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History

ACM Turing Awards 2007

Recipients in February 2008
e Edmund M. Clarke jr. (CMU, USA)
@ Allen E. Emerson (Texas at Austin, USA)
@ Joseph Sifakis (IMAG Grenoble, F)

Jury justification

“For their roles in developing Model-Checking
into a highly effective verification technology,

widely adopted in the hardware and software

industries.”
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Models of systems
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Models of systems

Modelling Systems: Transition Systems

> Model to describe the behaviour of systems

» Directed graph where nodes represent states and edges represent
transitions that are “state changes”.
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Models of systems

A Beverage Vending Machine

get_sprite get_beer

msert_coin

select
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Models of systems

Peterson’s Mutual Exclusion

K—’(nl,ng,x:% (n1,ng,x =1)
(c1,n2,2=2)
<w17n27

(n1,co,x=1)

(w1, wa

(c1,wa,z =1) (wy, ¢, = 2)
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Models of systems

Transition Systems: Formal Definition

TS =(S,—,I, AP, L) where
» S is a finite set of states, and I C S initial states
» —C S x S is a transition relation

» AP is a finite set of atomic propositions

» L:S — 27 is a labeling function.
{z=0}
) ) {z#0}
The set AP is an abstraction of more
refined informations in local states.
{z=0}
{z=1,2#0}
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Models of systems

Paths in TS and related notions

Let TS = (S,—,1,AP,L) be a TS.

> A finite path fragment 7 of T'S is a state sequence: & = $¢S1 ... Sp such
that s; — s;41 forall 0 < i < n wheren >0

> An infinite path fragment 7 of T'S is an infinite state sequence:
T = 808182 ... such that s; — s;41 forall 0 <i<n

> A path m = sgs182... is an initial (i.e. sp € I) maximal path fragment
Without loss of generality, we assume that all maximal paths are infinite, and
we write Paths™®(s) the set of maximal path fragments 7 such that
first(m) = s, and simply Paths™ for the set of paths.
For ™ = s¢s182 ... € Paths™®, we shall write

> 7[i] € S for s;

> 7[i..] € Path(s;) for the path fragment s;8;41 . ..
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Models of systems

Example: A Triple Modular Redundant (TMR) System

Consider a triple modular redundant (TMR) system with three processors and a
single voter. As each component of this system can fail, the reliability is
increased by letting all processors execute the same program.

» The voter takes a majority vote of the outputs of the three processors. If a
single processor fails, the system can still produce reliable outputs.

» Each component can be repaired. It is assumed that only one component
at a time can fail and only one at a time can be repaired.

» On failure of the voter, the entire system fails.

> On repair of the voter, it is assumed that the system starts as being new,
i.e., with three processors and a voter.

We consider the TMR system to be operational if at least two processors are
functioning properly.
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Models of systems

The TS of the Triple Modular Redundant (TMR) System

States are of the form s; ; where ¢ denotes the number of processors that are
currently up (0 < ¢ < 3) and j the number of operational voters (j = 0,1).

(oo Lo Toun ) e

down
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Models of systems

Flipped Classroom

There exist many variant of TS depending on the features one wants to focus

on.

to build complex systems from basic ones.

Also more elaborated TS allow one to model, e.g., channels, etc.

, enable one

Flipped Classroom (PoM, Chapter 2 on “Modelling Concurrent Systems”.)

2 Modelling Concurrent Systems 21

2.1 Transition Systems .
2.1.1 Executions .

2.1.2 Modeling Hard and Software Systems

2.2 Parallelism and Communication .
Concurrency and Interleaving .

Sophie Pinchinat

MMI\JMI\JM
I\)MMMMI\J

2
.3
4
5

odl

.6

Communication via Shared Variables .

Handshaking .
Channel Systems .
NanoPromela .

Synchronous Parallellsm 5 5
25 3 The State-Space Explosion Problem 5
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Models of systems

Transition Systems’ branching-time behavior: infinite trees

(50, 0)
(s1,1)
{z=0} /\
fz70} (52,2) (s3,2
b
53,3 59,3 (83,3
Meers NG /\

(s2,4) (53’4) (s3,4) (52,4) (s3,4)

We will use the branching temporal logic CTL whose temporal operators allow
the expression of properties of some or all computations that start in a state.
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Models of systems

The Whole Picture

M1 MVFA cour

Linear time

ed Classroom

ranching time

V7 € Paths(s).m |= ¢

“behavior” path-based: state-based:
in a state s trace(s) computation tree of s
temporal LTL: path formulas ¢ CTL: state formulas
logic s = dff existential path quantification 3¢

universal path quantification: V¢

complexity of the
model checking

problems

PSPACE—complete

16) (\TS|~2‘“")

PTIME

O(Ts| - |®])

implementation-
relation

trace inclusion and the like
proof is PSPACE-complete)
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Computation Tree Logic Syntax and Semantics

Outline

@® Computation Tree Logic Syntax and Semantics
m Equivalence of Computation Tree Logic Formulas
m Normal Forms for Computation Tree Logic
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Computation Tree Logic Syntax and Semantics

Computation Tree Logic

» Clarke and Emerson 1981 "Design and Synthesis of Synchronization
Skeletons Using Branching Time Temporal Logic”, cited more than

