sophie Pinchinat Computation Tree Logic for formal verification TVA Part I 11/103
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Flipped Classroom

There exist many variant of TS depending on the features one wants to focus
on.
Also combinators between TS, such as the parallel composition ||, enable one
to build complex systems from basic ones.
Also more elaborated TS allow one to model, e.g., channels, etc.

Flipped Classroom (PoM, Chapter 2 on “Modelling Concurrent Systems”.)

2 Modelling Concurrent Systems 21

2.1 Transition Systems . . . . . . . . . . . . . . . . . . . 21

2.1.1 Executions . . . . . . . . . . . . . . . . . . . . . . 26

2.1.2 Modeling Hard and Software Systems . . . . . . . . . . 28

2.2 Parallelism and Communication . . . . . . . . . . . . . . 36

2.2.1 Concurrency and Interleaving . . . . . . . . . . . . . 37

2.2.2 Communication via Shared Variables . . . . . . . . . . 41

2.2.3 Handshaking . . . . . . . . . . . . . . . . . . . . . . 48

2.2.4 Channel Systems . . . . . . . . . . . . . . . . . . . . 53

2.2.5 NanoPromela . . . . . . . . . . . . . . . . . . . . . . 63

2.2.6 Synchronous Parallelism . . . . . . . . . . . . . . . . 74

2.3 The State-Space Explosion Problem . . . . . . . . . . . . . 76
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Transition Systems’ branching-time behavior: infinite trees

#18: Computation tree logic Model checking

Transition systems and trees

s0

s2s3 { x = 0 }

{ x = 0 }

{ x != 0 }

{ x = 1, x != 0 }

(s0, 0)

(s1, 1)

(s2, 2) (s3, 2)

(s3, 3) (s2, 3) (s3, 3)

(s2, 4) (s3, 4) (s3, 4) (s2, 4) (s3, 4)

s1

c© JPK 7

We will use the branching temporal logic CTL whose temporal operators allow
the expression of properties of some or all computations that start in a state.
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The Whole Picture

M1 MVFA course/Flipped Classroom

Linear time Branching time
#18: Computation tree logic Model checking

“behavior” path-based: state-based:
in a state s trace(s) computation tree of s

temporal LTL: path formulas ϕ CTL: state formulas
logic s |= ϕ iff existential path quantification ∃ϕ

∀π ∈ Paths(s). π |= ϕ universal path quantification: ∀ϕ

complexity of the PSPACE–complete PTIME
model checking

problems O
“

|TS| · 2|ϕ|
”

O (|TS| · |Φ|)

implementation- trace inclusion and the like simulation and bisimulation
relation (proof is PSPACE-complete) (proof in polynomial time)

fairness no special techniques special techniques needed

c© JPK 8
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Computation Tree Logic

I Clarke and Emerson 1981 ”Design and Synthesis of Synchronization
Skeletons Using Branching Time Temporal Logic”, cited more than

3000 times!
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Computation Tree Logic Syntax

[CE81, CE82]
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Computation Tree Logic Syntax (as in books)

Computation Tree Logic 317

6.2 Computation Tree Logic

This section presents the syntax and the semantics of CTL. The following sections will
discuss the relation and differences between CTL and LTL, present a model-checking
algorithm for CTL, and introduce some extensions of CTL.

6.2.1 Syntax

CTL has a two-stage syntax where formulae in CTL are classified into state and path
formulae. The former are assertions about the atomic propositions in the states and their
branching structure, while path formulae express temporal properties of paths. Compared
to LTL formulae, path formulae in CTL are simpler: as in LTL they are built by the
next-step and until operators, but they must not be combined with Boolean connectives
and no nesting of temporal modalities is allowed.

Definition 6.1. Syntax of CTL

CTL state formulae over the set AP of atomic proposition are formed according to the
following grammar:

Φ ::= true
∣∣∣ a

∣∣∣ Φ1 ∧Φ2

∣∣∣ ¬Φ
∣∣∣ ∃ϕ

∣∣∣ ∀ϕ

where a ∈ AP and ϕ is a path formula. CTL path formulae are formed according to the
following grammar:

ϕ ::= ©Φ
∣∣∣ Φ1 U Φ2

where Φ, Φ1 and Φ2 are state formulae.

Greek capital letters will denote CTL state formulae (CTL formulae, for short), whereas
lowercase Greek letters will denote CTL path formulae.

CTL distinguishes between state formulae and path formulae. Intuitively, state formulae
express a property of a state, while path formulae express a property of a path, i.e., an
infinite sequence of states. The temporal operators © and U have the same meaning as
in LTL and are path operators. Formula ©Φ holds for a path if Φ holds at the next
state in the path, and Φ UΨ holds for a path if there is some state along the path for
which Ψ holds, and Φ holds in all states prior to that state. Path formulae can be turned
into state formulae by prefixing them with either the path quantifier ∃ (pronounced “for
some path”) or the path quantifier ∀ (pronounced “for all paths”). Note that the linear

See the [PoM, page 317]

Sophie Pinchinat Computation Tree Logic for formal verification TVA Part I 18/103
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Derived Operators

#18: Computation tree logic Model checking

Derived operators

potentially Φ: ∃!Φ = ∃(trueUΦ)

inevitably Φ: ∀!Φ = ∀(trueUΦ)

potentially always Φ: ∃"Φ := ¬∀!¬Φ

invariantly Φ: ∀"Φ = ¬∃!¬Φ

weak until: ∃(ΦW Ψ) = ¬∀
(
(Φ∧¬Ψ) U (¬Φ∧ ¬Ψ)

)

∀(ΦW Ψ) = ¬∃
(
(Φ∧¬Ψ) U (¬Φ∧ ¬Ψ)

)

the boolean connectives are derived as usual

c© JPK 12
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Legal CTL Formulae

318 Computation Tree Logic

temporal operators © and U are required to be immediately preceded by ∃ or ∀ to obtain
a legal state formula. Formula ∃ϕ holds in a state if there exists some path satisfying ϕ
that starts in that state. Dually, ∀ϕ holds in a state if all paths that start in that state
satisfy ϕ.

Example 6.2. Legal CTL Formulae

Let AP = {x = 1, x < 2, x ! 3 } be a set of atomic propositions. Examples of syntactically
correct CTL formulae are

∃© (x = 1),∀© (x = 1), and x < 2 ∨ x = 1

and ∃((x < 2)U (x ! 3)) and ∀(trueU (x < 2)). Some examples of formulae that are
syntactically incorrect are

∃(x = 1 ∧ ∀© (x ! 3)) and ∃© (trueU (x = 1)).

The first is not a CTL formula since x = 1 ∧ ∀© (x ! 3) is not a path formula and thus
must not be preceded by ∃. The second formula is not a CTL formula since trueU (x = 1)
is a path formula rather than a state formula, and thus cannot be preceded by ©. Note
that

∃© (x = 1 ∧ ∀© (x ! 3)) and ∃©∀(trueU (x = 1))

are, however, syntactically correct CTL formulae.

The Boolean operators true, false, ∧ , → and ⇔ are defined in the usual way. The
temporal modalities “eventually”, “always”, and “weak until” can be derived—similarly
as for LTL—as follows:

eventually: ∃♦Φ = ∃(trueU Φ)

∀♦Φ = ∀(trueU Φ)

always: ∃#Φ = ¬∀♦¬Φ

∀#Φ = ¬∃♦¬Φ

∃♦ Φ is pronounced “Φ holds potentially” and ∀♦ Φ is pronounced “Φ is inevitable”. ∃# Φ
is pronounced “potentially always Φ”, ∀# Φ is pronounced “invariantly Φ”, and ∀©Φ is
pronounced “for all paths next Φ”.

Sophie Pinchinat Computation Tree Logic for formal verification TVA Part I 20/103
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Visualization of semantics
#18: Computation tree logic Model checking

Visualization of semantics

∀!red ∀(yellowU red)

∃(yellowU red)∃"red

∀"red

∃!red

c© JPK 13
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Semantics of CTL state-formulas
#18: Computation tree logic Model checking

Semantics of CTL state-formulas

Defined by a relation |= such that

s |= Φ if and only if formula Φ holds in state s

s |= a iff a ∈ L(s)

s |= ¬Φ iff ¬ (s |= Φ)

s |= Φ∧ Ψ iff (s |= Φ) ∧ (s |= Ψ)

s |= ∃ϕ iff π |= ϕ for some path π that starts in s

s |= ∀ϕ iff π |= ϕ for all paths π that start in s

c© JPK 15
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Semantics of CTL path-formulas

#18: Computation tree logic Model checking

Semantics of CTL path-formulas

Define a relation |= such that

π |= ϕ if and only if path π satisfies ϕ

π |= ©Φ iff π[1] |= Φ

π |= ΦUΨ iff (∃ j ! 0. π[j] |= Ψ ∧ (∀ 0 " k < j. π[k] |= Φ))

where π[i] denotes the state si in the path π

c© JPK 16
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Examples of CTL Properties (1/4) The TMR SystemComputation Tree Logic 323

s3,1 s2,1 s1,1 s0,1

s0,0

up0up2 up1up3

down

Figure 6.3: A transition system of the TMR system.