3000 times!
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Computation Tree Logic Syntax and Semantics

Computation Tree Logic Syntax

[CE81, CE82]

e Statements over states

- a € AP atomic proposition
- ~dand PA YV negation and conjunction
- e there exists a path fulfilling ¢
- Vo all paths fulfill ¢

e Statements over paths

- O% the next state fulfills ®
- oUW ® holds until a W-state is reached

= note that O) and U alternate with ¥ and 3
- YOO ® and VIO @ ¢ CTL, but VOV ® and YOI & € CTL
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Computation Tree Logic Syntax and Semantics

Computation Tree Logic Syntax (as in books)

CTL state formulae over the set AP of atomic proposition are formed according to the
following grammar:

D 1= true ‘ a ‘ Py ANDy ‘ P ‘ Jo ’ Yo

where a € AP and ¢ is a path formula.  CTL path formulae are formed according to the
following grammar:

pu=0Q ’ DUy

where ¢, ®; and ¥, are state formulae. [ ]

See the [PoM, page 317]
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Computation Tree Logic Syntax and Semantics

Derived Operators

potentially ®: 0P = J(trueU @)

inevitably ®: YooP = VY(trueU ®)

potentially always ®: J0¢ = VO

invariantly ®: voo = 309

weak until: FHEWY) = V(@A-T)U(=PA-TD))
V@EWT) = —J(2A-P)U (=B A-T))

the boolean connectives are derived as usual
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Computation Tree Logic Syntax and Semantics

Legal CTL Formulae

Let AP = {2 =1,2 < 2,2 > 3} be aset of atomic propositions. Examples of syntactically
correct CTL formulae are

A0 (x=1),YO(zx=1), andz <2 V z=1

and 3((z < 2)U(z > 3)) and Y(trueU (z < 2)). Some examples of formulae that are
syntactically incorrect are

Iz =1 A VO (x> 3)) and 3O (trueU (z = 1)).
The first is not a CTL formula since z =1 A VO (z > 3) is not a path formula and thus
must not be preceded by 3 The second formula is not a CTL formula since true U (z = 1)
is a path formula rather than a state formula, and thus cannot be preceded by (. Note
that

0 (x =1 A VO (z > 3)) and 3O V(trueU (z = 1))

are, however, syntactically correct CTL formulae.
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Computation Tree Logic Syntax and Semantics

Visualization of semantics

Q

a

S @

O

JOred J0red (yellow U red)

® at a
‘s S0 ‘o $o IEER

Yo red vOred Y(yellow U red)
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Computation Tree Logic Syntax and Semantics

Semantics of CTL state-formulas

Defined by a relation = such that

s = @ if and only if formula ® holds in state s

skEa iff a€ L(s)

sE-® iff —(sE®)

sEOAY iff (sEQ)A(sED)

sEdp iff 7 = ¢ for some path 7 that starts in s
s E Ve iff = |= ¢ for all paths = that startin s
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Computation Tree Logic Syntax and Semantics

Semantics of CTL path-formulas

Define a relation |= such that

7 | ¢ if and only if path 7 satisfies ¢

T E QP iff 7[1] E ®
rEQUT iff(3j207ETY A VOLEk<jrlk] EP))

where 7[i] denotes the state s; in the path =
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Computation Tree Logic Syntax and Semantics

Examples of CTL Properties (1/4) The TMR System

Property Formalization in CTL

Possibly the system never goes down 300 = down
Invariantly the system never goes down V[ —down
It is always possible to start as new VO30 ups

The system always eventually goes down
and is operational until going down V ((ups V upy)Udown)
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Computation Tree Logic Syntax and Semantics

Examples of CTL Properties (2/4)

TS {a} d{m {a}:
{b} (a)

04 .i?_/.%() vOa O%?_/.%Q
T e T

T

d0a

30 (3@0a

3@V (=a A Y(=aUb))) \./
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Computation Tree Logic Syntax and Semantics

About Infinitely Often in CTL

s EV OV Qaif and only if for all # € Path(s), w[i] |= a for infinitely many ¢

Proof on the board...
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Computation Tree Logic Syntax and Semantics

Intuitive examples of CTL Properties (3/4)

» The mutual exclusion property can be described in CTL by the formula

VO(—erity V —erits)

The CTL formula
(V OV Qeriti) A (Y OV O crita)
requires each process to have access to the critical section infinitely often.

> In case of a traffic light:
> The safety property “each red light phase is preceded by a yellow light
phase” can be formulated in CTL by
vO(yellow V'V O —red)

> The liveness property “the traffic light is infinitely often green” can be
formulated as
VOV(Qgreen
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Computation Tree Logic Syntax and Semantics

Intuitive examples of CTL Properties (4/4)

> Progress properties such as “every request will eventually be granted” can
be described by
VO(Request = Y{response)

» The CTL formula
vOIOstart

expresses that in every reachable system state it is possible to return (via 0
or more transitions) to (one of) the starting state(s).
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Computation Tree Logic Syntax and Semantics

Semantics of CTL on TS (1/2)

e For CTL-state-formula @, the satisfaction set Sat(®) is defined by:

Sat(®) = {se€S|sEP}

o TS satisfies CTL-formula @ iff ® holds in all its initial states:
TSE® ifandonlyif Vspe l.sop=®
— this is equivalentto I C Sat(®)

e Point of attention: TS [~ ® and TS [~ —® is possible!
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Computation Tree Logic Syntax and Semantics

Semantics of CTL on TS (2/2)

TS = ® and T'S [~ —® is possible:

50 N

{a} g

because of several initial states, e.g., so =3 (a and s, [~ 3 Oa

Exercise

Any even simpler idea?
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Computation Tree Logic Syntax and Semantics

CTL Semantics for Transition Systems with Terminal States

Exercise

Adapt the path semantics in case transition systems are considered with terminal
states, i.e., when finite paths are possible.
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Computation Tree Logic Syntax and Semantics
@000

CTL Equivalence - Duality Laws

Definition
® = U if and only if for all transition system T'S,

TSE=® < TSEV

vO® = 30 P
30 = VO -9
VOO = 309
0P = VO
Y(OUT) = —-3J(PA-TP)W (-DPA-T))
Exercise

Write proofs
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Computation Tree Logic Syntax and Semantics
o] le]e)

CTL Equivalence - Expansion Laws

Y(@UT) = TV (& AVQOVY(@UD))
vOob = & v V() VOd
vod = & A V(O VOd
IUT) = TV (P AIOI(PUD))
300 = ¢ v 40 0P
406 = & A 40 JOd
Exercise

Write proofs
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Computation Tree Logic Syntax and Semantics
[e]e] o)

Distributive Laws (1/2)

VO(®AT) = VO A VOU

IO@VE) = 300 v IOT

notethat 30 (& A ¥) # 30d A IOV and Vo (& V T) # VO b vV VO

Exercise

Write proofs

Exercise

Argue why V O (PVU) £V OGP VY QW entails IO(PAV) Z3 OPAI O,
then prove V O (P VW) ZV QD VYV O W.
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Computation Tree Logic Syntax and Semantics
oooe

VO@VI)£YODVY QT

'
¥

s = V0 (a Vv b)sinceforall m € Paths(s). m |= < (a V b)
But: s (s")¥ = G abut s (s”)Y &£ O bThus: s £ VO b

A similar reasoning applied to path s (s')“ yields s j& V< a
Thus, s £ VO a V VODb
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Computation Tree Logic Syntax and Semantics
[ 1o}

Existential Normal Forms

For a € AP, the set of CTL state formulae in ezistential normal form (ENF, for short) is
given by

O = true ‘ a ‘ Dy A Dy ’ . ‘ Elo) ( 3(01 U dy) ‘ 0.

Theorem

For each CTL formula there exists an equivalent CTL formula in ENF, but with
an exponential blowup.

Proof.
Use the duality laws for elimination of V path quantifier:

V O [ = —|3 O -P

V(@UY) = -J(-PU(DPA-TD)A-TO-T
Exercise

Make the proofs, also what would you suggest for ¥V ® and V[ ®7?

O
Notice the exponential blowup of the translation from CTL to CTL in ENF.
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Computation Tree Logic Syntax and Semantics
oe

Positive Normal Forms

The set of CTL state formulae in positive normal form (PNF, for short) is given by
o = true‘false‘a‘ﬂa‘q)lA@z’@l VvV Dy ‘ H@}V(p
where @ € AP and the path formulae are given by

¢ w= 00 ’ @, Udy ( B W by,

Theorem

For each CTL formula there exists an equivalent CTL formula in PNF

Proof.

Use the equivalence laws. O

Notice that a law like =V (P U W) = 3 ((=¥) W (=P A =¥)) yields an
exponential blowup in the translation.

Exercice

What if you allow for the release operator R of the [PoM, page 334]7
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CTL Model Checking and counter examples

Outline

© CTL Model Checking and counter examples
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CTL Model Checking and counter examples

Model Checking

Wikipedia

In computer science, model checking is: Given a model of a system,
exhaustively and automatically check whether this model meets a given
specification.

Typically, the systems one has in mind are hardware or software systems, and
the specification contains safety requirements such as the absence of deadlocks
and similar critical states that can cause the system to crash. Model checking
is a technique for automatically verifying correctness properties of finite-state
systems.

To solve such a problem algorithmically, both the model of the system and the
specification are formulated in some precise mathematical language: To this
end, it is formulated as a task in logic, namely to check whether a given
structure satisfies a given logical formula.

Our setting
Given a transition system 7'S and a formula ® € C'T'L,

TS = ®?

Sophie Pinchinat Computation Tree Logic for formal verification TVA Part | 39/103



CTL Model Checking and counter examples

Preliminaries assumptions

> The transition system 7'S is finite with no terminal state

» Formula @ is in Exitential Normal Form (recall)

O u=true|a| Py A D[P | O @I (P UDy)|FOP
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CTL Model Checking and counter examples

Basic Algorithm

Consider T'S = (S,—,1,AP,L) and ® € CTL
> The set Sat(®) is computed recursively
> It follows that T'S |= @ if and only if I C Sat(®)

The Model Checking is global because we answer a more general problem than
“T'S = @7, but “s = @7 forallse S
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CTL Model Checking and counter examples

The Basic Algorithm

We proceed with a bottom-up traversal of the parse tree of the CTL state
formula ®
Input: finite transition system TS and CTL formula ® (both over AP)
Output: TS |= @