Property Formalization in CTL

Possibly the system never goes down ∃! ¬ down

Invariantly the system never goes down ∀! ¬ down

It is always possible to start as new ∀! ∃♦ up3

The system always eventually goes down
and is operational until going down ∀ ((up3 ∨ up2)U down)

Table 6.2: Some properties for the TMR system and their formalization in CTL.

black-colored states satisfy the proposition black, gray states are labeled with gray, and
all other states are labeled neither with black nor with gray.

Example 6.6. A Triple Modular Redundant System

Consider a triple modular redundant (TMR) system with three processors and a single
voter. As each component of this system can fail, the reliability is increased by letting
all processors execute the same program. The voter takes a majority vote of the outputs
of the three processors. If a single processor fails, the system can still produce reliable
outputs. Each component can be repaired. It is assumed that only one component at a
time can fail and only one at a time can be repaired. On failure of the voter, the entire
system fails. On repair of the voter, it is assumed that the system starts as being new,
i.e., with three processors and a voter. The transition system of this TMR is depicted in
Figure 6.3. States are of the form si,j where i denotes the number of processors that is
currently up (0 < i # 3) and j the number of operational voters (j = 0, 1). We consider the
TMR system to be operational if at least two processors are functioning properly. Some
interesting properties of this system and their formulation in CTL are listed in Table 6.2
on page 323. We consider each of the formulae in isolation:

temporal operator has to be immediately followed by a state formula.

Computation Tree Logic 323

s3,1 s2,1 s1,1 s0,1

s0,0

up0up2 up1up3

down

Figure 6.3: A transition system of the TMR system.

Property Formalization in CTL

Possibly the system never goes down ∃! ¬ down

Invariantly the system never goes down ∀! ¬ down

It is always possible to start as new ∀! ∃♦ up3

The system always eventually goes down
and is operational until going down ∀ ((up3 ∨ up2)U down)

Table 6.2: Some properties for the TMR system and their formalization in CTL.

black-colored states satisfy the proposition black, gray states are labeled with gray, and
all other states are labeled neither with black nor with gray.

Example 6.6. A Triple Modular Redundant System

Consider a triple modular redundant (TMR) system with three processors and a single
voter. As each component of this system can fail, the reliability is increased by letting
all processors execute the same program. The voter takes a majority vote of the outputs
of the three processors. If a single processor fails, the system can still produce reliable
outputs. Each component can be repaired. It is assumed that only one component at a
time can fail and only one at a time can be repaired. On failure of the voter, the entire
system fails. On repair of the voter, it is assumed that the system starts as being new,
i.e., with three processors and a voter. The transition system of this TMR is depicted in
Figure 6.3. States are of the form si,j where i denotes the number of processors that is
currently up (0 < i # 3) and j the number of operational voters (j = 0, 1). We consider the
TMR system to be operational if at least two processors are functioning properly. Some
interesting properties of this system and their formulation in CTL are listed in Table 6.2
on page 323. We consider each of the formulae in isolation:

temporal operator has to be immediately followed by a state formula.
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Examples of CTL Properties (2/4)

Computation Tree Logic 325

∃ (a U (¬ a ∧ ∀(¬ a U b)))

∃© a ∀© a

∃! a ∀! a

∃♦ (∃! a) ∀(a U b)

TS

s1s0

{ a } { a }

s3

{ b }

{ a, b }
s2

(a)

Figure 6.4: Interpretation of several CTL formulae.Sophie Pinchinat Computation Tree Logic for formal verification TVA Part I 25/103
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About Infinitely Often in CTL

Theorem

s |= ∀ �∀ ♦ a if and only if for all π ∈ Path(s), π[i] |= a for infinitely many i

Proof on the board...
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Intuitive examples of CTL Properties (3/4)

I The mutual exclusion property can be described in CTL by the formula

∀�(¬crit1 ∨ ¬crit2)

The CTL formula

(∀ �∀ ♦ crit1) ∧ (∀ �∀ ♦ crit2)

requires each process to have access to the critical section infinitely often.

I In case of a traffic light:
I The safety property “each red light phase is preceded by a yellow light

phase” can be formulated in CTL by

∀�(yellow ∨ ∀© ¬red)
I The liveness property “the traffic light is infinitely often green” can be

formulated as
∀�∀♦green
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Intuitive examples of CTL Properties (4/4)

I Progress properties such as “every request will eventually be granted” can
be described by

∀�(Request ⇒ ∀♦response)

I The CTL formula
∀�∃♦start

expresses that in every reachable system state it is possible to return (via 0
or more transitions) to (one of) the starting state(s).
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Semantics of CTL on TS (1/2)
#18: Computation tree logic Model checking

Transition system semantics

• For CTL-state-formula Φ, the satisfaction set Sat(Φ) is defined by:

Sat(Φ) = { s ∈ S | s |= Φ }

• TS satisfies CTL-formula Φ iff Φ holds in all its initial states:

TS |= Φ if and only if ∀s0 ∈ I. s0 |= Φ

– this is equivalent to I ⊆ Sat(Φ)

• Point of attention: TS #|= Φ and TS #|= ¬Φ is possible!
– because of several initial states, e.g., s0 |= ∃!Φ and s′

0 $|= ∃!Φ
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Semantics of CTL on TS (2/2)

TS 6|= Φ and TS 6|= ¬Φ is possible:

328 Computation Tree Logic

– sj !|= Φ ∧ ¬Ψ and sj !|= ¬Φ ∧¬Ψ, i.e., sj |= Ψ, and

– si |= Φ ∧ ¬Ψ for all 0 ! i < j.

This is equivalent to π |= Φ U Ψ.

Gathering these results yields

π |= Φ W Ψ if and only if π |= Φ U Ψ or π |= "(Φ ∧¬Ψ),

if and only if π |= Φ U Ψ or π |= "Φ.

Thus, the CTL formula ∃(Φ W Ψ) is equivalent to ∃(Φ UΨ) ∨ ∃"Φ. In the same way, one
can check that the meaning of ∀(Φ W Ψ) is as expected, i.e., s |= ∀(Φ W Ψ) if and only if
all paths starting in s fulfill Φ W Ψ according to the LTL semantics of W .

Remark 6.10. The Semantics of Negation

For state s, we have s !|= Φ if and only if s |= ¬Φ. This, however, does not hold in general
for transition systems. That is to say, it is possible that the statements TS !|= Φ and
TS !|= ¬Φ both hold. This stems from the fact that there might be two initial states, s0

and s′
0, say, such that s0 |= Φ and s′

0 !|= Φ. Furthermore:

TS !|= ¬∃ϕ iff there exists a path π ∈ Paths(TS) with π |= ϕ.

This—at first glance surprising—equivalence is justified by the fact that the interpretation
of CTL state formulae over transition systems is based on a universal quantification over
the initial states. The statement TS !|= ¬∃ϕ thus holds if and only if there exists an initial
state s0 ∈ I with s0 !|= ¬∃ϕ, i.e., s0 |= ∃ϕ. On the other hand, TS |= ∃ϕ requires that
s0 |= ∃ϕ for all s0 ∈ I. Consider the following transition system:

s0

{ a }

s′
0

∅

It follows that s0 |= ∃" a, whereas s′
0 !|= ∃" a. Accordingly, TS !|= ¬∃" a and TS !|= ∃" a.

The semantics of CTL has been defined for a transition system without terminal states.
This has the (technically) pleasant effect that all paths are infinite and simplifies the

because of several initial states, e.g., s0 |= ∃ � a and s′0 6|= ∃ � a

Exercise

Any even simpler idea?
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CTL Semantics for Transition Systems with Terminal States

Exercise

Adapt the path semantics in case transition systems are considered with terminal
states, i.e., when finite paths are possible.
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CTL Equivalence - Duality Laws

Definition

Φ ≡ Ψ if and only if for all transition system TS,

TS |= Φ ⇔ TS |= Ψ

#19: CTL, LTL and CTL∗ Model checking

Duality laws

∀ © Φ ≡ ¬∃ © ¬Φ

∃ © Φ ≡ ¬∀ © ¬Φ

∀!Φ ≡ ¬∃"¬Φ

∃!Φ ≡ ¬∀"¬Φ

∀(ΦUΨ) ≡ ¬∃((Φ∧ ¬Ψ)W (¬Φ ∧¬Ψ))

c© JPK 9

Exercise

Write proofs
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CTL Equivalence - Expansion Laws

#19: CTL, LTL and CTL∗ Model checking

Expansion laws

Recall in LTL: ϕUψ ≡ ψ ∨ (ϕ∧ © (ϕUψ))

In CTL:
∀(ΦUΨ) ≡ Ψ ∨ (Φ ∧ ∀ © ∀(ΦUΨ))

∀!Φ ≡ Φ ∨ ∀ © ∀!Φ

∀"Φ ≡ Φ ∧ ∀ © ∀"Φ

∃(ΦUΨ) ≡ Ψ ∨ (Φ ∧ ∃ © ∃(ΦUΨ))