(* compute the sets Sat(®) = {se€ S|sEP} )
foralli < |®|do
forall ¥ € Sub(®) with | ¥ | = i do
compute Sat(¥) from Sat(¥') (* for maximal proper ¥’ € Sub(¥) *)
od
od
return I C Sat(®)

where Sub(®) is the set of subformulas of ® and |®| is the length of ®, i.e.,
the number of symbols
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CTL Model Checking and counter examples

Example
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CTL Model Checking and counter examples

Characterization of Sat(.) (1/2)

Let Post(s) := {s’| s — s’} be the set of successor states of s

For all CTL formulas ®, ¥ over AP it holds:

Sat(true) = S
Sat(a) = {se€S|ae€L(s)}, foranya e AP
Sat(® ANV) = Sat(®) N Sat(V)
Sat(—-®) = S\ Sat(®)
Sat30O®) = {seS|Post(s)n Sat(®) # <}
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CTL Model Checking and counter examples

Characterization of Sat(.) (2/2)

e Saf(3(® U W)) is the smallest subset T" of .S, such that:

(1) Sat(¥) CT and (2) (s € Sat(®)and Post(s) NT # &) = se€T

e Saf(30d) is the largest subset T of S, such that:

(3) T C Sat(®) and (4) s € T implies Post(s) N T # &
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CTL Model Checking and counter examples

Characterization of Sat(3(® U V))

Proposition

Sat(3(® U W)) is the smallest set 7' C S such that
(1) Sat(v) C T

(2) s € Sat(®) and Post(s) N T # () imply s € T

Proof.

(i) Show that Sat(3(® U W)) satisfies (1) and (2)

(i) Show that any T satisfying (1) and (2) is such that Sat(3(®UW)) C T
See details at [PoM, page 344] O
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CTL Model Checking and counter examples

Fix-point characterization of Sat(3 (® U ¥))

We just have seen that:

Proposition

Sat(3(® U W)) is the smallest set 7' C S such that
(1) Sat(v) C T

(2) s € Sat(®) and Post(s) N T # () imply s € T

Notice that, because of the expansion laws, 3 (® U W) is a solution of the

equation Z =V V & AT O Z (where Z is a variable), but there are others,
e.g., 3(®W ) is another one.

Proposition
Sat(3 (@ U W)) is the smallest set T C S satisfying

Sat(V) U {s € Sat(®) | Post(s) N T # 0} =T
47/103
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CTL Model Checking and counter examples

Fix-point characterization of Sat(3 0 ®)

Proposition

Sat(3 O ®) is the largest set T C S such that
(3) T C Sat(®)

(4) s € T implies Post(s) NT # 0

Proof.
(i) Show that Sat(3 O ®) satisfies (3) and (4)
(ii) Show that any T satisfying (3) and (4) is such that 7' C Sat(3 O ®)
See details at [PoM, page 345] (+ an ERRATUM in the book) O
What is the set-theoretic counterpart for Sat(3 0 ®)?
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CTL Model Checking and counter examples

Computation of Sat(®)

switch(®):
a : return{se S|a€L(s)};
IOT : return { s € S | Post(s) N Sat(V) # & };
F(@,UPy) T := Sat(Ps3); (* compute the smallest fixed point *)
while { s € Sat(®1) \ T | Post(s) N T # @ } # & do
let s € {sec Sat(P)\T | Post(s) NT # @ };
T:=T U {s}
od;
return T';
Jo P 1 T := Sat(®); (* compute the greatest fixed point *)
while {s € T'| Post(s) NT = @ } # @ do
let sc {seT |Post(s)NT =2 };
T:=T\{s}
od;
return T';
end switch

We now look at a more detailed version of the backward search for
Sat(3(® U W)) which exploits its characterization as a least fixed-point.
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CTL Model Checking and counter examples

Compute Sat(3 (P U ¥)) (1/3)

Sat(3(® U 0)) is the smallest set ' C S such that:

(1) Sat(v) C T and (2) (s € Sat(®) and Post(s) N T # &) = s€T

This suggests to compute Sat(3(® U 1)) iteratively:

Ty = Sat(V) and Tiy1 = T; U {s € Sal(®) | Post(s) NT; # @ }

T; = states that can reach a U-state in at most ¢ steps via a ®-path

By induction on j it follows:

TyCTiC...CTy C Ty C ... C Sat(3(®U L))
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CTL Model Checking and counter examples

Computing Sat(3 (U ¥)) (2/3)

e TSis finite, so for some j > 0we have: T; = T,y = Tj2 = ...