∃!Φ ≡ Φ ∨ ∃ © ∃!Φ

∃"Φ ≡ Φ ∧ ∃ © ∃"Φ

c© JPK 10
Exercise

Write proofs
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Distributive Laws (1/2)

#19: CTL, LTL and CTL∗ Model checking

Distributive laws (1)
Recall in LTL: ! (ϕ ∧ ψ) ≡ !ϕ ∧ !ψ and" (ϕ ∨ ψ) ≡ "ϕ ∨ "ψ

In CTL:
∀!(Φ∧Ψ) ≡ ∀!Φ ∧ ∀!Ψ

∃"(Φ ∨ Ψ) ≡ ∃"Φ ∨ ∃"Ψ

note that ∃! (Φ ∧ Ψ) $≡ ∃! Φ ∧ ∃! Ψ and ∀" (Φ ∨ Ψ) $≡ ∀" Φ ∨ ∀" Ψ

c© JPK 11

Exercise

Write proofs

Exercise

Argue why ∀ ♦ (Φ∨Ψ) 6≡ ∀ ♦Φ∨∀ ♦Ψ entails ∃ � (Φ∧Ψ) 6≡ ∃ �Φ∧∃ �Ψ,
then prove ∀ ♦ (Φ ∨Ψ) 6≡ ∀ ♦Φ ∨ ∀ ♦Ψ.
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∀ ♦ (Φ ∨Ψ) 6≡ ∀ ♦Φ ∨ ∀ ♦Ψ#19: CTL, LTL and CTL∗ Model checking

Distributive laws (2)

{ a } { b }
s′′ s′

s

s |= ∀! (a ∨ b) since for all π ∈ Paths(s). π |= ! (a ∨ b)

But: s (s′′)ω |= ! a but s (s′′)ω &|= ! b Thus: s &|= ∀! b

A similar reasoning applied to path s (s′)ω yields s &|= ∀! a

Thus, s &|= ∀! a ∨ ∀! b

c© JPK 12
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Existential Normal Forms

332 Computation Tree Logic

{ a } { b }

s′′ s′

s

For each path that starts in state s we have that ♦ (a ∨ b) holds, so s |= ∀♦ (a ∨ b). This
follows directly from the fact that each path visits either state s′ or state s′′ eventually,
and s′ |= a ∨ b and the same applies to s′′. However, state s does not satisfy ∀♦ a ∨ ∀♦ b.
For instance, path s (s′′)ω |= ♦ a but s (s′′)ω #|= ♦ b. Thus, s #|= ∀♦ b. By a similar reasoning
applied to path s (s′)ω it follows that s #|= ∀♦ a. Thus, s #|= ∀♦ a ∨ ∀♦ b. Stated in words,
not all computations that start in state s eventually reach an a-state nor do they all
eventually reach a b-state.

6.2.4 Normal Forms for CTL

The duality law for ∀©Φ shows that ∀© can be treated as a derived operator of ∃© .
That is to say, the basic operators ∃© , ∃ U, and ∀ U would have been sufficient to define the
syntax of CTL. The following theorem demonstrates that we can even omit the universal
path quantifier and define all temporal modalities in CTL using the basic operators ∃© ,
∃ U, and ∃" .

Definition 6.13. Existential Normal Form (for CTL)

For a ∈ AP, the set of CTL state formulae in existential normal form (ENF, for short) is
given by

Φ ::= true
∣∣∣ a

∣∣∣ Φ1 ∧ Φ2

∣∣∣ ¬Φ
∣∣∣ ∃©Φ

∣∣∣ ∃(Φ1 UΦ2)
∣∣∣ ∃" Φ.

Theorem 6.14. Existential Normal Form for CTL

For each CTL formula there exists an equivalent CTL formula in ENF.

Theorem

For each CTL formula there exists an equivalent CTL formula in ENF, but with
an exponential blowup.

Proof.
Use the duality laws for elimination of ∀ path quantifier:

∀ © Φ ≡ ¬∃ © ¬Φ
∀ (Φ U Ψ) ≡ ¬∃ (¬Ψ U (¬Φ ∧ ¬Ψ)) ∧ ¬∃ �¬Ψ

Exercise

Make the proofs, also what would you suggest for ∀♦Φ and ∀�Φ?

Notice the exponential blowup of the translation from CTL to CTL in ENF.
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Positive Normal Forms

Computation Tree Logic 333

Proof: The following duality laws allow elimination of the universal path quantifier and
thus provide a translation of CTL formulae into equivalent ENF formulae:

∀©Φ ≡ ¬∃©¬Φ,

∀(Φ UΨ) ≡ ¬∃(¬Ψ U (¬Φ ∧ ¬Ψ)) ∧ ¬∃! ¬Ψ.

Recall that the basis syntax of CTL only uses ∃© , ∃ U and ∀© and ∀ U. Thus, the two
rules used in the proof of Theorem 6.14 allow the removal of all universal quantifiers from
a given CTL formula. However, when implementing the translation from CTL formulae
to ENF formulae one might use analogous rules for the derived operators, such as

∀♦ Φ ≡ ¬ ∃! ¬ Φ,

∀! Φ ≡ ¬ ∃♦ ¬ Φ = ¬ ∃(trueU Φ).

Since the rewrite rule for ∀ U triples the occurrences of the right formula Ψ, the translation
from CTL to ENF can cause an exponential blowup.

Another normal form of importance is the positive normal form. A CTL formula is said
to be in positive normal form (PNF, for short) whenever negations only occur adjacent
to atomic propositions. That is, e.g., ¬∀(aU¬b) is not in PNF, whereas ∃(¬a∧¬bU a) is
in PNF. To ensure that every CTL formula is equivalent to a formula in PNF, for each
operator a dual operator is necessary. We have that conjunction and disjunction are dual,
and that © is dual to itself. As for LTL, we adopt the weak until operator W as a dual
operator of U.

Definition 6.15. Positive Normal Form (for CTL)

The set of CTL state formulae in positive normal form (PNF, for short) is given by

Φ ::= true
∣∣∣ false

∣∣∣ a
∣∣∣ ¬a

∣∣∣ Φ1 ∧Φ2

∣∣∣ Φ1 ∨ Φ2

∣∣∣ ∃ϕ
∣∣∣ ∀ϕ

where a ∈ AP and the path formulae are given by

ϕ ::= ©Φ
∣∣∣ Φ1 UΦ2

∣∣∣ Φ1 W Φ2.

Theorem 6.16. Existence of Equivalent PNF Formulae

For each CTL formula there exists an equivalent CTL formula in PNF.

Theorem

For each CTL formula there exists an equivalent CTL formula in PNF

Proof.
Use the equivalence laws.

Notice that a law like ¬∀ (Φ U Ψ) ≡ ∃ ((¬Ψ) W (¬Φ ∧ ¬Ψ)) yields an
exponential blowup in the translation.

Exercice

What if you allow for the release operator R of the [PoM, page 334]?
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Model Checking

Wikipedia

In computer science, model checking is: Given a model of a system,
exhaustively and automatically check whether this model meets a given
specification.
Typically, the systems one has in mind are hardware or software systems, and
the specification contains safety requirements such as the absence of deadlocks
and similar critical states that can cause the system to crash. Model checking
is a technique for automatically verifying correctness properties of finite-state
systems.
To solve such a problem algorithmically, both the model of the system and the
specification are formulated in some precise mathematical language: To this
end, it is formulated as a task in logic, namely to check whether a given
structure satisfies a given logical formula.

Our setting

Given a transition system TS and a formula Φ ∈ CTL,

TS |= Φ?
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Preliminaries assumptions

I The transition system TS is finite with no terminal state

I Formula Φ is in Exitential Normal Form (recall)

Φ ::= true | a |Φ1 ∧ Φ2 | ¬Φ | ∃ © Φ | ∃ (Φ1 U Φ2) | ∃�Φ
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Basic Algorithm

Consider TS = (S,→, I, AP, L) and Φ ∈ CTL
I The set Sat(Φ) is computed recursively

I It follows that TS |= Φ if and only if I ⊆ Sat(Φ)

The Model Checking is global because we answer a more general problem than
“TS |= Φ?”, but “s |= Φ?” for all s ∈ S
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The Basic Algorithm

We proceed with a bottom-up traversal of the parse tree of the CTL state
formula Φ

#20: CTL model checking Model checking

Basic algorithm

Input: finite transition system TS and CTL formula Φ (both over AP)
Output: TS |= Φ

(* compute the sets Sat(Φ) = { s ∈ S | s |= Φ } *)
for all i ! | Φ | do
for all Ψ ∈ Sub(Φ) with | Ψ | = i do
compute Sat(Ψ) from Sat(Ψ′) (* for maximal proper Ψ′ ∈ Sub(Ψ) *)

od
od
return I ⊆ Sat(Φ)

c© JPK 5

where Sub(Φ) is the set of subformulas of Φ and |Φ| is the length of Φ, i.e.,
the number of symbols
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Example#20: CTL model checking Model checking

Example

∧ Sat(Φ)

∃©Sat(Ψ) ∃ U Sat(Ψ′)

a

b ∃! Sat(Ψ′′)

¬

c

Φ = ∃© a︸ ︷︷ ︸
Ψ

∧ ∃(bU ∃!¬c)︸ ︷︷ ︸
Ψ′′︸ ︷︷ ︸

Ψ′

.

c© JPK 6
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Characterization of Sat(.) (1/2)

Let Post(s) := {s′ | s→ s′} be the set of successor states of s

#20: CTL model checking Model checking

Characterization of Sat (1)

For all CTL formulas Φ,Ψ over AP it holds:

Sat(true) = S

Sat(a) = { s ∈ S | a ∈ L(s) }, for any a ∈ AP
Sat(Φ ∧ Ψ) = Sat(Φ) ∩ Sat(Ψ)

Sat(¬Φ) = S \ Sat(Φ)

Sat(∃©Φ) = { s ∈ S | Post(s) ∩ Sat(Φ) &= ∅ }

where TS = (S, Act, →, I,AP, L) is a transition system without terminal states

c© JPK 7
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Characterization of Sat(.) (2/2)
#20: CTL model checking Model checking

Characterization of Sat (2)

• Sat(∃(Φ UΨ)) is the smallest subset T of S, such that:

(1) Sat(Ψ) ⊆ T and (2) (s ∈ Sat(Φ) and Post(s) ∩ T $= ∅) ⇒ s ∈ T

• Sat(∃!Φ) is the largest subset T of S, such that:

(3) T ⊆ Sat(Φ) and (4) s ∈ T implies Post(s) ∩ T $= ∅

where TS = (S, Act, →, I,AP, L) is a transition system without terminal states

c© JPK 8
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Characterization of Sat(∃ (Φ U Ψ))

Proposition

Sat(∃ (Φ U Ψ)) is the smallest set T ⊆ S such that

(1) Sat(Ψ) ⊆ T
(2) s ∈ Sat(Φ) and Post(s) ∩ T 6= ∅ imply s ∈ T

Proof.

(i) Show that Sat(∃ (Φ U Ψ)) satisfies (1) and (2)

(ii) Show that any T satisfying (1) and (2) is such that Sat(∃ (Φ U Ψ)) ⊆ T

See details at [PoM, page 344]
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Fix-point characterization of Sat(∃ (Φ U Ψ))

We just have seen that:

Proposition

Sat(∃ (Φ U Ψ)) is the smallest set T ⊆ S such that

(1) Sat(Ψ) ⊆ T
(2) s ∈ Sat(Φ) and Post(s) ∩ T 6= ∅ imply s ∈ T

Notice that, because of the expansion laws, ∃ (Φ U Ψ) is a solution of the

equation Z ≡ Ψ ∨ Φ ∧ ∃ © Z (where Z is a variable), but there are others,
e.g., ∃ (Φ W Ψ) is another one.

Proposition

Sat(∃ (Φ U Ψ)) is the smallest set T ⊆ S satisfying

Sat(Ψ) ∪ {s ∈ Sat(Φ) |Post(s) ∩ T 6= ∅} = T
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Fix-point characterization of Sat(∃ �Φ)

Proposition

Sat(∃ �Φ) is the largest set T ⊆ S such that

(3) T ⊆ Sat(Φ)

(4) s ∈ T implies Post(s) ∩ T 6= ∅

Proof.

(i) Show that Sat(∃ �Φ) satisfies (3) and (4)

(ii) Show that any T satisfying (3) and (4) is such that T ⊆ Sat(∃ �Φ)

See details at [PoM, page 345] (+ an ERRATUM in the book)

What is the set-theoretic counterpart for Sat(∃ �Φ)?
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Computation of Sat(Φ)

#20: CTL model checking Model checking

Computation of Sat

switch(Φ):

a : return { s ∈ S | a ∈ L(s) };
. . . : . . . . . .
∃© Ψ : return { s ∈ S | Post(s) ∩ Sat(Ψ) %= ∅ };
∃(Φ1 U Φ2) : T := Sat(Φ2); (* compute the smallest fixed point *)

while { s ∈ Sat(Φ1) \ T | Post(s) ∩ T %= ∅ } %= ∅ do
let s ∈ { s ∈ Sat(Φ1) \ T | Post(s) ∩ T %= ∅ };
T := T ∪ { s };

od;
return T ;

∃! Φ : T := Sat(Φ); (* compute the greatest fixed point *)
while { s ∈ T | Post(s) ∩ T = ∅ } %= ∅ do
let s ∈ { s ∈ T | Post(s) ∩ T = ∅ };
T := T \ { s };

od;
return T ;

end switch

c© JPK 10We now look at a more detailed version of the backward search for
Sat(∃ (Φ U Ψ)) which exploits its characterization as a least fixed-point.
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Compute Sat(∃ (Φ U Ψ)) (1/3)
#20: CTL model checking Model checking

Computing Sat(∃(Φ U Ψ)) (1)

• Sat(∃(Φ UΨ)) is the smallest set T ⊆ S such that:

(1) Sat(Ψ) ⊆ T and (2) (s ∈ Sat(Φ) and Post(s) ∩ T $= ∅) ⇒ s ∈ T

• This suggests to compute Sat(∃(ΦUΨ)) iteratively:

T0 = Sat(Ψ) and Ti+1 = Ti ∪ { s ∈ Sat(Φ) | Post(s) ∩ Ti $= ∅ }

• Ti = states that can reach a Ψ-state in at most i steps via a Φ-path

• By induction on j it follows:

T0 ⊆ T1 ⊆ . . . ⊆ Tj ⊆ Tj+1 ⊆ . . . ⊆ Sat(∃(Φ U Ψ))

c© JPK 12
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Computing Sat(∃ (Φ U Ψ)) (2/3)
#20: CTL model checking Model checking

Computing Sat(∃(Φ U Ψ)) (2)

• TS is finite, so for some j ! 0 we have: Tj = Tj+1 = Tj+2 = . . .

• Therefore: Tj = Tj ∪ { s ∈ Sat(Φ) | Post(s) ∩ Tj %= ∅ }

• Hence: { s ∈ Sat(Φ) | Post(s) ∩ Tj %= ∅ } ⊆ Tj

– hence, Tj satisfies (2), i.e.,
`
s ∈ Sat(Φ) and Post(s) ∩ Tj #= ∅

´
⇒ s ∈ Tj

– further, Sat(Ψ) = T0 ⊆ Tj so, Tj satisfies (1), i.e. Sat(Ψ) ⊆ Tj

• As Sat(∃(ΦU Ψ)) is the smallest set satisfying (1) and (2):
– Sat(∃(Φ U Ψ)) ⊆ Tj and thus Sat(∃(Φ U Ψ)) = Tj

• Hence: T0 " T1 " T2 " . . . " Tj = Tj+1 = . . . = Sat(∃(Φ UΨ))

c© JPK 13
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Computing Sat(∃ (Φ U Ψ)) (3/3)

The algorithm assumes a transition system representation by means of
“inverse” adjacency lists, based on Pre(s′) := {s ∈ S | s′ ∈ Post(s)}

#20: CTL model checking Model checking

Computing Sat(∃(Φ U Ψ)) (3)

Input: finite transition system TS with state-set S and CTL-formula ∃(Φ U Ψ)

Output: Sat(∃(Φ U Ψ)) = { s ∈ S | s |= ∃(Φ U Ψ) }

E := Sat(Ψ); (* E administers the states s with s |= ∃(Φ U Ψ) *)
T := E; (* T contains the already visited states s with s |= ∃(Φ U Ψ) *)
while E #= ∅ do
let s′ ∈ E;
E := E \ { s′ };
for all s ∈ Pre(s′) do
if s ∈ Sat(Φ) \ T then E := E ∪ { s }; T := T ∪ { s }; endif

od
od
return T
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Example
#20: CTL model checking Model checking

Example

{ p, q, r }

{ q, r }

{ q }

{ r } ∅

{ p }

{ p, r }

{ p, q }

let’s check the CTL-formula ∃! ((p = r)∧ (p #= q))
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The Computation in Snapshots#20: CTL model checking Model checking

The computation in snapshots

(c)

(a) (b)

(d)

{ q, r }

{ p, q, r }

{ p, q }

{ p, r }
{ p }

{ q }

{ r } ∅

c© JPK 16
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Computing Sat(∃ �Φ) (1/2)

CTL Model Checking 351

Algorithm 15 Enumerative backward search for computing Sat(∃(Φ U Ψ))

Input: finite transition system TS with state set S and CTL formula ∃(Φ U Ψ)
Output: Sat(∃(Φ U Ψ)) = { s ∈ S | s |= ∃(Φ U Ψ) }

E := Sat(Ψ); (* E administers the states s with s |= ∃(Φ U Ψ) *)
T := E; (* T contains the already visited states s with s |= ∃(Φ U Ψ) *)
while E #= ∅ do

let s′ ∈ E;
E := E \ { s′ };
for all s ∈ Pre(s′) do

if s ∈ Sat(Φ) \ T then E := E ∪ { s }; T := T ∪ { s } fi
od

od
return T

Let us now consider the computation of Sat(∃! Φ) for the transition system TS. As for the
until-operator, the algorithm for ∃! Φ is based on the characterization in Theorem 6.23,
i.e., Sat(∃! Φ) is the largest set T ⊆ S satisfying

T ⊆ Sat(Φ) and (s ∈ T implies T ∩ Post(s) #= ∅).