Therefore: T; = T; U {s € Sat(®) | Post(s)NT; # @}

Hence: { s € Sat(®) | Post(s) NT; # @} C T;

— hence, Tj satisfies (2), i.e., (s € Sat(®) and Post(s) N T; # @) = s €T,
— further, Sat(¥) = T, C T so, T satisfies (1), i.e. Sat(v) C T}

As Sat(3(® U ¥)) is the smallest set satisfying (1) and (2):
- Sat(3(® U ¥)) C Tjandthus Sat(3(¢UW)) = T;

Hence:TO;Tl;ng...gTj:TjH:...:Sat(EI(<I>U\I/))
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CTL Model Checking and counter examples

Computing Sat(3 (@ U ¥)) (3/3)

The algorithm assumes a transition system representation by means of
“inverse” adjacency lists, based on Pre(s’) := {s € S| s’ € Post(s)}

Input: finite transition system TS with state-set S and CTL-formula 3(® U ¥)
Output: Sat(3(PUT)) ={se S|sE=I(PUT)}

E := Sat(¥); (* E administers the states s with s = 3(® U W) *)
T:=F; (* T contains the already visited states s with s |= 3(® U ) *)
while £ # o do

let ' € E;

E:=E\{s};

for all s € Pre(s’) do
if s € Sat(®)\TthenE:=F U {s};T:=T U {s}; endif
od
od
return T’
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CTL Model Checking and counter examples

Example

Example

%]

/O

{p,qr} {p}

O
{aq} {p,7}
{a.r} {p,q}

let's check the CTL-formula 3¢ ((p =) A (p # q))

—~~
=
—
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CTL Model Checking and counter examples

The Computation in Snapshots
{r} p
{p,q,7} {p}
{a} {p,7}
{a.r} {p.a}
(@
(©
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CTL Model Checking and counter examples

Computing Sat(3 O @) (1/2)

The basic idea is to compute Sat(30 ®) by means of the iteration
Ty = Sat(®) and T4 = T; N {s € Sat(®) | Post(s) NT; # @ }.
Then, for all j > 0, it holds that
2N 212 ... 2 ;=T =... =T = Sat(30®).
The above iteration can be realized by means of a backward search starting with
T = Sat(®) and FE =S5\ Sat(®).

Here T equals Ty and E contains all states that refute 300 ®. During the backward search,
states are iteratively removed from T, for which it has been established that they refute
30 ®. This applies to any s € T' satisfying

Post(s)NT = @.

Although s = @ (as it is in 7'), all its successors refute 30 ® (as they are not in T'), and
therefore s refutes 300 ®. Once such states are encountered, they are inserted in E to
enable the possible removal of other states in T'.
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CTL Model Checking and counter examples

Computing Sat(3 O @) (2/2)

In order to support the test whether Post(s) N7 = (), a counter c[s] is
exploited that keeps track of the number of direct successors in T'U E:
c[s] = |Post(s) N T|

E:= S\ Sat(®); (* E contains any not visited s’ with s” [= 30® *)
T := Sat(®); (* T contains any s for which s = 30 has not yet been disproven *)
forall s € Sat(®) do c[s] := | Post(s) |; od (* initialize array c *)

while E # @ do
(* loop invariant: c[s] = | Post(s) N (T'U E) | *)

lets' € E; (*s' %)
E:=E\{s}; (* s’ has been considered *)
forall s € Pre(s’) do
if s € T then
cls] :=c[s] — 1; (* update counter c[s] for predecessor s of s’ *)
if c[s] = 0 then
T:=T\{shE:=EU{s}; (* s does not have any successor in 7" *)
fi
fi
od
od

Sophie Pinchinat Computation Tree Logic for formal verification TVA Part | 56/103




CTL Model Checking and counter examples

Let's practice

Exercice

Simulate the execution of the algorithm for Sat(3 [0 ®) on the structure of Slide
53 for the formula 3 Cg.

Exercice

In the set-theoretic framework, give a characterization of:

» Sat(V O 9)

> Sat(V O P)

» Sat(V(®UW))

» Sat(J(PW VD))

» Sat(V(®@WW))
Exercice

Adapt Algorithm for formulas 3 O @ of Slide 55 to formulas 3 (® W ¥)
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An alternative algorithm for Sat(3 O @)

1. Consider only state s if s = ®, otherwise eliminate s

e change TSinto TS[®] = (S', Act, =/, I', AP, L") with S' = Sat(®),
e ' == N(S xActx SN, I'=1InN S and L'(s) = L(s) fors € S’
= all removed states will not satisfy 30 ®, and thus can be safely removed

2. Determine all non-trivial strongly connected components in TS[®]

e non-trivial SCC = maximal, connected subgraph with at least one transition
= any state in such SCC satisfies 30 ®

3. s =30 is equivalent to “some SCC is reachable from s”

e this search can be done in a backward manner
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Example for 3 (g

{p,q,7} {p}
{q} {p,r}

{ar} {p,q}
(a) (b) TS[q]

(c) scc (d
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CTL Model Checking and counter examples

Time Complexity of the CTL Model Checking

Theorem

For transition system TS with N states and K transitions, and CTL formula @,
the CTL model-checking problem T'S |= ® can be determined in time

O(|®].(N + K))

Proof as a fairly long exercise:
» Consider arbitrary CTL formulas, as ENF yields an exponential blowup

> Treat the modalities V U,V ¢,V O, 3 ¢, etc. analogously to the
introduced approaches for 3 U and 3 .
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CTL Model Checking and counter examples

Flipped Classroom

Flipped Classroom (PoM, in Chapters 3 and 6 about “Fairness assump-
tions”.)

oD PELEIEES o 6 © 0o o o o6 © 6 5 6 © 6 5 5 5 06 6 o o o o o o A
S.B. il PenlEEEs COMESEEEINNES « o o o o o o o 0 o o o o o o o o LA
3.5.2 Fairness Strategies . . . . . . . . . . . . . . . . . .137
3.5.3 Fairness and Safety . . . . . . . . . . . . . . . . . .139

6.6 Counterexamples and Witnesses . . . . . . . . . . . . . .373

6.6.2 Counterexamples and Witnesses in CTL with Fairmess . . .380
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Counterexample generation for refuted formulas

Model checking is an effective and efficient “bug hunting” technique

Counterexamples are of utmost importance:

— diagnostic feedback, the key to abstraction-refinement, schedule synthesis . . .