The basic idea is to compute Sat(∃! Φ) by means of the iteration

T0 = Sat(Φ) and Ti+1 = Ti ∩ { s ∈ Sat(Φ) | Post(s) ∩ Ti #= ∅ }.

Then, for all j " 0, it holds that

T0 " T1 " T2 " . . . " Tj = Tj+1 = . . . = T = Sat(∃! Φ).

The above iteration can be realized by means of a backward search starting with

T = Sat(Φ) and E = S \ Sat(Φ).

Here T equals T0 and E contains all states that refute ∃! Φ. During the backward search,
states are iteratively removed from T , for which it has been established that they refute
∃! Φ. This applies to any s ∈ T satisfying

Post(s) ∩ T = ∅.

Although s |= Φ (as it is in T ), all its successors refute ∃! Φ (as they are not in T ), and
therefore s refutes ∃! Φ. Once such states are encountered, they are inserted in E to
enable the possible removal of other states in T .
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Computing Sat(∃ �Φ) (2/2)

In order to support the test whether Post(s) ∩ T = ∅, a counter c[s] is
exploited that keeps track of the number of direct successors in T ∪ E:
c[s] = |Post(s) ∩ T |

#20: CTL model checking Model checking

Computing Sat(∃!Φ)

E := S \ Sat(Φ); (* E contains any not visited s′ with s′ "|= ∃!Φ *)

T := Sat(Φ); (* T contains any s for which s |= ∃!Φ has not yet been disproven *)

for all s ∈ Sat(Φ) do c[s] := | Post(s) |; od (* initialize array c *)

while E "= ∅ do
(* loop invariant: c[s] = |Post(s) ∩ (T ∪ E) | *)

let s′ ∈ E; (* s′ "|= Φ *)
E := E \ { s′ }; (* s′ has been considered *)
for all s ∈ Pre(s′) do
if s ∈ T then

c[s] := c[s] − 1; (* update counter c[s] for predecessor s of s′ *)
if c[s] = 0 then

T := T \ { s }; E := E ∪ { s }; (* s does not have any successor in T *)
fi

fi
od

od
return T

c© JPK 18
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Let’s practice

Exercice

Simulate the execution of the algorithm for Sat(∃ �Φ) on the structure of Slide
53 for the formula ∃ � q.

Exercice

In the set-theoretic framework, give a characterization of:

I Sat(∀ © Φ)

I Sat(∀ �Φ)

I Sat(∀ (Φ U Ψ))

I Sat(∃ (Φ W Ψ))

I Sat(∀ (Φ W Ψ))

Exercice

Adapt Algorithm for formulas ∃ �Φ of Slide 55 to formulas ∃ (Φ W Ψ)
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An alternative algorithm for Sat(∃ �Φ)
#20: CTL model checking Model checking

Alternative algorithm for Sat(∃!Φ)

1. Consider only state s if s |= Φ, otherwise eliminate s

• change TS into TS[Φ] = (S′, Act, →′, I ′,AP, L′) with S′ = Sat(Φ),
• →′ = → ∩ (S′ × Act × S′), I ′ = I ∩ S′, and L′(s) = L(s) for s ∈ S′

⇒ all removed states will not satisfy ∃! Φ, and thus can be safely removed

2. Determine all non-trivial strongly connected components in TS[Φ]

• non-trivial SCC = maximal, connected subgraph with at least one transition
⇒ any state in such SCC satisfies ∃! Φ

3. s |= ∃!Φ is equivalent to “some SCC is reachable from s”
• this search can be done in a backward manner

c© JPK 20

Sophie Pinchinat Computation Tree Logic for formal verification TVA Part I 58/103



Models of systems Computation Tree Logic Syntax and Semantics CTL Model Checking and counter examples Bisimulation

Example for ∃ � q#20: CTL model checking Model checking

Example

(a)

(d)

(b)

(c)

{ q, r }

{ p, q, r }

{ p, q }

{ p, r }
{ p }

{ q }

{ r } ∅

TS[q]

SCC

c© JPK 21
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Time Complexity of the CTL Model Checking

Theorem

For transition system TS with N states and K transitions, and CTL formula Φ,
the CTL model-checking problem TS |= Φ can be determined in time

O(|Φ|.(N +K))

Proof as a fairly long exercise:

I Consider arbitrary CTL formulas, as ENF yields an exponential blowup

I Treat the modalities ∀ U , ∀ ♦ , ∀ � , ∃ ♦ , etc. analogously to the
introduced approaches for ∃ U and ∃ � .
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Flipped Classroom

Flipped Classroom (PoM, in Chapters 3 and 6 about “Fairness assump-
tions”.)

3.5 Fairness . . . . . . . . . . . . . . . . . . . . . . . . 126

3.5.1 Fairness Constraints . . . . . . . . . . . . . . . . . 129

3.5.2 Fairness Strategies . . . . . . . . . . . . . . . . . .137

3.5.3 Fairness and Safety . . . . . . . . . . . . . . . . . .139

6.6 Counterexamples and Witnesses . . . . . . . . . . . . . .373

6.6.2 Counterexamples and Witnesses in CTL with Fairness . . .380
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Counterexample generation for refuted formulas
#21: CTL Counterexamples and CTL∗ Model Checking Model checking

Counterexamples

• Model checking is an effective and efficient “bug hunting” technique

• Counterexamples are of utmost importance:
– diagnostic feedback, the key to abstraction-refinement, schedule synthesis . . .

• LTL: counterexamples are finite paths
– ©Φ: a path on which the next state refutes Φ

– !Φ: a path leading to a ¬Φ-state
– "Φ: a ¬Φ-path leading to a ¬Φ cycle

• Counterexample generation for LTL:
– use stack contents of nested DFS on encountering an accept cycle
– use a variant of BFS top find shortest counterexamples

c© JPK 2
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Counterexamples for CTL#21: CTL Counterexamples and CTL∗ Model Checking Model checking

Counterexamples in CTL

• TS !|= ∀ϕ where ∀ϕ is also on LTL
– counterexample = a sufficiently long prefix of a path refuting ϕ (as in LTL)
– this is a subset of the so-called universal fragment of CTL

• TS !|= ∃ϕ where ϕ is arbitrary CTL formula
– all paths satisfy ϕ! ⇒ no clear notion of counterexample
– witness = a sufficiently long prefix of a path satisfying ϕ

• So:
– for ∀ϕ, a prefix of π with π $|= ϕ acts as counterexample
– for ∃ϕ, a prefix of π with π |= ϕ acts as witness

c© JPK 3
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The wolf-goat-cabbage problem (1/5)
#21: CTL Counterexamples and CTL∗ Model Checking Model checking

The wolf-goat-cabbage problem

• A goat (g), a cabbage (c) and a wolf (w) and two riverbanks (0 and 1)
– A boat with ferryman (f) that can carry at most two occupants
– Only the ferryman can steer the boat
– Goat and cabbage, goat and wolf should neither travel nor left together

• Is there a schedule such that brings c, g, and w to the other side?

• . . . Model this as a CTL model-checking problem
– transition system TS = (wolf ||| goat ||| cabbage) ‖ ferryman

– check whether TS |= ∃ϕ with

ϕ =

„
^

i=0,1

(wi ∧ gi → fi) ∧ (ci ∧ gi → fi)

«

U (c1 ∧ f1 ∧ g1 ∧ w1)

c© JPK 4

Sophie Pinchinat Computation Tree Logic for formal verification TVA Part I 64/103



Models of systems Computation Tree Logic Syntax and Semantics CTL Model Checking and counter examples Bisimulation

The wolf-goat-cabbage problem (2/5)

#21: CTL Counterexamples and CTL∗ Model Checking Model checking

The wolf-goat-cabbage problem

w0

w1

g0

g1

c0

c1

f0

f1

βα β β τα α τ βα

TS = (wolf ||| goat ||| cabbage) ‖ ferryman

c© JPK 5||| is interleaving parallel composition and ‖ is synchronized parallel composition
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The wolf-goat-cabbage problem (3/5)
#21: CTL Counterexamples and CTL∗ Model Checking Model checking

〈c0, f0, g0, w0〉

〈c0, f1, g0, w0〉

〈c1, f1, g0, w0〉〈c0, f1, g0, w1〉

〈c0, f1, g1, w0〉

〈c0, f0, g1, w0〉〈c0, f1, g1, w1〉 〈c1, f1, g1, w0〉

〈c0, f0, g1, w1〉 〈c1, f0, g1, w0〉

〈c0, f0, g0, w1〉 〈c1, f0, g0, w0〉

〈c1, f1, g0, w1〉

〈c1, f0, g0, w1〉

〈c1, f1, g1, w1〉

〈c1, f0, g1, w1〉
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The wolf-goat-cabbage problem (4/5)#21: CTL Counterexamples and CTL∗ Model Checking Model checking

Wolf-goat-cabbage problem
A witness of ∃ϕ with:

ϕ =

„
^

i=0,1

(wi ∧ gi → fi) ∧ (ci ∧ gi → fi)

«

U (c1 ∧ f1 ∧ g1 ∧ w1)

is a path fragment from initial state 〈c0, f0, g0, w0〉 to target state 〈c1, f1, g1, w1〉 such
that g, c and g, w are not left on a single riverbank. Such as:

〈c0, f0, g0, w0〉 goat to riverbank 1
〈c0, f1, g1, w0〉 ferryman comes back to riverbank 0
〈c0, f0, g1, w0〉 cabbage to riverbank 1
〈c1, f1, g1, w0〉 goat back to riverbank 0
〈c1, f0, g0, w0〉 wolf to riverbank 1
〈c1, f1, g0, w1〉 ferryman comes back to riverbank 0
〈c1, f0, g0, w1〉 goat to riverbank 1
〈c1, f1, g1, w1〉

c© JPK 7
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The wolf-goat-cabbage problem (5/5)#21: CTL Counterexamples and CTL∗ Model Checking Model checking

〈c0, f0, g0, w0〉

〈c0, f1, g0, w0〉

〈c1, f1, g0, w0〉〈c0, f1, g0, w1〉

〈c0, f1, g1, w0〉

〈c0, f0, g1, w0〉〈c0, f1, g1, w1〉 〈c1, f1, g1, w0〉

〈c0, f0, g1, w1〉 〈c1, f0, g1, w0〉

〈c0, f0, g0, w1〉 〈c1, f0, g0, w0〉

〈c1, f1, g0, w1〉

〈c1, f0, g0, w1〉

〈c1, f1, g1, w1〉

〈c1, f0, g1, w1〉

c© JPK 8
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Counterexamples for ©Φ
#21: CTL Counterexamples and CTL∗ Model Checking Model checking

Counterexamples for ©Φ

• A counterexample of ©Φ is a path fragment s s′ with
– s ∈ I and s′ ∈ Post(s) with s′ $|= Φ

• A witness of ©Φ is a is a path fragment s s′ with
– s ∈ I and s′ ∈ Post(s) with s′ |= Φ

• Algorithm: inspection of direct successors of initial states
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Counterexamples for Φ U Ψ#21: CTL Counterexamples and CTL∗ Model Checking Model checking

Counterexamples for ΦU Ψ

• A witness is an initial path fragment s0 s1 . . . sn with
– sn |= Ψ and si |= Φ for 0 ! i < n

• Algorithm: backward search starting in the set of Ψ-states

• A counterexample is an initial path fragment that indicates a path π:
– for which either π |= !(Φ ∧ ¬Ψ) or π |= (Φ ∧ ¬Ψ) U (¬Φ ∧ ¬Ψ)

• Counterexample is initial path fragment of either form:
– s0 . . . sn−1 sn s′

1 . . . s′
r| {z }

cycle
| {z }

satisfy Φ ∧ ¬Ψ

with sn=s′
r or s0 . . . sn−1

| {z }

satisfy Φ ∧ ¬Ψ

sn with sn |= ¬Φ ∧ ¬Ψ

c© JPK 10
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Counter examples generation for Φ U Ψ#21: CTL Counterexamples and CTL∗ Model Checking Model checking

Counterexample generation
Determine the SCCs by of the digraph G = (S, E) where

E = { (s, s′) ∈ S × S | s′ ∈ Post(s) ∧ s |= Φ∧¬Ψ }

Each path in G that starts in an initial state s0 ∈ S and leads to a non-
trivial SCC C in G provides a counterexample of the form:

s0 s1 . . . sn s′
1 . . . s′

r︸ ︷︷ ︸
∈C

with sn = s′
r

Each path in G that leads from an initial state s0 to a trivial terminal SCC
C = { s′ } with s′ $|= Ψ

provides a counterexample of the form s0 s1 . . . sn with sn |= ¬Φ ∧ ¬Ψ

c© JPK 11
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Example : Semaphore-based mutual exclusion (1/3)

Parallelism and Communication 43

wait1

crit1

noncrit1

y := y+1

y := y−1
y > 0 :

wait2

crit2

noncrit2

y := y + 1

y := y − 1
y > 0 :

PG1 : PG2 :

Figure 2.6: Individual program graphs for semaphore-based mutual exclusion.

Example 2.24. Mutual Exclusion with Semaphores

Consider two simplified processes Pi, i=1, 2 of the form:

Pi loop forever
... (* noncritical actions *)
request
critical section
release
... (* noncritical actions *)
end loop

Processes P1 and P2 are represented by the program graphs PG1 and PG2, respectively,
that share the binary semaphore y. y=0 indicates that the semaphore—the lock to get
access to the critical section—is currently possessed by one of the processes. When y=1,
the semaphore is free. The program graphs PG1 and PG2 are depicted in Figure 2.6.

For the sake of simplicity, local variables and shared variables different from y are not
considered. Also, the activities inside and outside the critical sections are omitted. The
locations of PGi are noncriti (representing the noncritical actions), waiti (modeling the
situation in which Pi waits to enter its critical section), and criti (modeling the critical
section). The program graph PG1 |||PG2 consists of nine locations, including the (unde-
sired) location 〈crit1, crit2〉 that models the situation where both P1 and P2 are in their
critical section, see Figure 2.7.

When unfolding PG1 |||PG2 into the transition system TSSem = TS(PG1 |||PG2) (see
Figure 2.8 on page 45), it can be easily checked that from the 18 global states in TSSem
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Example : Semaphore-based mutual exclusion (2/3)
#21: CTL Counterexamples and CTL∗ Model Checking Model checking

Example
〈n1, n2, y=1〉

〈w1, n2, y=1〉 〈n1, w2, y=1〉

〈c1, n2, y=0〉 〈w1, w2, y=1〉 〈n1, c2, y=0〉

〈c1, w2, y=0〉 〈w1, c2, y=0〉

∀
“

((n1 ∧ n2) ∨ w2)
| {z }

Φ

U c2|{z}
Ψ

”

c© JPK 13“Process P2 gets access to the crit. sec. once it starts waiting to enter it.”
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Example : Semaphore-based mutual exclusion (3/3)
#21: CTL Counterexamples and CTL∗ Model Checking Model checking

SCC graph

〈n1, n2, y=1〉

〈w1, n2, y=1〉 〈n1, w2, y=1〉

〈c1, n2, y=0〉 〈w1, w2, y=1〉 〈n1, c2, y=0〉

〈c1, w2, y=0〉 〈w1, c2, y=0〉

c© JPK 14
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Counter examples for �Φ#21: CTL Counterexamples and CTL∗ Model Checking Model checking

Counterexamples for !Φ

• Counterexample is initial path fragment s0 s1 . . . sn such that:
– s0, . . . , sn−1 |= Φ and sn #|= Φ

• Algorithm: backward search starting in ¬Φ-states

• A witness of ϕ = !Φ consists of an initial path fragment of the form:
– s0 s1 . . . sn s

′
1 . . . s

′
r| {z }

satisfy Φ

with sn = s′
r

• Algorithm: cycle search in the digraph G = (S,E) where the set of
edges E:
– E = { (s, s′) | s′ ∈ Post(s) ∧ s |= Φ }

c© JPK 12
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Time Complexity

Theorem

Let TS be a transition system with N states and K transitions and ϕ be a
CTL-path formula.
If TS 6|= ∀ϕ then a counterexample for ϕ in TS can be determined in time
O(N +K).
The same holds for a witness for ϕ, provided that TS |= ∃ϕ.

Excercise

Justify the claim of the theorem above.
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Outline

1 Models of systems

2 Computation Tree Logic Syntax and Semantics
Equivalence of Computation Tree Logic Formulas
Normal Forms for Computation Tree Logic

3 CTL Model Checking and counter examples

4 Bisimulation
Bisimulation Quotient
Logical Characterization of Bisimulation
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Bisimulation (Motivations)#23: Bisimulation Model checking

Implementation relations
• A binary relation on transition systems
– when does a transition systems correctly implements another?