LTL: counterexamples are finite paths

— (O%: a path on which the next state refutes ®
— 0O&: a path leading to a —®-state
- O®: a ~P-path leading to a =P cycle

Counterexample generation for LTL:

— use stack contents of nested DFS on encountering an accept cycle
— use a variant of BFS top find shortest counterexamples
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Counterexamples for CTL

e TS}~ YV where Vo is also on LTL

— counterexample = a sufficiently long prefix of a path refuting ¢ (as in LTL)
— this is a subset of the so-called universal fragment of CTL

e TS}~ Jp where ¢ is arbitrary CTL formula
— all paths satisfy ¢! =- no clear notion of counterexample
— witness = a sufficiently long prefix of a path satisfying ¢

e So:

— for Ve, a prefix of = with = = ¢ acts as counterexample
— for 3¢, a prefix of = with 7 = ¢ acts as witness
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CTL Model Checking and counter examples

The wolf-goat-cabbage problem (1/5)

e A goat (g), a cabbage (c) and a wolf (w) and two riverbanks (0 and 1)

— A boat with ferryman (f) that can carry at most two occupants
— Only the ferryman can steer the boat

Goat and cabbage, goat and wolf should neither travel nor left together

e |s there a schedule such that brings c, g, and w to the other side?

e ... Model this as a CTL model-checking problem

transition system TS = (wolf ||| goat ||| cabbage) || ferryman
check whether TS |= 3¢ with

@ = (/\ (wz/\gz_>fz) AN (Cl/\gl—>fl)) U (Cl/\fl/\g1/\’w1)

i=0,1
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The wolf-goat-cabbage problem (2/5)

TS = (wolf ||| goat ||| cabbage) || ferryman

||| is interleaving parallel composition and || is synchronized parallel composition
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The wolf-goat-cabbage problem (3/5)

<o f1,go,w0, f0: 90 w1, f1, 90, wo
c0: f1, 91, wo

(c0s fo, 91, w1) (e1, f1, 91, w1) (e1, fo, 91, wo)

c1, f0, 91, w1
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The wolf-goat-cabbage problem (4/5)

A witness of 3¢ with:

$ = </\ (wiNgi — fi) A (Ci/\gi_>fi)> U (et A fiAgiAwr)

i=0,1

is a path fragment from initial state {co, fo, go, wo) to target state (c1, f1, g1, w1) such
that g, ¢ and g, w are not left on a single riverbank. Such as:

(co, fo, 9o, wo)
(co, f1, 91, wo)
(co, fo, g1, wo)
(c1, f1, 91, wo)
(c1, fo, 9o, wo)
<Cl7 .fla 9o, ’UJ1>
(c1, fo, 9o, w1)
(c1, f1, 91, w1)

goat to riverbank 1

ferryman comes back to riverbank 0
cabbage to riverbank 1

goat back to riverbank 0

wolf to riverbank 1

ferryman comes back to riverbank 0
goat to riverbank 1
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The wolf-goat-cabbage problem (5/5)

cos f1, 90, wo
€0- f17907w07 J0: 905 wl, f1, 90, wo

-Cl’fo’go’wo

f1,90, w1

c1, f0, 90, w1

(c0: fo, 915 w1) (e1, f1, 91 w1) (e1, fos 91, wo)

c1, fo: 91, w1
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Counterexamples for () @

e A counterexample of O® is a path fragment s s’ with
- s € Iands' € Post(s) with s’ [~ ®

e A witness of ()@ is a is a path fragment s s’ with

— s € Iand s’ € Post(s) with s’ = ®

e Algorithm: inspection of direct successors of initial states

Sophie Pinchinat Computation Tree Logic for formal verification TVA Part | 69/103



CTL Model Checking and counter examples

Counterexamples for & U W

A witness is an initial path fragment sg s; . . . s,, with

- s, =¥ and s, E=®for0<i<n

Algorithm: backward search starting in the set of W-states

A counterexample is an initial path fragment that indicates a path =:
— for which either 7 = 0(® A—-T) or 7= (PA-T)U (=P AT)

e Counterexample is initial path fragment of either form:
= 80 Sn-1 Sn s/1 - s’r with s,,=s/.or so...8,-1 s, Withs, | —® AT
cycle satisfy ® A =

satisfy ® A —
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CTL Model Checking and counter examples

Counter examples generation for & U W

Determine the SCCs by of the digraph G = (S, E') where

E = {(s,s) e SxS|s €Post(s) N sEPAN-T}

Each path in G that starts in an initial state sq € S and leads to a non-
trivial SCC C in G provides a counterexample of the form:

3051...5,13/1...3; with sn:s;

eC

Each path in G that leads from an initial state s, to a trivial terminal SCC
C={s} with s~
provides a counterexample of the form s s ... s, with s, = =® A =T
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CTL Model Checking and counter examples

Example : Semaphore-based mutual exclusion (1/3)