• Important for system synthesis
– stepwise refinement of a system specification TS into an “implementation” TS′

• Important for system analysis
– use the implementation relation as a means for abstraction
– replace TS |= ϕ by TS′ |= ϕ where | TS′ | << | TS | such that:

TS |= ϕ iff TS′ |= ϕ or TS′ |= ϕ ⇒ TS |= ϕ

⇒ Focus on state-based bisimulation and simulation
– definition: what is bisimulation?
– logical characterization: which logical formulas are preserved by bisimulation?

c© JPK 2
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Bisimulation Equivalence
#23: Bisimulation Model checking

Bisimulation equivalence

Let TSi = (Si,Acti, →i, Ii,AP, Li), i=1, 2, be transition systems
A bisimulation for (TS1,TS2) is a binary relation R ⊆ S1 × S2 such that:

1. ∀s1 ∈ I1 ∃s2 ∈ I2. (s1, s2) ∈ R and ∀s2 ∈ I2 ∃s1 ∈ I1. (s1, s2) ∈ R

2. for all states s1 ∈ S1, s2 ∈ S2 with (s1, s2) ∈ R it holds:

(a) L1(s1) = L2(s2)

(b) if s′
1 ∈ Post(s1) then there exists s′

2 ∈ Post(s2) with (s′
1, s′

2) ∈ R

(c) if s′
2 ∈ Post(s2) then there exists s′

1 ∈ Post(s1) with (s′
1, s′

2) ∈ R

TS1 and TS2 are bisimilar, denoted TS1 ∼ TS2, if there exists a bisimulation for (TS1, TS2)

c© JPK 3
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Bisimulation Equivalence#23: Bisimulation Model checking

Bisimulation equivalence

s1 −→ s′
1 s1 −→ s′

1

R can be completed to R R
s2 s2 −→ s′

2

and

s1 s1 −→ s′
1

R can be completed to R R
s2 −→ s′

2 s2 −→ s′
2

c© JPK 4
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Bisimulation Example (1)#23: Bisimulation Model checking

Example (1)

s0

s1

s2 s3

t0

t1

t2

t4t3

{ pay } { pay }

∅ ∅

{ beer } { sprite } { beer } { sprite }

{ beer }

R =
n

(s0, t0), (s1, t1), (s2, t2), (s2, t3), (s3, t4)
o

is a bisimulation for (TS1, TS2) where AP = { pay, beer, sprite }

c© JPK 5

Sophie Pinchinat Computation Tree Logic for formal verification TVA Part I 81/103



Models of systems Computation Tree Logic Syntax and Semantics CTL Model Checking and counter examples Bisimulation

Bisimulation Example (2)#23: Bisimulation Model checking

Example (2)

s0

s1

s2 s3

u0

u1

u4u3

{ pay } { pay }

∅ ∅

{ beer } { sprite } { beer } { sprite }

∅u2

TS1 !∼ TS3 for AP = { pay, beer, sprite }
But: { (s0, u0), (s1, u1), (s1, u2), (s2, u3), (s2, u4), (s3, u3), (s3, u4) }

is a bisimulation for (TS1, TS3) for AP = { pay, drink }

c© JPK 6
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∼ is an equivalence

Proposition

#23: Bisimulation Model checking

∼ is an equivalence

For any transition systems TS,TS1,TS2 and TS3 over AP:

TS ∼ TS (reflexivity)

TS1 ∼ TS2 implies TS2 ∼ TS1 (symmetry)

TS1 ∼ TS2 and TS2 ∼ TS3 implies TS1 ∼ TS3 (transitivity)

c© JPK 7

Proof as an exercise
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Write here your proof of Slide 83
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Bisimulation on Paths

Proposition

#23: Bisimulation Model checking

Bisimulation on paths

Whenever we have:

s0 −→ s1 −→ s2 −→ s3 −→ s4 . . . . . .

R
t0

this can be completed to
s0 −→ s1 −→ s2 −→ s3 −→ s4 . . . . . .

R R R R R
t0 −→ t1 −→ t2 −→ t3 −→ t4 . . . . . .

proof: by induction on index i of state si
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Write here your proof of Slide 85
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Bisimulation vs. Trace Equivalence

I Recall: In transition system TS consider paths π = s0s1s2 . . ..
Get the trace of π as trace(π) = L(s0)L(s1)L(s2) . . . ∈ (2AP )ω

Define Trace(TS) as the set of traces of initial maximal paths

I TS1 and TS2 are trace equivalent whenever Trace(TS1) = Trace(TS2)

Corollary of Proposition Slide 85

TS1 ∼ TS2 implies Trace(TS1) = Trace(TS2)
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Make clear your proof of Corollary of Slide 87
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Bisimulation On States
#23: Bisimulation Model checking

Bisimulation on states

R ⊆ S × S is a bisimulation on TS if for any (s1, s2) ∈ R:

• L(s1) = L(s2)

• if s′
1 ∈ Post(s1) then there exists an s′

2 ∈ Post(s2) with (s′
1, s′

2) ∈ R

• if s′
2 ∈ Post(s2) then there exists an s′

1 ∈ Post(s1) with (s′
1, s′

2) ∈ R

s1 and s2 are bisimilar, s1 ∼TS s2, if (s1, s2) ∈ R for some bisimulation R for TS

s1 ∼TS s2 if and only if TSs1 ∼ TSs2

c© JPK 11
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Coarsest Bisimulation

Lemma

Bisimulation 457

Thus, a bisimulation (on states) for TS is a bisimulation (on transition systems) for the
pair (TS,TS), except that condition (A) is not required. This condition could be ensured
by adding the pairs (s, s) to R for any state s. Moreover, for all states s1 and s2 in TS it
holds that

s1 ∼TS s2︸ ︷︷ ︸
as states of TS (Def. 7.7)

iff TSs1 ∼ TSs2 ,︸ ︷︷ ︸
in the sense of Def. 7.1

where TSsi denotes the transition system obtained from TS by declaring si as the unique
initial state. Vice versa, the definition of bisimulation between transition systems (Defini-
tion 7.1) arises from Definition 7.7 as follows. Take transition systems TS1 and TS2 over
AP, and combine them in a single transition system TS1 ⊕ TS2, which basically results
from the disjoint union of state spaces (see below). We then subsequently “compare” the
initial states of TS1 and TS2 as states of the composite transition system TS1 ⊕ TS2 to
ensure condition (A).

The formal definition of TS1 ⊕ TS2 is as follows. For TSi = (Si,Acti,→i, Ii, AP, Li),
i = 1, 2:

TS1 ⊕ TS2 = (S1 $ S2, Act1 ∪ Act2,→1 ∪ →2, I1 ∪ I2, AP,L)

where $ stands for disjoint union and where L(s) = Li(s) if s ∈ Si. Then TS1 ∼ TS2 if
and only if, for every initial state s1 of TS1, there exists a bisimilar initial state s2 of TS2,
and vice versa. That is, s1 ∼TS1⊕TS2 s2. Stated in terms of equivalence classes, TS1 ∼ TS2

if and only if

∀C ∈ (S1 $ S2)/ ∼TS1⊕TS2 . I1 ∩ C )= ∅ iff I2 ∩ C )= ∅ .

Here, (S1 $ S2)/∼TS1⊕TS2denotes the quotient space with respect to ∼TS1⊕TS2, i.e., the set
of all bisimulation equivalence classes in S1 $ S2. The latter observation is based on the
fact that ∼TS1⊕TS2 is an equivalence relation, see the first part of the following lemma.

Lemma 7.8. Coarsest Bisimulation

For transition system TS = (S,Act, →, I, AP, L) it holds that:

1. ∼TS is an equivalence relation on S.

2. ∼TS is a bisimulation for TS.

3. ∼TS is the coarsest bisimulation for TS.

Proof: The first claim follows directly from the characterization of ∼TS in terms of ∼,
and Lemma 7.4 on page 453. The last claim states that each bisimulation R for TS is
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Write here your proof of Slide 90
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Quotient Transition System#23: Bisimulation Model checking

Quotient transition system
For TS = (S,Act,→, I,AP, L) and bisimulation ∼TS ⊆ S × S on TS let

TS/∼TS = (S′, { τ },→′, I ′,AP, L′), the quotient of TS under ∼TS

where

• S′ = S/∼TS = { [s]∼ | s ∈ S } with [s]∼ = { s′ ∈ S | s ∼TS s′ }

• →′ is defined by: s α−−→ s′

[s]∼
τ−→′ [s′]∼

• I ′ = { [s]∼ | s ∈ I }

• L′([s]∼) = L(s)

note that TS ∼ TS/∼TS Why?

c© JPK 13
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Example: n printers (1/2)

Consider a system of n printers, each represented as extremely simplified by
two states, ready (initial) and print, and when started alternate between the
states. The entire system is

TSn = Printer || . . . || Printer (n times)

labeled over AP = {0, 1, . . . , n}. L(s) = k whenever k printers are ready.
Here for n = 3:

460 Equivalences and Abstraction

Example 7.12. Many Printers

Consider a system consisting of n printers, each represented as extremely simplified by
two states, ready and print . The initial state is ready , and once started, each printer
alternates between being ready and printing. The entire system is given by

TSn = Printer ||| . . . |||Printer︸ ︷︷ ︸
n times

.

Assume the states of TSn are labeled with atomic propositions from the set AP =
{ 0, 1, . . . , n }. Intuitively, L(s) denotes the number of printers available in state s, i.e.,
which are in the local state ready . The number of states of TSn is exponential in n (it is
2n); for n=3, TSn is depicted in Figure 7.6, where r denotes ready, and p denotes print.
The quotient transition system TSn/ ∼, however, only contains n+1 states. For n=3,
TSn/ ∼ is depicted in Figure 7.7.

〈r, r, r〉

〈p, r, r〉 〈r, p, r〉 〈r, r, p〉

〈p, p, r〉 〈p, p, p〉 〈r, p, p〉

〈p, r, p〉

{3}

{2}{2}

{1}{0}{1}

{2}

{1}

Figure 7.6: Transition system TS3 for three independent printers

3 2 1 0

Figure 7.7: Bisimulation quotient TS3/∼.
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Example: n printers (2/2)

TSn has 2n states

460 Equivalences and Abstraction

Example 7.12. Many Printers

Consider a system consisting of n printers, each represented as extremely simplified by
two states, ready and print . The initial state is ready , and once started, each printer
alternates between being ready and printing. The entire system is given by

TSn = Printer ||| . . . |||Printer︸ ︷︷ ︸
n times

.

Assume the states of TSn are labeled with atomic propositions from the set AP =
{ 0, 1, . . . , n }. Intuitively, L(s) denotes the number of printers available in state s, i.e.,
which are in the local state ready . The number of states of TSn is exponential in n (it is
2n); for n=3, TSn is depicted in Figure 7.6, where r denotes ready, and p denotes print.
The quotient transition system TSn/ ∼, however, only contains n+1 states. For n=3,
TSn/ ∼ is depicted in Figure 7.7.

〈r, r, r〉

〈p, r, r〉 〈r, p, r〉 〈r, r, p〉

〈p, p, r〉 〈p, p, p〉 〈r, p, p〉

〈p, r, p〉

{3}

{2}{2}

{1}{0}{1}

{2}

{1}

Figure 7.6: Transition system TS3 for three independent printers

3 2 1 0

Figure 7.7: Bisimulation quotient TS3/∼.

but TSn/ ∼ has only n+ 1 states.

460 Equivalences and Abstraction

Example 7.12. Many Printers

Consider a system consisting of n printers, each represented as extremely simplified by
two states, ready and print . The initial state is ready , and once started, each printer
alternates between being ready and printing. The entire system is given by

TSn = Printer ||| . . . |||Printer︸ ︷︷ ︸
n times

.

Assume the states of TSn are labeled with atomic propositions from the set AP =
{ 0, 1, . . . , n }. Intuitively, L(s) denotes the number of printers available in state s, i.e.,
which are in the local state ready . The number of states of TSn is exponential in n (it is
2n); for n=3, TSn is depicted in Figure 7.6, where r denotes ready, and p denotes print.
The quotient transition system TSn/ ∼, however, only contains n+1 states. For n=3,
TSn/ ∼ is depicted in Figure 7.7.

〈r, r, r〉

〈p, r, r〉 〈r, p, r〉 〈r, r, p〉

〈p, p, r〉 〈p, p, p〉 〈r, p, p〉

〈p, r, p〉

{3}

{2}{2}

{1}{0}{1}

{2}

{1}

Figure 7.6: Transition system TS3 for three independent printers

3 2 1 0
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Equivalence induced by the logic CTL

Definition

States s1 and s2 in TS (over AP ) are CTL-equivalent, written s1 ≡CTL s2 if,
and only if, (s1 |= Φ iff s2 |= Φ), for all CTL state formulas over AP .

Let TS1 ≡CTL TS2 if and only if (TS1 |= Φ iff TS2 |= Φ)
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Bisimulation vs. CTL-equivalence

Theorem

Let TS be a finite transition system and s1, s2 be two states.

s1 ∼TS s2 if, and only if, s1 ≡CTL s2

Important remark

Theorem above also holds for any sublogic of CTL containing ¬,∧, and ©
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Proof of ≡CTL⊆∼TS for Theorem on Slide 96 (1/2)

It suffices to show that R := {(s1, s2) ∈ S × S | s1 ≡CTL s2} is a bisimulation.
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Proof of ≡CTL⊆∼TS for Theorem on Slide 96 (2/2)

Sophie Pinchinat Computation Tree Logic for formal verification TVA Part I 98/103



Models of systems Computation Tree Logic Syntax and Semantics CTL Model Checking and counter examples Bisimulation

Important Remark

In the proof of Slide 98, only operators ¬,∧, and © have been used. Thus, we
do not need the full power of CTL to distinguish non-bisimilar states.
In fact, finiteness of TS is not necesseary, we can prove that:

Theorem

Hennessy and Milner 1985 [HM85]
≡ML⊆∼TS , for any finitely branching transition system TS, where ML is “Modal
Logic”, i.e.

Φ 3 ML ::= a|¬Φ|Φ1 ∧ Φ2|∃ © Φ
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Write here the proof of Slide 99
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≡ML⊆∼TS does not hold for infinite transition systems (1/2)

We first consider the “cheating” case with an infinite set AP .
Define the transition system TS with:

I states: {s1, s2} ∪ {tA |A ⊆ AP}
I transitions:

I Post(s1) = {tA |A ⊂ AP}
I Post(s2) = {tA |A ⊆ AP}
I Post(tA) = {s1}

I labelling: L(s1) = L(s2) = ∅, and L(tA) = A for all A ⊆ AP .

Exercice

Draw this TS here:

Clearly s1 6∼TS s2, because of the transition s2 → tAP .
Now, whichever formula is taken (even a CTL one), there are only finitely
propositions of AP used in this formula, which prevents it from distinguishing
s1 and s2.
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≡ML⊆∼TS does not hold for infinite transition systems (2/2)

Still, if AP has to be finite, we shall use ordinal processes from Klop.

I For each ordinal λ (see [Ros82] for linear orderings), define the transtion
system TSλ = (λ+ 1, <, λ): for all α, β ≤ λ, we have α→ β whenever
α < β.

I TS3 TSω

n n+1

..... .....

.........

I By [Klo88] TSα ∼ TSβ implies α = β,

I But α ≡CTL β whenever α, β ≥ ω [Pin91]
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Proof of ∼TS⊆≡CTL

Theorem

Let TS be a transition system (over AP ), s1 and s2 be states of TS.

If s1 ∼TS s2 then for every CTL formula Φ : s1 |= Φ iff s2 |= Φ

Proof sketch: Establish (a) and (b) by induction on the structure of the
formulas of CTL. See the [PoM] with a simultaneaous induction on state and
path formulas of the logic CTL* (⊃ CTL and that we shall see later in this
course).

Consequences of the theorem:

I Bisimilar transition systems preserve the same CTL formulas: TS1 |= Φ
and TS2 6|= Φ implies TS1 6∼ TS2

I Non-bisimilarity can be shown by a single CTL formula: TS1 6∼ TS2

implies there exists Φ ∈ CTL s.t. TS1 |= Φ and TS2 6|= Φ

I Actually, you even do not need to use an until-operator!

I To check TS |= Φ, it suffices to check on the quotient: TS/ ∼|= Φ

Sophie Pinchinat Computation Tree Logic for formal verification TVA Part I 103/103



Models of systems Computation Tree Logic Syntax and Semantics CTL Model Checking and counter examples Bisimulation

C. Baier and J.P. Katoen.
Principles of model checking, volume 26202649.
MIT Press, 2008.

Edmund M Clarke and E Allen Emerson.
Synthesis of synchronization skeletons for branching time temporal logic.
In Logic of programs: Workshop, volume 131, pages 52–71, 1981.

Edmund M Clarke and E Allen Emerson.
Design and synthesis of synchronization skeletons using branching time
temporal logic.
Springer, 1982.

D. Gabbay, A. Pnueli, S. Shelah, and J. Stavi.
On the temporal analysis of fairness.
In Proc. 7th ACM Symp. Principles of Programming Languages, Las
Vegas, Nevada, pages 163–173, January 1980.

M. Hennessy and R. Milner.
Algebraic laws for nondeterminism and concurrency.
Journal of the ACM, 32(1):137–161, January 1985.

J. W. Klop.
Bisimulation Semantics.

Sophie Pinchinat Computation Tree Logic for formal verification TVA Part I 103/103



Models of systems Computation Tree Logic Syntax and Semantics CTL Model Checking and counter examples Bisimulation

Lectures given at the REX School/Workshop, Noordwijkerhout, NL, May
1988.

S. Pinchinat.
Ordinal processes in comparative concurrency semantics.
In Proc. 5th Workshop on Computer Science Logic, Bern, LNCS 626,
pages 293–305. Springer-Verlag, October 1991.

J. G. Rosenstein.
Linear Orderings.
Academic Press, 1982.

T.A. Sudkamp and A. Cotterman.
Languages and machines: an introduction to the theory of computer
science, volume 2.
Addison-Wesley, 2006.

Sophie Pinchinat Computation Tree Logic for formal verification TVA Part I 103/103


	Models of systems
	Computation Tree Logic Syntax and Semantics
	Equivalence of Computation Tree Logic Formulas
	Normal Forms for Computation Tree Logic

	CTL Model Checking and counter examples
	Bisimulation
	Bisimulation Quotient
	Logical Characterization of Bisimulation