PG1 : PG2 N
R R
; ;
L oy>0: L oy>0:
yoyi=y-l Y=y -1
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Example : Semaphore-based mutual exclusion (2/3)

c1,ng, y=0) (w1, wa, y=1 (n1,c2,y=0

SIS

‘v’(((nl/\ng) v ws) u\c;/)

( )

“Process P» gets access to the crit. sec. once it starts waiting to enter it.”
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Example : Semaphore-based mutual exclusion (3/3)

wi, wg, y=1

(

ni, ¢z, y=0)

(c1,n2, y=0)

(c1, wa, y=0)
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Counter examples for [J®

Counterexample is initial path fragment sy s1 . . . s, such that:
- S0,...,8n—1 = ®and s, £ P

Algorithm: backward search starting in —=®-states

e A witness of ¢ = O® consists of an initial path fragment of the form:
- 5051...sns/1...s/r with s, = s'T
satisfy @

Algorithm: cycle search in the digraph G = (S, E) where the set of
edges E:

- E = {(s,8)| s €Post(s) N s}
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CTL Model Checking and counter examples

Time Complexity

Theorem

Let T'S be a transition system with N states and K transitions and ¢ be a
CTL-path formula.

If TS £ Vo then a counterexample for ¢ in T'S can be determined in time
O(N + K).

The same holds for a witness for ¢, provided that T'S = Jp.

Excercise

Justify the claim of the theorem above.
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Bisimulation

Outline

@ Bisimulation
m Bisimulation Quotient
m Logical Characterization of Bisimulation

Sophie Pinchinat Computation Tree Logic for formal verification TVA Part | 77/103



Bisimulation

Bisimulation (Motivations)

e A binary relation on transition systems

— when does a transition systems correctly implements another?
e Important for system synthesis

- stepwise refinement of a system specification TS into an “implementation” TS’
e Important for system analysis

— use the implementation relation as a means for abstraction
— replace TS |= p by TS’ |= o where | TS| << | TS| such that:

TSE=iff TS Ep or TS=p = TSE=¢

= Focus on state-based bisimulation and simulation

— definition: what is bisimulation?
— logical characterization: which logical formulas are preserved by bisimulation?
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Bisimulation

Bisimulation Equivalence

Let TS; = (S;, Act;, —4, I;, AP, L;), i=1, 2, be transition systems

A bisimulation for (TS;, TS,) is a binary relation R C S} x S5 such that:
1. Vsy € I1 sy € Ir. (s1,82) €E R and Vsy € I 3sy € I;. (s1,82) ER
2. for all states s; € Sy, s2 € Sy with (s1, s2) € R it holds:

(@) Li(s1) = La(s2)
(b) if s] € Post(sy) then there exists s, € Post(s>) with (s7, s5) € R

(c) if s, € Post(s2) then there exists s, € Post(s1) with (s}, s;) € R

TS; and TS, are bisimilar, denoted TS| ~ TSa, if there exists a bisimulation for (TS;, TS2)
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Bisimulation

Bisimulation Equivalence

s1 — s s1 — 8

R can be completed to R R

S92 52 — 812
and

s1 s1 — 8

R can be completed to R R

s — 8 Sy —  sh
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Bisimulation

Bisimulation Example (1)

R = {(so, to), (51, 11), (52, 2), (52, 3), (83, t4)}

is a bisimulation for (TS;, TS,) where AP = { pay, beer, sprite }
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Bisimulation

Bisimulation Example (2)

TS, # TS; for AP = { pay, beer, sprite }

But: { (so, ©0), (81, u1), (s1,u2), (s2,us), (S2, ws), (83, us), (s3,us) }

is a bisimulation for (TS;, TSs) for AP = { pay, drink }
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Bisimulation

~ is an equivalence

For any transition systems TS, TS;, TS, and TS; over AP:
TS ~ TS (reflexivity)
TS, ~ TS, implies TS, ~ TS; (symmetry)

TS, ~ TS; and TS, ~ TS3 implies TS; ~ TS; (transitivity)
Proof as an exercise
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Bisimulation

Write here your proof of Slide 83
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Bisimulation

Bisimulation on Paths

Whenever we have:

Sy == &1 = &y = &y =  Shloocoooo
R
to

this can be completed to
Sy == &1 == & = &y =  Shloocoooo
R R R R R

to — 1 — 19 — i3 — tg......

proof: by induction on index 7 of state s;
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Bisimulation

Write here your proof of Slide 85
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Bisimulation

Bisimulation vs. Trace Equivalence

» Recall: In transition system T'S consider paths m = sps182.. ..
Get the trace of 7 as trace(nw) = L(so)L(s1)L(sz2) ... € (2*F)

Define Trace(T'S) as the set of traces of initial maximal paths

» T'Sy and T'S; are trace equivalent whenever Trace(7'S1) = Trace(T'S2)

Corollary of Proposition Slide 85
TS1 ~ TS5 implies Trace(7'S1) = Trace(T'S2)

87/103
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Bisimulation

Make clear your proof of Corollary of Slide 87
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Bisimulation
@00000

Bisimulation On States

R C S x Sis a bisimulationon TS if for any (s1, s2) € R:

® [(s1) = L(s2)

e if s € Post(s1) then there exists an s}, € Post(s2) with (s}, s5) € R
e if s;, € Post(s>) then there exists an s} € Post(s;) with (s}, s5) € R

s1 and sy are bisimilar, s; ~ts s, if (s1, s2) € R for some bisimulation R for TS

s1 ~71s sz ifandonlyif TS, ~ TS,
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Bisimulation
O@0000

Coarsest Bisimulation

For transition system TS = (S, Act, —, I, AP, L) it holds that:

1.~ 18 an equivalence relation on S.
2. ~urg s a bisimulation for TS.

8. ~urg is the coarsest bisimulation for TS.
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Bisimulation
00@000

Write here your proof of Slide 90
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Bisimulation
[e]e]e] lole}

Quotient Transition System

For TS = (S, Act,—, I, AP, L) and bisimulation ~7s C .S x S on TS let
TS/ ~rs= (8", {7},—=/,I',AP, L), the quotient of TS under ~s
where

e §'=5/~rs={[s]~|s€S}with[s]. = {s'€S|s~rss'}
s

/

e —'is defined by: T VI
[s]~ = [s]~

o I'={[sl~|sel}

o L'([s]~) = L(s)
note that TS ~ TS/ ~7s Why?
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Bisimulation
000080

Example: n printers (1/2)

Consider a system of n printers, each represented as extremely simplified by
two states, ready (initial) and print, and when started alternate between the

states. The entire system is

TS, = Printer || ... || Printer (n times)
labeled over AP ={0,1,...,n}. L(s) = k whenever k printers are ready.
Here for n = 3:

93/103
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Example: n printers (2/2)

TS, has 2™ states
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Bisimulation
@00000000

Equivalence induced by the logic CTL

Definition
States s1 and sz in T'S (over AP) are CTL-equivalent, written s1 =ctL 2 if,
and only if, (s1 = @ iff so = @), for all CTL state formulas over AP.

Let T'S1 =c1. T'Ss if and only if (TSl '= D iff T'Ss '= ‘I))
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Bisimulation
0@0000000

Bisimulation vs. CTL-equivalence

Theorem

Let T'S be a finite transition system and s, s2 be two states.

$1 ~r1s s2 if, and only if, s1 =cTL S2

Important remark
Theorem above also holds for any sublogic of CTL containing =, A, and O
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Bisimulation
00e000000

Proof of =ct1. C ~7g for Theorem on Slide 96 (1/2)

It suffices to show that R := {(s1,s2) € S x S|s1 =crL s2} is a bisimulation.
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Bisimulation
000@00000

Proof of =ct1. C ~pg for Theorem on Slide 96 (2/2)
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Bisimulation
0000@0000

Important Remark

In the proof of Slide 98, only operators =, A, and (O have been used. Thus, we
do not need the full power of CTL to distinguish non-bisimilar states.
In fact, finiteness of TS is not necesseary, we can prove that:

Theorem

Hennessy and Milner 1985 [HM85]
=mLC~rg, for any finitely branching transition system 7'S, where ML is “Modal
Logic”, i.e.

® 5 ML = a|~®|0; A D23 O
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00000@000

Write here the proof of Slide 99
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Bisimulation
000000e00

=mLC~7g does not hold for infinite transition systems (1/2)

We first consider the “cheating” case with an infinite set AP.
Define the transition system 7'S with:
> states: {si,s2} U{ta|AC AP}
> transitions:
> Post(s1) ={ta| A C AP}
> Post(so) = {ta|AC AP}
> Post(ta) = {s1}
> labelling: L(s1) = L(s2) =0, and L(ta) = A for all AC AP.

Exercice
Draw this TS here:

Clearly s1 %15 s2, because of the transition so — tap.

Now, whichever formula is taken (even a CTL one), there are only finitely
propositions of AP used in this formula, which prevents it from distinguishing
s1 and so.
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Bisimulation
0000000e0

=mLC~7gs does not hold for infinite transition systems (2/2)

Still, if AP has to be finite, we shall use ordinal processes from Klop.

» For each ordinal A (see [Ros82] for linear orderings), define the transtion
system T'Sy = (A + 1, <, A): for all «, 3 < A, we have o — 3 whenever
a < pf.

> TSg

» By [Klo88] T'S. ~ T'Ss implies oo = 3,

» But o =crr 8 whenever «, 8 > w [Pin91]

102/103

Sophie Pinchinat Computation Tree Logic for formal verification TVA Part |



Bisimulation
00000000 e

Proof Of NTSgECTL

Theorem

Let T'S be a transition system (over AP), s1 and sy be states of T'S.

If s1 ~7g s2 then for every CTL formula @ : s1 = @ iff so = @

Proof sketch: Establish (a) and (b) by induction on the structure of the
formulas of CTL. See the [PoM] with a simultaneaous induction on state and
path formulas of the logic CTL* (O CTL and that we shall see later in this
course).
Consequences of the theorem:
> Bisimilar transition systems preserve the same CTL formulas: TS = ®
and TSz £ @ implies T'S1 o T'S2

» Non-bisimilarity can be shown by a single CTL formula: TSy % T'S,
implies there exists ® € CTL s.t. T'S; = ® and T'S; = ®

» Actually, you even do not need to use an until-operator!
> To check T'S |= @, it suffices to check on the quotient: T'S/ ~}= ®
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